Research article

On employing pythagorean fuzzy processing time to minimize machine rental cost

  • Received: 22 March 2023 Revised: 23 April 2023 Accepted: 23 April 2023 Published: 18 May 2023
  • MSC : 03E72, 68Q01

  • The aim of this paper is to obtain the minimal rental cost of the three-phases flow shop scheduling problems. A novel strategy to tackle this issue using Pythagorean fuzzy processing time is introduced. It depends on converting the three stages machine into two stages when the minimum value of processing time of the first machine is greater than the maximum value of processing time of the second machine. The vague processing time does not convert to its crisp form. The jobs sequencing in machines is obtained using Johnson procedure. The zero element of the Pythagorean set is defined as, $ {\widetilde{\mathrm{O}}}^{\mathrm{p}} = \left(\mathrm{0, 1}\right) $ i.e., it has zero membership and one nonmembership values. A numerical example include Pythagorean rental cost is delivered to demonstrate the reliability of the suggested strategy. The idle time, utilization time, and the overall cost are calculated. The idle time of all machines is zero, which minimize the required time and hence, minimize the total rental cost.

    Citation: Salwa El-Morsy, Junaid Ahmad, Reny George. On employing pythagorean fuzzy processing time to minimize machine rental cost[J]. AIMS Mathematics, 2023, 8(7): 17259-17271. doi: 10.3934/math.2023882

    Related Papers:

  • The aim of this paper is to obtain the minimal rental cost of the three-phases flow shop scheduling problems. A novel strategy to tackle this issue using Pythagorean fuzzy processing time is introduced. It depends on converting the three stages machine into two stages when the minimum value of processing time of the first machine is greater than the maximum value of processing time of the second machine. The vague processing time does not convert to its crisp form. The jobs sequencing in machines is obtained using Johnson procedure. The zero element of the Pythagorean set is defined as, $ {\widetilde{\mathrm{O}}}^{\mathrm{p}} = \left(\mathrm{0, 1}\right) $ i.e., it has zero membership and one nonmembership values. A numerical example include Pythagorean rental cost is delivered to demonstrate the reliability of the suggested strategy. The idle time, utilization time, and the overall cost are calculated. The idle time of all machines is zero, which minimize the required time and hence, minimize the total rental cost.



    加载中


    [1] M. S. S. Mir, J. Rezaeian, H. Mohamadian, Scheduling parallel machine problem under general effects of deterioration and learning with past-sequence-dependent setup time: heuristic and meta-heuristic approaches, Soft Comput., 24 (2020), 1335–1355. https://doi.org/10.1007/s00500-019-03970-z doi: 10.1007/s00500-019-03970-z
    [2] W. Luo, Y. Xu, W. Tong, G. Lin, Single-machine scheduling with job-dependent machine deterioration, J. Sched., 22 (2019), 691–707. https://doi.org/10.1007/s10951-019-00622-w doi: 10.1007/s10951-019-00622-w
    [3] R. Chen, J. Yuan, Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines, J. Sched., 22 (2019), 595–601. https://doi.org/10.1007/s10951-019-00615-9 doi: 10.1007/s10951-019-00615-9
    [4] W. Luo, F. Liu, On single-machine scheduling with workload-dependent maintenance duration, Omega, 68 (2017), 119–122. https://doi.org/10.1016/j.omega.2016.06.008 doi: 10.1016/j.omega.2016.06.008
    [5] S. Atakan, B. Kerem, N. Noyan, Minimizing value-at-risk in single-machine scheduling, Ann. Oper. Res., 248 (2017), 25–73. https://doi.org/10.1007/s10479-016-2251-z doi: 10.1007/s10479-016-2251-z
    [6] L. Zhang, O. Deng, G. Gong, W. Han, A new unrelated parallel machine scheduling problem with tool changes to minimize the total energy consumption, Int. J. Prod. Res., 58 (2020), 6826–6845. https://doi.org/10.1080/00207543.2019.1685708 doi: 10.1080/00207543.2019.1685708
    [7] J. Xu, S. Zhang, Y. Hu, Research on construction and application for the model of multistage job shop scheduling problem, Math. Probl. Eng., 2020 (2020), 635739. https://doi.org/10.1155/2020/6357394 doi: 10.1155/2020/6357394
    [8] S. M. Johnson, Optimal two and three stages production schedule with set up times included, Naval Research Logistics Quarterly, 1 (1954), 61–68. https://doi.org/10.1002/nav.3800010110 doi: 10.1002/nav.3800010110
    [9] Y. Xing, J. Wu, F. Chiclana, G. Yu, M. Cao, E. Herrera-Viedma, A bargaining game-based feedback mechanism to support consensus in dynamic social network group decision making, Inform. Fusion, 93 (2023), 363–382. https://doi.org/10.1016/j.inffus.2023.01.004
    [10] F. Ji, F. J. Wu, F. Chiclana, S. Wang, H. Fujita, E. Herrera-Viedma, The overlapping community driven feedback mechanism to support consensus in social network group decision making, IEEE T. Fuzzy Syst., 2023 (2023), 1–15. https://doi.org/10.1109/TFUZZ.2023.3241062
    [11] L. A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1996), 338–353.
    [12] H. Garg, S. A. Edalatpanah, S. El-Morsy, H. A. Khalifa, On stability of continuous cooperative static games with possibilistic parameters in the objective functions, Comput. Intel. Neurosc., 2022 (2022), 6979075. https://doi.org/10.1155/2022/6979075 doi: 10.1155/2022/6979075
    [13] M. Saeed, M. Ahsan, M. H. Saeed, A. Mehamood, S. El-Morsy, Assessment of solid waste management strategies using an efficient complex fuzzy hypersoft set algorithm based on entropy and similarity measures, IEEE Access, 9 (2021), 150700–150714. https://doi.org/10.1109/ACCESS.2021.3125727
    [14] A. U. Rahman, M. Saeed, M. Arshad, S. El-Morsy, Multi-attribute decision-support system based on aggregations of interval-valued complex neutrosophic hypersoft set, Appl. Comput. Intell. S., 2021 (2021), 4368770. https://doi.org/10.1155/2021/4368770
    [15] S. A. El-Morsy, Optimization of fuzzy zero-base budgeting, Computational Algorithms and Numerical Dimensions, 1 (2022), 147–154.
    [16] M. Saeed, M. Ahsan, M. H. Saeed, S. El-Morsy, An optimized complex fuzzy hypersoft set system based approach for the evaluation of strategic procurement techniques for fuel cell and hydrogen components, IEEE Access, 10 (2022), 71612–71631. https://doi.org/10.1109/ACCESS.2022.3188293
    [17] M. Ihsan, M. Saeed, A. U. Rahman, H. A. Khalifa, S. El-Morsy, An intelligent fuzzy parameterized multi-critera decision-support system based on intuitionistic fuzzy hypersoft expert set for automobile evolution, Adv. Mech. Eng., 14 (2022), 1–20. https://doi.org/10.1177/16878132221110005
    [18] H. A. Khalifa, M. Saeed, A. U. Rahman, S. El-Morsy, An application of pentagonal neutrosophic linear programming for stock portfolio optimization, Neutrosophic Sets Sy., 51 (2022), 653–665.
    [19] K. Rathi, S. Balamohan, Representation and ranking of fuzzy numbers with heptagonal membership function using value and ambiguity index, Applied Mathematical Sciences, 8 (2014), 4309–4321. https://doi.org/10.12988/AMS.2014.45363 doi: 10.12988/AMS.2014.45363
    [20] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [21] R. M. Zulqarnain, I. Siddique, S. El-Morsy, Einstein-ordered weighted geometric operator for pythagorean fuzzy soft set with its application to solve MAGDM problem, Math. Probl. Eng., 2022 (2022), 5199427. https://doi.org/10.1155/2022/5199427
    [22] X. J. Gou, Z. S. Xu, P. J. Ren, The properties of continuous pythagorean fuzzy information, Int. J. Intell. Syst., 31 (2016), 401–424. https://doi.org/10.1002/int.21788 doi: 10.1002/int.21788
    [23] S. Sathish, K. Ganesan, Flow shop scheduling problem to minimize the rental cost under fuzzy environment, Journal of Natural Sciences Research, 2 (2012), 62–68.
    [24] H. Khalifa, On single machine scheduling problem with distinct due dates under fuzzy environment, International Journal of Supply and Operations Management, 7 (2020), 272–278. https://doi.org/10.22034/IJSOM.2020.3.5 doi: 10.22034/IJSOM.2020.3.5
    [25] H. A. E. Khalifa, S. S. Alodhaibi, P. Kumar, Solving constrained flow-shop scheduling problem through multistage fuzzy binding approach with fuzzy due dates, Adv. Fuzzy Syst., 2021 (2021), 6697060. https://doi.org/10.1155/2021/6697060 doi: 10.1155/2021/6697060
    [26] M. G. Alharbi, H. A. E. Khalifa, On a flow-shop scheduling problem with fuzzy pentagonal processing time, J. Math., 2021 (2021), 6695174. https://doi.org/10.1155/2021/6695174 doi: 10.1155/2021/6695174
    [27] A. Alburaikan, H. Garg, H. A. E. Khalifa, A novel approach for minimizing processing times of three-stage flow shop scheduling problems under fuzziness, Symmetry, 15 (2023), 130. https://doi.org/10.3390/sym15010130 doi: 10.3390/sym15010130
    [28] K. Shaukat, S. Luo, V. Varadharjan, A novel deep learning-based approach for malware detection, Eng. Appl. Artif. Intel., 122 (2023), 106030. https://doi.org/10.1016/j.engappai.2023.106030 doi: 10.1016/j.engappai.2023.106030
    [29] K. Shaukat, S. Luo, V. Varadharjan, I. A. Hameed, M. Xu, A survey on machine learning tchniques for cyber security in the last decade, IEEE Access, 8 (2020), 222310–222354. https://doi.org/10.1109/ACCESS.2020.3041951 doi: 10.1109/ACCESS.2020.3041951
    [30] U. Javed, K. Shaukat, I. A. Hameed, F. Iqbal, T. M. Alam, S. Luo, A review of content-based and context-based recommendation systems, Int. J. Emerg. Technol., 16 (2021), 274–306. https://doi.org/10.3991/ijet.v16i03.18851 doi: 10.3991/ijet.v16i03.18851
    [31] T. M. Alam, K. Shaukat, I. A. Hameed, S. Luo, M. Umer, S. Shabbiri, et al., An investigation of credit card default prediction in the imbalanced datasets, IEEE Access, 8 (2020), 201173–201198. https://doi.org/10.1109/ACCESS.2020.3033784
    [32] T. M. Alam, K. Shaukat, M. Mushtaq, Y. Ali, M. Khushi, S. Luo, et al., Corporate bankruptcy prediction: an approach towards better corporate world, The Computer Journal, 64 (2021), 1731–1746. https://doi.org/10.1093/comjnl/bxaa056
    [33] K. Shaukat, S. Luo, S. Chen, D. Liu, Cyber threat detection using machine learning techniques: a performance evaluation perspective, International Conference on Cyber Warfare and Security (ICCWS), Islamabad, Pakistan, 2020, 1–6. https://doi.org/10.1109/ICCWS48432.2020.9292388 doi: 10.1109/ICCWS48432.2020.9292388
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1110) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog