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Abstract: In this work, we deal with a one-dimensional Cauchy problem in Timoshenko system with
thermal effect and damping term. The heat conduction is given by the theory of Lord-Shulman. We
prove that the dissipation induced by the coupling of the Timoshenko system with the heat conduction
of Lord-Shulman’s theory alone is strong enough to stabilize the system, but with slow decay rate. To
show our result, we transform our system into a first order system and, applying the energy method in
the Fourier space, we establish some pointwise estimates of the Fourier image of the solution. Using
those pointwise estimates, we prove the decay estimates of the solution and show that those decay
estimates are very slow.

Keywords: partial differential equations; mathematical operators; decay rate; Lord-Shulman;
thermoelasticity; Fourier transform
Mathematics Subject Classification: 35B37, 35L55, 74D05, 93D15, 93D20

1. Introduction

Lord Shulman’s thermoelasticity has also garnered a lot of interest among scientists in the past few
years and there is a broad amount of contributions to explaining this theory. This theory is based on
the study of a set of four hyperbolic equations with heat dissipation. In this instance, the heat
conduction is also equivalent and hyperbolic in contrast to the one produced for Fourier’s law.
For more information and explanation about this theory and other theories, see [1, 2]. Green &
Naghdi [3, 4] created a thermoelasticity model that incorporates thermal displacement gradient and
temperature gradient among the constitutive variables and proposed a heat conduction law.
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There are numerous results from the coupling of the Fourier law of heat conduction and various
systems, which has been discussed by researchers. For example, the Timoshenko system has been
studied in [5, 6], the Bresse system combined with the Cattaneo law of heat conduction
(Bresse-Cattaneo) in [7], the Bresse system (Bresse Fourier) has been studied in [8–10] and MGT
problem in [11]. The following papers are recommended to the reader for more information [12, 13].

Initially, the basic evolution equations for the one-dimensional Timoshenko thermo-elasticity
theories with microtemperature and temperature [14–18] provided by

ρℏtt = Tx,

Iρℑtt = Hx +G,

ρT0ζt = qx,

ρEt = P∗x + q − Q. (1.1)

Here E,H,T, q, ζ,Q, P∗,T0,G denote the first moment of energy, the equilibrated stress, the stress, the
heat flux vector, the entropy, the mean heat flux, the first heat flux moment, the reference temperature
and the equilibrated body force, K, ρ, Iρ, I&E represent the shear modulus, the density, the polar
moment of inertia of a cross section, the moment of inertia of a cross section and Young’s modulus of
elasticity respectively. In order to make calculations simple, let T0 = ρ = Iρ = K = 1 and EI = a2 > 0.

In this work, the natural counterpart to the Lord-Shulman theory’s microtemperatures is taken into
consideration [1,2]. In this case, we must modify the constitutive equations to take the following form.

T = T1 + T2 P∗ = −k2ϖx,

H = H1 + H2 ρζ = γ0ℏx + γ1ℑ + β1(κθt + θ),
G = G1 +G2 Q = (k1 − k3)ϖ + (k − k1)θx,

q = kθx + k1ϖ ρE = −β2(κϖt +ϖ) − γ2ℑx, (1.2)

where

T1 = G1 = K(ℏx − ℑ) T2 = −γ0(κθt + θ)
H1 = EIℑx G2 = γ1(κθt + θ) − µ1ℑt,

H2 = −γ2(κϖt +ϖ). (1.3)

Here, the functions ℏ and ℑ denote the elastic material displacement,ϖ is the microtemperature vector
and the function θ is the temperature difference, κ > 0 is the relaxation parameter. β1, β2 > 0, the
coefficients γ1, k, γ0 denote, the coupling between the volume fraction and the temperature, the thermal
conductivity, the coupling between the displacement and the temperature respectively.

As coupling is considered the coefficients k1, k2, k3, γ2, µ1 > 0 and satisfy the inequalities

k2
1 < kk3. (1.4)

The main objective of this study is the thermal effects, let the heat capacity β1 = β > 0, and for more
excitement in posing the problem, we do not assume the microtemperature effect, and β2 = k1 = k2 =

k3 = γ2 = 0.
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Now, by substituting (1.2) and (1.3) into (1.1), we obtain that:
ℏtt − (ℏx − ℑ)x + γ0(κθt + θ)x = 0,
ℑtt − a2ℑxx − (ℏx − ℑ) − γ1(κθt + θ) + µ1ℑt = 0,
β(κθt + θ)t + γ0ℏtx + γ1ℑt − kθxx = 0,

(1.5)

where
(x, t) ∈ R × R+,

with initial conditions

(ℏ, ℏt,ℑ,ℑt, θ, θt)(x, 0) = (ℏ0, ℏ1,ℑ0,ℑ1, θ0, θ1), x ∈ R. (1.6)

We categorise this paper as follows: We utilise our preliminary findings in the remainder of this section
to help us understand our major decay conclusion. The Lyapunov functional is built and the estimate
for the Fourier image is discovered in the following section utilising the energy approach in Fourier
space. The final portion is devoted to the conclusion.

This, to our knowledge, is one of the first studies to look at this issue in the Fourier space. We
require the following Lemma to support our main finding.

Lemma 1.1. For any k, α ≥ 0, c > 0, there exist a constant C > 0 in such a way that ∀ t ≥ 0 the below
stated estimate hold ∫

|℘|≤1
|℘|ke−c|℘|αtd℘ ≤ C(1 + t)−(k+n)/α, ℘ ∈ Rn. (1.7)

2. Energy method and decay estimates

This section provide the decay estimate of the Fourier image of the solution for problems (1.5)
and (1.6). This approach enables us to give the decay rate of the solution in the energy space by
utilising Plancherel’s theorem along with some integral estimates, such as Lemma 1.1. We create the
appropriate Lyapunov functionals and apply the energy method in Fourier space to this problem. We
conclude by demonstrating our main finding.

2.1. The energy method in the Fourier space

Let us introduce the new variables in order to construct the Lyapunov functional in the Fourier space

f = ℏx − ℑ, j = ℏt, b = aℑx, m = ℑt, ζ = κθt + θ, ϖ = θx. (2.1)

Then, the system (1.5) can also be written as

ft − jx + m = 0
jt − fx + γ0ζx = 0
bt − ayx = 0
mt − azx − f − γ1ζ + µ1m = 0
βζt + γ0 jx + γ1m − kϖx = 0
κϖt − ζx +ϖ = 0,

(2.2)
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where initial condition are

( f , j, b,m, ζ,ϖ)(x, 0) = ( f0, j0, b0,m0, ζ0, ϖ0), x ∈ R, (2.3)

with

f0 = (ℏ0,x − ℑ0), j0 = ℏ1, b0 = aℑ0,x, m0 = ℑ1, ζ0 = κθ1 − θ0, ϖ0 = θ0,x.

Hence, the problems (2.2) and (2.3) can be written as{
Ft +AFx +LF = 0,
F(x, 0) = F0(x),

(2.4)

with F = ( f , j, b,m, ζ,ϖ)T , F0 = ( f0, j0, b0,m0, ζ0, ϖ0) and

AF =



− j
− f + γ0ζ

−ay
−az
1
β
(γ0 j − kϖ)
−1
κ
ζ


, LF =



m
0
0
− f − γ1ζ + µ1m
1
β
(γ1m)

1
κ
ϖ


.

Utilizing the Fourier transform on (2.4), we obtain that:{
F̂t + i℘AF̂ +LF̂ = 0,
F̂(℘, 0) = F̂0(℘),

(2.5)

where F̂(℘, t) = ( f̂ , ĵ, b̂, m̂, ζ̂, ϖ̂)T (℘, t). The quation (2.5)1 can be written as

f̂t − i℘ ĵ + m̂ = 0
ĵt − i℘ f̂ + i℘γ0ζ̂ = 0
b̂t − ai℘m̂ = 0
m̂t − ai℘̂b − f̂ − γ1ζ̂ + µ1m̂ = 0
β̂ζt + i℘γ0 ĵ + γ1m̂ − i℘kϖ̂ = 0
κϖ̂t − i℘ζ̂ + ϖ̂ = 0.

(2.6)

Lemma 2.1. Let F̂(℘, t) be a solution of (2.5). Then the energy functional Ê(℘, t), given by

Ê(℘, t) =
1
2

{
| f̂ |2 + |̂ j|2 + |̂b|2 + |m̂|2 + β|̂ζ |2 + kκ|ϖ̂|2

}
, (2.7)

satisfies

dÊ(℘, t)
dt

= −µ1|m̂|2 − k|ϖ̂|2 ≤ 0. (2.8)
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Proof. Firstly, multiplying (2.6)1,2,3,4 by f̂ , ĵ, b̂ and m̂ respectively, and multiplying (2.6)5,6 by ζ̂, kϖ̂,
adding these equalities and taking the real part, we obtain that

1
2

d
dt

[
| f̂ |2 + |̂ j|2 + |̂b|2 + |m̂|2 + β|̂ζ |2 + kκ|ϖ̂|2

]
+µ1|m̂|2 + k|ϖ̂|2 = 0, (2.9)

we find

dÊ(℘, t)
dt

= −µ1|m̂|2 − k|ϖ̂|2.

Hence, we obtain (2.7) and (2.8) (Ê is non-increasing function ). □

Now, to obtain the main result, we need the following lemmas.

Lemma 2.2. The functional

D1(℘, t) := ℜe
{
i℘
(

f̂ ĵ + m̂b̂
)}
, (2.10)

satisfies,

dD1(℘, t)
dt

≤ −
1
2
℘2 |̂ j|2 −

a
2
℘2 |̂b|2 + c(1 + ℘2)| f̂ |2

+c(1 + ℘2)|m̂|2 + c℘2 |̂ζ |2. (2.11)

Proof. DifferentiatingD1 and using (2.6), we get

dD1(℘, t)
dt

= ℜe
{
i℘ f̂t ĵ − i℘ ĵt f̂ + i℘m̂t̂b − i℘̂btm̂

}
= −℘2 |̂ j|2 − a℘2 |̂b|2 + ℘2| f̂ |2 + a℘2|m̂|2 −ℜe

{
i℘m̂ ĵ

}
+ℜe

{
i℘ f̂ b̂
}

+ℜe
{
iγ1℘ζ̂b̂

}
−ℜe

{
iµ1℘m̂b̂

}
−ℜe

{
γ0℘

2ζ̂ f̂
}
. (2.12)

We evaluate the terms in the RHS of (2.12), utilizing Young’s inequality, for any δ1, δ2 > 0 we get

−ℜe
{
i℘m̂ ĵ

}
≤ δ1℘

2 |̂ j|2 + c(δ1)|m̂|2,

+ℜe
{
i℘ f̂ b̂
}
≤ δ2℘

2 |̂b|2 + c(δ2)| f̂ |2,

+ℜe
{
iγ1℘ζ̂b̂

}
≤ δ2℘

2 |̂b|2 + c(δ2)|̂ζ |2,

−ℜe
{
iµ1℘m̂b̂

}
≤ δ2℘

2 |̂b|2 + c(δ2)|m̂|2,

−ℜe
{
γ0℘

2ζ̂ f̂
}
≤ c℘2 |̂ζ |2 + c℘2| f̂ |2. (2.13)

Inserting the above estimates (2.13) into (2.12) and by letting δ1 =
1
2 , δ2 =

a
6 , we get (2.11). □
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Lemma 2.3. The functional

D2(℘, t) := ℜe
{
i℘
(
κβϖ̂ζ̂

)}
, (2.14)

holds, for any ε1 > 0

dD2(℘, t)
dt

≤ −
β

2
℘2 |̂ζ |2 + ε1

℘4

(1 + ℘2)2 |̂ j|
2 + c℘2|m̂|2

+c(ε1)(1 + ℘2)2|ϖ̂|2. (2.15)

Proof. DifferentiatingD2 and using (2.6), we get

D2(℘, t)
dt

= ℜe
{
i℘
(
κβϖ̂tζ̂ + κβϖ̂ζ̂ t

)}
= −β℘2 |̂ζ |2 + kκ℘2|ϖ̂|2 −ℜe

{
i℘βϖ̂ζ̂

}
+ℜe
{
iγ1κ℘m̂ϖ̂

}
−ℜe

{
γ0κ℘

2 ĵϖ̂
}
. (2.16)

Similarly, we evaluate the terms in the RHS of (2.16), by applying Young’s inequality, for any ε1, δ3 > 0
we find

−ℜe
{
i℘βϖ̂ζ̂

}
≤ δ3℘

2 |̂ζ |2 + c(δ3)|ϖ̂|2,

+ℜe
{
iγ1κ℘m̂ϖ̂

}
≤ c℘2|m̂|2 + c|ϖ̂|2,

−ℜe
{
γ0κ℘

2 ĵϖ̂
}
≤ ε1

℘4

(1 + ℘2)2 |̂ j|
2 + c(ε1)(1 + ℘2)2|ϖ̂|2. (2.17)

By substituting (2.17) into (2.16) and letting δ3 =
β

2 , we obtain (2.15). □

Next, we will discuss the the below mentioned lemmas.

Lemma 2.4. The functional

D3(℘, t) := −ℜe
{

f̂ m̂ + a ĵ̂b
}
, (2.18)

satisfies:

(1) For a = 1. Then, for any ε2 > 0

dD3(℘, t)
dt

≤ −
1
2
| f̂ |2 + ε2

℘2

1 + ℘2 |̂b|
2 + c|m̂|2 + c(ε2)(1 + ℘2)|̂ζ |2. (2.19)

(2) For a , 1. Then, for any ε2, ε3 > 0

dD3(℘, t)
dt

≤ −
1
2
| f̂ |2 + ε2

℘2

1 + ℘2 |̂b|
2 + ε3

℘2

1 + ℘2 |̂ j|
2

+c(ε3)(1 + ℘2)|m̂|2 + c(ε2)(1 + ℘2)|̂ζ |2. (2.20)
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Proof. Firstly, differentiatingD3 and using (2.6), we get

dD3(℘, t)
dt

= −| f̂ |2 + |m̂|2 −ℜe
{
γ1ζ̂ f̂
}
+ℜe

{
µ1m̂ f̂

}
+ℜe
{
iaγ0℘ζ̂b̂

}
−ℜe

{
i(1 − a2)℘ ĵm̂

}
. (2.21)

Now we will discuss two cases:
Case1. (a = 1).

In this case, by applying the Young’s inequality to the terms on the RHS of (2.21), for any ε2, δ4 > 0
we get

−ℜe
{
γ1ζ̂ f̂
}
≤ δ4| f̂ |2 + c(δ4)|̂ζ |2,

ℜe
{
µ1m̂ f̂

}
≤ δ4| f̂ |2 + c(δ4)|m̂|2,

ℜe
{
iaγ0℘ζ̂b̂

}
≤ ε2

℘2

1 + ℘2 |̂b|
2 + c(ε2)(1 + ℘2)|̂ζ |2. (2.22)

Substituting the estimates (2.22) in (2.21) and by letting δ4 =
1
4 , we find (2.19).

Case2. (a , 1).
In this case, using the Young’s inequality to the last terms on the RHS of (2.21), gives for any ε3 > 0

(a2 − 1)ℜe
{
i℘ ĵm̂

}
≤ ε3

℘2

1 + ℘2 |̂ j|
2 + c(ε3)(1 + ℘2)|m̂|2. (2.23)

Inserting (2.23) and (2.22) in (2.21), we get (2.20). Which completes the proof of Lemma 2.4. □

At this stage, we define the Lyapunov functional for the two cases by

H(℘, t) := N(1 + ℘2)2Ê(℘, t) +
℘2

1 + ℘2

{ 1
1 + ℘2 N1D1(℘, t) + N3D3(℘, t)

}
+N2D2(℘, t), (2.24)

where N,Ni, i = 1, 2, 3 are positive constants which will be selected later.

Lemma 2.5. There exist µ2, µ3, µ4 > 0 such that the functionalH(℘, t) stated by (2.24) satisfies{
µ2(1 + ℘2)2Ê(℘, t) ≤ H(℘, t) ≤ µ3(1 + ℘2)2Ê(℘, t),
H ′(℘, t) ≤ −µ4ρ(℘)H(℘, t), ∀t > 0,

(2.25)

where

ρ(℘) =
℘4

(1 + ℘2)4 . (2.26)

Proof. Firstly, for the case a = 1, by differentiating (2.24) and using (2.8), (2.11), (2.15) and (2.19),
with the fact that ℘2

1+℘2 ≤ min{1, ℘2} and 1
1+℘2 ≤ 1, we find
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H ′(℘, t) ≤ −
℘4

(1 + ℘2)2

{[1
2

N1 − ε1N2

]
|̂ j|2 +

[a
2

N1 − ε2N3

]
|̂b|2
}

−(1 + ℘2)2
[
µ1N − cN1 − cN2 − cN3

]
|m̂|2

−(1 + ℘2)2
[
kN − c(ε1)N2

]
|ϖ̂|2 −

℘2

1 + ℘2

[1
2

N3 − cN1

]
| f̂ |2

−℘2
[
β

2
N2 − cN1 − c(ε2)N3

]
|̂ζ |2. (2.27)

By setting

ε1 =
N1

4N2
, ε2 =

aN1

4N3
,

we obtain

H ′(℘, t) ≤ −
℘4

(1 + ℘2)2 N1

{1
4
|̂ j|2 +

a
4
|̂b|2
}

−(1 + ℘2)2
[
µ1N − cN1 − cN2 − cN3

]
|m̂|2

−(1 + ℘2)2
[
kN − c(N1,N2)N2

]
|ϖ̂|2 −

℘2

1 + ℘2

[1
2

N3 − cN1

]
| f̂ |2

−℘2
[
β

2
N2 − cN1 − c(N1,N3)N3

]
|̂ζ |2. (2.28)

Similarly, for the case a , 1, by differentiating (2.24) and using (2.8), (2.11), (2.15) and (2.20), with
the fact that ℘2

1+℘2 ≤ min{1, ℘2} and 1
1+℘2 ≤ 1, we find

H ′(℘, t) ≤ −
℘4

(1 + ℘2)2

{[1
2

N1 − ε1N2 − ε3N3

]
|̂ j|2 +

[a
2

N1 − ε2N3

]
|̂b|2
}

−(1 + ℘2)2
[
µ1N − cN1 − cN2 − c(ε3)N3

]
|m̂|2

−(1 + ℘2)2
[
kN − c(ε1)N2

]
|ϖ̂|2 −

℘2

1 + ℘2

[1
2

N3 − cN1

]
| f̂ |2

−℘2
[
β

2
N2 − cN1 − c(ε2)N3

]
|̂ζ |2. (2.29)

By setting

ε1 =
N1

8N2
, ε2 =

aN1

4N3
, ε3 =

N1

8N3
,

we obtain

AIMS Mathematics Volume 8, Issue 7, 17246–17258.
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H ′(℘, t) ≤ −
℘4

(1 + ℘2)2 N1

{1
4
|̂ j|2 +

a
4
|̂b|2
}

−(1 + ℘2)2
[
µ1N − cN1 − cN2 − c(N1,N3)N3

]
|m̂|2

−(1 + ℘2)2
[
kN − c(N1,N2)N2

]
|ϖ̂|2 −

℘2

1 + ℘2

[1
2

N3 − cN1

]
| f̂ |2

−℘2
[
β

2
N2 − cN1 − c(N1,N3)N3

]
|̂ζ |2. (2.30)

Next, for the two cases (2.28) and (2.30), we fixed N1 and choosing N3 large enough such that

1
2

N3 − cN1 > 0,

then we select N2 large enough such as

β

2
N2 − cN1 − c(N1,N3)N3 > 0.

Hence, for the two cases we arrive at

H ′(℘, t) ≤ −
℘4

(1 + ℘2)2

(
α0 |̂ j|2 + α1 |̂b|2

)
− (1 + ℘2)2

[
µ1N − c

]
|m̂|2

−
℘2

1 + ℘2α2| f̂ |2 − ℘2α3 |̂ζ |
2 − (1 + ℘2)2

[
kN − c

]
|ϖ̂|2. (2.31)

Additionally, we have∣∣∣∣∣H(℘, t) − N(1 + ℘2)2Ê(℘, t)
∣∣∣∣∣ = N1

℘2

(1 + ℘2)2

∣∣∣∣∣D1(℘, t)
∣∣∣∣∣ + N3

℘2

1 + ℘2

∣∣∣∣∣D3(℘, t)
∣∣∣∣∣

+N2

∣∣∣∣∣D2(℘, t)
∣∣∣∣∣.

Utilizing Young’s inequality and the fact that ℘2

1+℘2 ≤ min{1, ℘2} and 1
1+℘2 ≤ 1, we find∣∣∣∣∣H(℘, t) − N(1 + ℘2)2Ê(℘, t)

∣∣∣∣∣ ≤ c(1 + ℘2)2Ê(℘, t).

Therefore, we get

(N − c)(1 + ℘2)2Ê(℘, t) ≤ H(℘, t) ≤ (N + c)(1 + ℘2)2Ê(℘, t). (2.32)

Now, we pick N large enough such as

N − c > 0, µ1N − c > 0, kN − c > 0,
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and exploiting (2.7), estimates (2.31) and (2.32), respectively, there exists a positive constant α > 0, ∀
t > 0 and ∀ ℘ ∈ R, such that

µ2(1 + ℘2)2Ê(℘, t) ≤ H(℘, t) ≤ µ3(1 + ℘2)2Ê(℘, t), (2.33)

and

H ′(℘, t) ≤ −α
℘4

(1 + ℘2)2

(
|̂ j|2 + |̂b|2 + |ϖ̂|2 + | f̂ |2 + |m̂|2 + |̂ζ |2

)
, (2.34)

then

H ′(℘, t) ≤ −λ1ρ(℘)Ê(℘, t), ∀t ≥ 0. (2.35)

Consequently, for some positive constant µ4 =
λ1
µ3
> 0, we get

H ′(℘, t) ≤ −µ4ρ(℘)H(℘, t), ∀t ≥ 0, (2.36)

where ρ(℘) = ℘4

(1+℘2)4 , for some λ1, µi > 0, i = 2, 3, 4. The proof of the first result (2.25) is completed.
□

The pointwise estimates of the functional Ê(℘, t) is stated by the following Proposition.

Proposition 2.1. For any t ≥ 0 and ℘ ∈ R, positive constants d1 > 0 exist in such a way that the energy
functional given by (2.7) satisfies

Ê(℘, t) ≤ d1Ê(℘, 0)e−µ4ρ(℘)t, (2.37)

where ρ(℘) =
℘4

(1 + ℘2)4 .

Proof. From (2.25)2, we have by integration over (0, t)

H(℘, t) ≤ H(℘, 0)e−µ4ρ(℘)t, ∀t ≥ 0. (2.38)

Hence, by according of (2.25) and (2.38), we establish (2.37) . □

2.2. Decay estimates

Theorem 2.1. Let s be a nonnegative integer, and F0 ∈ H s(R) ∩ L1(R). Then, the solution F of
problems (2.2) and (2.3) holds, ∀ t ≥ 0 the following decay estimates

∥∂k
xF(t)∥2 ≤ C∥F0∥1(1 + t)−

1
8−

k
4 +C(1 + t)−

ℓ
4 ∥∂k+ℓ

x F0∥2, (2.39)

where ℓ and k are nonnegative integers such that k + ℓ ≤ s and C > 0 is a positive constant.

Proof. From (2.7), we get |F̂(℘, t)|2 ∼ Ê(℘, t), then by utilizing the Plancherel theorem and
exploiting (2.37), we achieve that
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∥∂k
xF(t)∥22 =

∫
R

|℘|2k|F̂(℘, t)|2d℘

≤ c
∫
R

|℘|2ke−µ4ρ(℘)t|F̂(℘, 0)|2d℘

≤ c
∫
|℘|≤1
|℘|2ke−µ4ρ(℘)t|F̂(℘, 0)|2d℘︸                                   ︷︷                                   ︸

R1

+ c
∫
|℘|≥1
|℘|2ke−µ4ρ(℘)t|F̂(℘, 0)|2d℘︸                                   ︷︷                                   ︸

R2

. (2.40)

Now, we estimate R1,R2, the low-frequency part |℘| ≤ 1 and the high-frequency part |℘| ≥ 1 respectevly.
Firstly, we have ρ(℘) ≥ 1

16℘
4, for |℘| ≤ 1. Then

R1 ≤ c
∫
|℘|≤1
|℘|2ke−

µ4
16 |℘|

4t|F̂(℘, 0)|2d℘

≤ c sup
|℘|≤1
{|F̂(℘, 0)|2}

∫
|℘|≤1
|℘|2ke−

µ4
16 |℘|

4td℘, (2.41)

by utilizing Lemma 1.1, we get that

R1 ≤ c sup
|℘|≤1
{|F̂(℘, 0)|2}(1 + t)−

k
2−

1
4

≤ c∥F0∥
2
1(1 + t)−

k
2−

1
4 . (2.42)

Secondly, we have ρ(℘) ≥ 1
16℘

−4, for |℘| ≥ 1. Then

R2 ≤ c
∫
|℘|≥1
|℘|2ke−

µ4
16 |℘|

−4t|F̂(℘, 0)|2d℘, ∀t ≥ 0. (2.43)

Expoiting the inequality

sup
|℘|≥1

{
|℘|−2ℓe−c|℘|−2t

}
≤ C(1 + t)−ℓ, (2.44)

we get that

R2 ≤ c sup
|℘|≥1

{
|℘|−2ℓe−

µ4
16 |℘|

−4t
} ∫
|℘|≥1
|℘|2(k+ℓ)|F̂(℘, 0)|2d℘

≤ c(1 + t)−
ℓ
2 ∥∂k+ℓ

x F(x, 0)∥22, ∀t ≥ 0. (2.45)

Substituting (2.42) and (2.45) into (2.40), we find (2.39).
□
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3. Conclusions

The investigation of the general decay estimate of solutions to a one-dimensional Lord-Shulman
Timoshenko system with thermal effect and damping term is the goal of this study, we prove some
optimal decay results for the L2-norm of the solution. More precisely, we prove that the decay rate of
the solution is of the form (1 + t)−1/8.

To prove our results, we used the energy method in the Fourier space to build some very delicate
Lyapunov functionals that give the desired results. In system (1.5) the presence of the mechanical
damping µ1ℑt seems to be necessary for our treatment. It is an interesting problem to prove the same
result for µ1 = 0.

In the upcoming study, we will attempt to utilize the same methodology in the same systems, but
with the different types of the memory and the delay terms, we believe that we will obtain similar
results.
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