Research article

Integral inequalities of Hermite-Hadamard type via $ q-h $ integrals

  • Received: 29 January 2023 Revised: 26 March 2023 Accepted: 09 April 2023 Published: 06 May 2023
  • MSC : 26A33, 26A51, 33E12

  • The well-known Hermite-Hadamard inequality for convex functions is extensively studied for different kinds of integrals and derivatives. This paper investigates some of its variants for $ q-h $-integrals using properties of convex functions. Inequalities for $ q $-integrals that have been published in recent years can be extracted from the main results of this paper.

    Citation: Dong Chen, Matloob Anwar, Ghulam Farid, Waseela Bibi. Integral inequalities of Hermite-Hadamard type via $ q-h $ integrals[J]. AIMS Mathematics, 2023, 8(7): 16165-16174. doi: 10.3934/math.2023826

    Related Papers:

  • The well-known Hermite-Hadamard inequality for convex functions is extensively studied for different kinds of integrals and derivatives. This paper investigates some of its variants for $ q-h $-integrals using properties of convex functions. Inequalities for $ q $-integrals that have been published in recent years can be extracted from the main results of this paper.



    加载中


    [1] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [2] M. Andrić, G. Farid, J. Pečarić, Analytical inequalities for fractional calculus operators and the Mittag-Leffler function, Zagreb: Element, 2021.
    [3] N. Alp, M. Z. Sarikaya, M. Kunt, I. Iscan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
    [4] S. Bermudo, P. Kórus, J. E. Nápoles Valdés, On $q$-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6
    [5] M. A. Khan, N. Mohammad, E. R. Nwaeze, Y.-M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
    [6] G. Farid, M. Anwar, M. Shoaib, On generalizations of $q$- and $h$-integrals and some related inequalities, submitted for publication.
    [7] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121
    [8] Y. Liu, G. Farid, D. Abuzaid, K. Nonlaopon, On $q$-Hermite-Hadamard inequalities via $q-h$-integrals, Symmetry, 14 (2022), 2648. https://doi.org/10.3390/sym14122648 doi: 10.3390/sym14122648
    [9] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [10] T. Ernst, A comprehensive treatment of $q$-calculus, Basel: Birkhäuser, 2012. https://doi.org/10.1007/978-3-0348-0431-8
    [11] S. Marinković, P. Rajković, M. Stanković, The inequalities for some types $q$-integrals, Comput. Math. Appl., 56 (2008), 2490–2498. https://doi.org/10.1016/j.camwa.2008.05.035 doi: 10.1016/j.camwa.2008.05.035
    [12] Y. Miao, F. Qi, Several $q$-integral inequalities, J. Math. Inequal., 3 (2009), 115–121. http://dx.doi.org/10.7153/jmi-03-11 doi: 10.7153/jmi-03-11
    [13] K. Brahim, N. Bettaibi, M. Sellami, On some Feng Qi type $q$-integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 9 (2008), 43.
    [14] H. Gauchman, Integral inequalities in $q$-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9
    [15] A. A. El-Deeb, J. Awrejcewicz, Ostrowski-Trapezoid-Grüss-type on $(q, \omega)$-Hahn difference operator, Symmetry, 14 (2022), 1776. https://doi.org/10.3390/sym14091776 doi: 10.3390/sym14091776
    [16] S. I. Butt, H. Budak, K. Nonlaopon, New quantum Mercer estimates of Simpson–Newton-like inequalities via convexity, Symmetry, 14 (2022), 1935. https://doi.org/10.3390/sym14091935 doi: 10.3390/sym14091935
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1220) PDF downloads(67) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog