The well-known Hermite-Hadamard inequality for convex functions is extensively studied for different kinds of integrals and derivatives. This paper investigates some of its variants for $ q-h $-integrals using properties of convex functions. Inequalities for $ q $-integrals that have been published in recent years can be extracted from the main results of this paper.
Citation: Dong Chen, Matloob Anwar, Ghulam Farid, Waseela Bibi. Integral inequalities of Hermite-Hadamard type via $ q-h $ integrals[J]. AIMS Mathematics, 2023, 8(7): 16165-16174. doi: 10.3934/math.2023826
The well-known Hermite-Hadamard inequality for convex functions is extensively studied for different kinds of integrals and derivatives. This paper investigates some of its variants for $ q-h $-integrals using properties of convex functions. Inequalities for $ q $-integrals that have been published in recent years can be extracted from the main results of this paper.
[1] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[2] | M. Andrić, G. Farid, J. Pečarić, Analytical inequalities for fractional calculus operators and the Mittag-Leffler function, Zagreb: Element, 2021. |
[3] | N. Alp, M. Z. Sarikaya, M. Kunt, I. Iscan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007 |
[4] | S. Bermudo, P. Kórus, J. E. Nápoles Valdés, On $q$-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6 |
[5] | M. A. Khan, N. Mohammad, E. R. Nwaeze, Y.-M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3 |
[6] | G. Farid, M. Anwar, M. Shoaib, On generalizations of $q$- and $h$-integrals and some related inequalities, submitted for publication. |
[7] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121 |
[8] | Y. Liu, G. Farid, D. Abuzaid, K. Nonlaopon, On $q$-Hermite-Hadamard inequalities via $q-h$-integrals, Symmetry, 14 (2022), 2648. https://doi.org/10.3390/sym14122648 doi: 10.3390/sym14122648 |
[9] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[10] | T. Ernst, A comprehensive treatment of $q$-calculus, Basel: Birkhäuser, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
[11] | S. Marinković, P. Rajković, M. Stanković, The inequalities for some types $q$-integrals, Comput. Math. Appl., 56 (2008), 2490–2498. https://doi.org/10.1016/j.camwa.2008.05.035 doi: 10.1016/j.camwa.2008.05.035 |
[12] | Y. Miao, F. Qi, Several $q$-integral inequalities, J. Math. Inequal., 3 (2009), 115–121. http://dx.doi.org/10.7153/jmi-03-11 doi: 10.7153/jmi-03-11 |
[13] | K. Brahim, N. Bettaibi, M. Sellami, On some Feng Qi type $q$-integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 9 (2008), 43. |
[14] | H. Gauchman, Integral inequalities in $q$-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9 |
[15] | A. A. El-Deeb, J. Awrejcewicz, Ostrowski-Trapezoid-Grüss-type on $(q, \omega)$-Hahn difference operator, Symmetry, 14 (2022), 1776. https://doi.org/10.3390/sym14091776 doi: 10.3390/sym14091776 |
[16] | S. I. Butt, H. Budak, K. Nonlaopon, New quantum Mercer estimates of Simpson–Newton-like inequalities via convexity, Symmetry, 14 (2022), 1935. https://doi.org/10.3390/sym14091935 doi: 10.3390/sym14091935 |