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1. Introduction and preliminaries

Inequalities are an important part of mathematical analysis, functional analysis, and optimization
theory. There are several classical inequalities that are the outcomes of convex functions introduced
at the start of the twentieth century. Convex functions are also frequently used in establishing new
innovative results in statistics, economics, graph theory, and many other subjects of pure and applied
nature.

A real valued function f : C → R, where C is a convex subset of Rn, is called convex on C if the
following inequality holds:

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y),

for t ∈ [0, 1], x, y ∈ C. The Hermite-Hadamard inequality is the best geometric interpretation of a
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convex function, it is given as follows:

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2

, (1.1)

where f is convex function on an interval I of real numbers and a, b ∈ I, a < b.
The inequality (1.1) has been published in several variants by defining new classes of functions

and integrals. For instance, it was studied for various kinds of convexities via fractional order
derivatives/integrals in [1,2], and for its variants via quantum derivatives/integrals we refer the readers
to [3–5].

Motivated by recent published work on the Hermite-Hadamard inequality for q-calculus, our aim
in this article is to give inequalities of Hermite-Hadamard type by using q − h-integrals defined in [6]
via properties of differentiable convex functions. These inequalities represent implicit results on h-
integrals, we deduce some interesting outcomes as consequences of these inequalities in the form of
q-integral inequalities.

In the next, we define q-derivatives, q − h-derivatives, q-derivatives on finite intervals, q-definite
integrals, q − h-derivatives on finite intervals and q − h-definite integrals.

Definition 1. The q-derivative of a continuous function f : I → R is defined by;

Dq f (x) =
f (qx) − f (x)

(q − 1)x
, (1.2)

where 0 < q < 1.

Definition 2. [6] The q − h-derivative of a continuous function f : I → R is defined by;

ChDq f (x) =
hdq f (x)

hdqx
=

f (q(x + h)) − f (x)
(q − 1)x + qh

, (1.3)

where 0 < q < 1, h ∈ R.

For h = 0 in (1.3), we get (1.2) i.e.,

C0Dq f (x) = Dq f (x).

Definition 3. [4,7] The qa-derivative and qb-derivative of a continuous function f : I = [a, b]→ R at
x ∈ I are defined by;

aDq f (x) =
f (x) − f (qx + (1 − q)a)

(1 − q)(x − a)
, x , a (1.4)

and

bDq f (x) =
f (x) − f (qx + (1 − q)b)

(1 − q)(b − x)
, x , b (1.5)

respectively. Also, aDq f (a) = limx−→a aDq f (x) and bDq f (b) = limx−→b bDq f (x).
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Definition 4. [4, 7] The qa-definite integral and qb-definite integral of a continuous function f : I :=
[a, b]→ R on [a, b] are defined by;∫ x

a
f (t)adqt = (1 − q)(x − a)

∞∑
n=0

qn f (qnx + (1 − qn)a) (1.6)

and ∫ b

x
f (t)bdqt = (1 − q)(b − x)

∞∑
n=0

qn f (qnx + (1 − qn)b) (1.7)

respectively, where x ∈ I, q ∈ (0, 1).

Definition 5. [8] The qa−h-derivative, where q ∈ (0, 1), h ∈ R of a continuous function f : I → R at
x ∈ [a, b] ⊂ I is defined by;

ChDa
q f (x) =

f (x) − f (qx + (1 − q)a + qh)
(1 − q)(x − a) − qh

, x ,
a(1 − q) + qh

1 − q
:= x0 (1.8)

and qb−h-derivative of f at x ∈ [a, b] is given by;

ChDb
q f (x) =

f (x) − f (qx + (1 − q)b + qh)
(1 − q)(x − b) − qh

, x ,
b(1 − q) + qh

1 − q
:= y0. (1.9)

Also, ChDa
q f (x0) = limx−→x0 ChDa

q f (x) and ChDb
q f (x0) = limx−→y0 ChDb

q f (x).

If h = 0 in Definition 5, then it reduces to Definition 3.

Definition 6. [8] The qa − h-integral and qb − h-integral of a continuous function f : I = [a, b] → R
on [a, b] are defined by;

Ia
q−h f (x) :=

∫ x

a
f (t)hda

qt

= ((1 − q)(x − a) + qh)
∞∑

n=0

qn f (qnx + (1 − qn)a + nqnh), x > a

and

Ib
q−h f (x) :=

∫ b

x
f (t)hdb

qt

= ((1 − q)(b − x) + qh)
∞∑

n=0

qn f (qnx + (1 − qn)b + nqnh), x < b

respectively, where 0 < q < 1, h ∈ R.

If h = 0 in Definition 6, then it reduces to Definition 4.
By utilizing the above generalized definitions of integrals and derivatives, a new and novel theory

called q-calculus has been established. This is used frequently in generalizing classical results based on
ordinary calculus; for a detailed study, we refer the readers to [9,10]. In the field of integral inequalities,
it is a natural phenomenon to convert integral inequalities into q-integral inequalities. Authors have
been working massively in this direction, and many interesting articles have been published by them.
Recently, in [3], authors proved the following q-Hermite-Hadamard inequalities for convex functions
by using q-definite integrals.

AIMS Mathematics Volume 8, Issue 7, 16165–16174.



16168

Theorem 1. Let f be a convex function on [a, b]. If it is differentiable on (a, b), then the following
inequality for qa-integrals holds:

f
(
qa + b
1 + q

)
≤

1
b − a

∫ b

a
f (x)da

q x ≤
q f (a) + f (b)

1 + q
, (1.10)

where 0 < q < 1.

Here it is important to state that, firstly the above inequality was given by Marinković et al., see [11,
Theorem 5.3].

Theorem 2. With assumptions of the above theorem, the following inequality for qa-integrals holds:

f
(
a + qb
1 + q

)
+ f ′

(
a + qb
1 + q

)
(1 − q)(b − a)

1 + q
≤

1
b − a

∫ b

a
f (x)da

q x ≤
q f (a) + f (b)

1 + q
. (1.11)

Theorem 3. With assumptions of the above theorem, the following inequality for qa-integrals holds:

f
(
a + b

2

)
+ f ′

(
a + b

2

)
(1 − q)(b − a)

2(1 + q)
≤

1
b − a

∫ b

a
f (x)da

q x ≤
q f (a) + f (b)

1 + q
. (1.12)

In [4], authors have proved the q-Hermite-Hadamard inequalities for convex functions stated in the
following theorems:

Theorem 4. Let f be a convex function on [a, b]. If it is differentiable on (a, b), then the following
inequality for qb-integrals holds:

f
(
a + qb
1 + q

)
≤

1
b − a

∫ b

a
f (x)db

q x ≤
f (a) + q f (b)

1 + q
. (1.13)

For a detailed study on q-integral inequalities, we refer the readers to [12–16] and the references
therein. The following example is frequently used in proving the inequalities of this paper.
Example 1: Let g(x) = x, x ∈ [a, b] and 0 < q < 1. Then Ia

q−h(g(x)), Ib
q−h(g(x)) are calculated as

fallows:

Ia
q−h(g(x)) =

∫ x

a
g(x)hda

q x = ((1 − q)(x − a) + qh)
∞∑

n=0

qng(qnx + (1 − qn)a + nqnh) (1.14)

= ((1 − q)(x − a) + qh)

 ∞∑
n=0

q2nx +

∞∑
n=0

(qn − q2n)a + h
∞∑

n=0

nq2n


= ((1 − q)(x − a) + qh)

 x + aq
1 − q2 + h

∞∑
n=0

nq2n

 ,
Ib
q−h(g(x)) =

∫ b

x
g(x)hdb

q x = ((1 − q)(b − x) + qh)
∞∑

n=0

qng(qnx + (1 − qn)b + nqnh) (1.15)

= ((1 − q)(b − x) + qh)

 ∞∑
n=0

q2nx +

∞∑
n=0

(qn − q2n)b + h
∞∑

n=0

nq2n


= ((1 − q)(b − x) + qh)

 x + bq
1 − q2 + h

∞∑
n=0

nq2n

 .
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2. Generalized q − h-Hermite-Hadamard inequalities

In this section, we prove generalized q−h-Hermite-Hadamard type inequalities for convex functions.
Several variants of the q-Hermite-Hadamard inequality are deducible in special cases. Throughout the
paper, we consider the sum of the series

∑∞
n=0 nq2n equal to S.

Theorem 5. Let ζ : [a, b]→ R be a convex function on (a, b) such that 0 ≤ a < b. Then we have

ζ (xo)
( (1 − q)(b − x) + qh

1 − q

)
+ m

(
(1 − q)(b − x) + qh

)
(2.1)(

(x − b) + q(b − a)
(1 − q)(1 + q)

+ hS
)
≤

∫ b

x
ζ(x)hdb

q x ≤
(
(1 − q)(b − x) + qh

)
(
ζ(a)
1 − q

+
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 − q2 + hS

))
,

where xo =
qa+b
1+q and m ∈

[
ζ′− (xo) , ζ′+ (xo)

]
.

Proof. Since ζ is a convex function, it has at least one line of support at each xo =
qa+b
1+q in (a, b). The

lines of support for ζ are denoted by L and defined as follows:

L(x) = ζ (xo) + m (x − xo) , m ∈
[
ζ′− (xo) , ζ′+ (xo)

]
.

The lines of support always lie below the graph of a convex function; therefore we have

ζ (xo) + m (x − xo) ≤ ζ(x), ∀x ∈ [a, b]. (2.2)

By applying qb−h-integral on both sides of (2.2), we have the following inequality:∫ b

x
(ζ (xo) + m (x − xo)) hdb

q x ≤
∫ b

x
ζ(x)hdb

q x. (2.3)

The above inequality (2.3), can be written as follows:

ζ (xo)
∫ b

x
hdb

q x + m
(∫ b

x
x hdb

q x − xo

∫ b

x
hdb

q x
)
≤

∫ b

x
ζ(x)hdb

q x. (2.4)

For ζ(x) = 1 in (1.15), we have the following identity:∫ b

x
hdb

q x =
(1 − q)(b − x) + qh

1 − q
. (2.5)

By using (1.15) and (2.5) in (2.4), after simplification, the first inequality of (2.1) is obtained. Now,
on the other hand, letK be a function expressing the line connecting points (a, ζ(a)) and (b, ζ(b)), then
we have:

K(x) = ζ(a) +
ζ(b) − ζ(a)

b − a
(x − a).
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Since ζ is a convex function on [a, b], the inequality ζ(x) ≤ K(x) holds true. Therefore, the following
inequality holds:

ζ(x) ≤ ζ(a) +
ζ(b) − ζ(a)

b − a
(x − a), ∀x ∈ [a, b]. (2.6)

By applying qb−h-integral on both sides of (2.6), we have the following inequality:∫ b

x
ζ(x) hdb

q x ≤
∫ b

x

(
ζ(a) +

ζ(b) − ζ(a)
b − a

(x − a)
)

hdb
q x. (2.7)

The above inequality (2.7), can be written as follows:∫ b

x
ζ(x) hdb

q x ≤ ζ(a)
∫ b

x
hdb

q x +
ζ(b) − ζ(a)

b − a

( ∫ b

x
x hdb

q x − a
∫ b

x
hdb

q x
)
. (2.8)

By using (1.15) and (2.5) in (2.8), then after simplification, the second inequality of (2.1) is obtained.
�

Corollary 1. A convex differentiable function must satisfies the following inequalities:

ζ (xo)
( 1
1 − q

)
+ ζ′ (xo)

(
(x − b) + q(b − a)

(1 − q)(1 + q)
+ hS

)
(2.9)

≤
1(

(1 − q)(b − x) + qh
) ∫ b

x
ζ(x)hdb

q x

≤

[
ζ(a)
1 − q

+
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 − q2 + hS

)]
.

Proof. A convex differentiable function has a unique line of support at each point in the interior of its
domain. Therefore, at point xo, the slope of the line of support (tangent line) will be m = ζ′ (xo). By
using this value of m in (2.1), we get the required inequality (2.9). �

Corollary 2. For h = 0 in (2.1), the following inequalities must hold:

ζ (xo) + m
(
(x − b) + q(b − a)

(1 + q)

)
≤

1
b − x

∫ b

x
ζ(x)0db

q x (2.10)

≤ ζ(a) +
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 + q

)
.

Corollary 3. For x = a in (2.1), the following inequalities must hold:

ζ (xo)
( 1
1 − q

)
+ m

(
hS −

b − a
1 + q

)
≤

1(
(1 − q)(b − a) + qh

) ∫ b

a
ζ(x)hdb

q x (2.11)

≤
ζ(a) + qζ(b)

(1 − q)(1 + q)
+
ζ(b) − ζ(a)

b − a
hS.

Theorem 6. Let ζ : [a, b]→ R be a convex function on (a, b) such that 0 ≤ a < b. Then we have

ζ (yo)
( 1
1 − q

)
+ m

(
x − a

(1 − q)(1 + q)
+ hS

)
(2.12)
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≤
1(

(1 − q)(b − x) + qh
) ∫ b

x
ζ(x)hdb

q x

≤

[
ζ(a)
1 − q

+
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 − q2 + hS

)]
,

where yo =
qa+b
1+q and m ∈

[
ζ′− (yo) , ζ′+ (yo)

]
.

Proof. Since ζ is a convex function, it has at least one line of support at each yo =
a+qb
1+q in (a, b). The

lines of support for ζ are denoted by L1 and defined as follows:

L1(x) = ζ (yo) + m (x − yo) , m ∈
[
ζ′− (yo) , ζ′+ (yo)

]
.

The lines of support always lie below the graph of a convex function, therefore we have

ζ (yo) + m (x − yo) ≤ ζ(x), ∀x ∈ [a, b]. (2.13)

By applying qb−h-integral on both sides of (2.13), we have the following inequality:∫ b

x
(ζ (yo) + m (x − yo)) hdb

q x ≤
∫ b

x
ζ(x)hdb

q x. (2.14)

The above inequality (2.14), can be written as follows:

ζ (yo)
∫ b

x
hdb

q x + m
(∫ b

x
x hdb

q x − yo

∫ b

x
hdb

q x
)
≤

∫ b

x
ζ(x)hdb

q x. (2.15)

By using (1.15) and (2.5) in (2.15), after simplification, the first inequality of (2.12) is obtained.
The proof of the second inequality of (2.12) is similar to the proof of the second inequality given
in Theorem 5. �

Corollary 4. A convex differentiable function must satisfies the following inequalities:

ζ (yo)
( 1
1 − q

)
+ ζ′ (yo)

(
x − a

(1 − q)(1 + q)
+ hS

)
(2.16)

≤
1(

(1 − q)(b − x) + qh
) ∫ b

x
ζ(x)hdb

q x

≤

[
ζ(a)
1 − q

+
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 − q2 + hS

)]
.

Proof. A convex differentiable function has a unique line of support at each point in the interior of its
domain. Therefore, at point yo, the slope of the line of support (the tangent line) will be m = ζ′ (yo).
By using this value of m in (2.12), we get the required inequality (2.16). �

Corollary 5. For h = 0 in (2.12), the following inequalities hold:

ζ (yo) + m
(

x − a
1 + q

)
≤

1
b − x

∫ b

x
ζ(x)0db

q x (2.17)

≤ ζ(a) +
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 + q

)
.
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Corollary 6. For x = a in (2.12), the following inequalities hold:

ζ (yo)
( 1
1 − q

)
+ mhS ≤

1(
(1 − q)(b − a) + qh

) ∫ b

a
ζ(x)hdb

q x (2.18)

≤
ζ(a) + qζ(b)

1 − q2 +
ζ(b) − ζ(a)

b − a
hS.

Theorem 7. Let ζ : [a, b]→ R be a convex function on (a, b) such that 0 ≤ a < b. Then we have

ζ (zo)
( 1
1 − q

)
+ m

(
2x − (b + a) + q(b − a)

2(1 − q)(1 + q)
+ hS

)
(2.19)

≤
1(

(1 − q)(b − x) + qh
) ∫ b

x
ζ(x)hdb

q x

≤

[
ζ(a)
1 − q

+
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 − q2 + hS

)]
,

where zo = a+b
2 and m ∈

[
ζ′− (zo) , ζ′+ (zo)

]
.

Proof. Since ζ is a convex function, it has at least one line of support at each zo = a+b
2 in (a, b). The

lines of support for ζ are denoted by L2 and defined as follows:

L2(x) = ζ (zo) + m (x − zo) , m ∈
[
ζ′− (zo) , ζ′+ (zo)

]
.

The lines of support always lie below the graph of a convex function, therefore we have

ζ (zo) + m (x − zo) ≤ ζ(x), ∀x ∈ [a, b]. (2.20)

By applying qb−h-integral on both sides of (2.20), we have the following inequality:∫ b

x
(ζ (zo) + m (x − zo)) hdb

q x ≤
∫ b

x
ζ(x)hdb

q x. (2.21)

The above inequality (2.21), can be written as follows:

ζ (zo)
∫ b

x
hdb

q x + m
(∫ b

x
x hdb

q x − zo

∫ b

x
hdb

q x
)
≤

∫ b

x
ζ(x)hdb

q x. (2.22)

By using (1.15) and (2.5) in (2.22), after simplification, the first inequality of (2.19) is obtained.
The proof of the second inequality of (2.19) is similar to the proof of the second inequality given
in Theorem 5. �

Corollary 7. A convex differentiable function must satisfies the following inequalities:

ζ (zo)
( 1
1 − q

)
+ ζ′ (zo)

(
2x − (b + a) + q(b − a)

2(1 − q)(1 + q)
+ hS

)
(2.23)

≤
1(

(1 − q)(b − x) + qh
) ∫ b

x
ζ(x)hdb

q x

≤

[
ζ(a)
1 − q

+
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 − q2 + hS

)]
.

AIMS Mathematics Volume 8, Issue 7, 16165–16174.



16173

Proof. A convex differentiable function has a unique line of support at each point in the interior of its
domain. Therefore, at point zo, the slope of the line of support (the tangent line) will be m = ζ′ (zo). By
using this value of m in (2.19), we get the required inequality (2.23). �

Corollary 8. For h = 0 in (2.19), the following inequalities hold:

ζ (zo) + m
(
2x − (b − a) + q(b − a)

2(1 + q)

)
≤

1
b − x

∫ b

x
ζ(x)0db

q x (2.24)

≤ ζ(a) +
ζ(b) − ζ(a)

b − a

( (x − a) + q(b − a)
1 + q

)
.

Corollary 9. For x = a in (2.19), the following inequalities hold:

ζ (zo)
( 1
1 − q

)
+ m

(
hS −

b − a
2(1 + q)

)
≤

1(
(1 − q)(b − a) + qh

) ∫ b

a
ζ(x)hdb

q x (2.25)

≤
ζ(a) + qζ(b)

(1 − q)(1 + q)
+
ζ(b) − ζ(a)

b − a
hS.

3. Conclusions

We studied Hermite-Hadamard type inequalities for convex functions by using q − h-integrals.
Properties of convex functions are utilized in establishing these inequalities. Results are derived for
h-integrals in implicit form, while the inequalities for q-integrals are given explicitly. In future work,
we are interested in the utilization of other well-known classes of functions to get corresponding results
for q − h-integrals. Also, other classical integral inequalities can be studied for q − h-integrals.
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