Research article

$ k $NN local linear estimation of the conditional density and mode for functional spatial high dimensional data

  • Received: 12 January 2023 Revised: 02 April 2023 Accepted: 11 April 2023 Published: 04 May 2023
  • MSC : 62H12, 62G07, 62G35, 62G20

  • Traditionally, regression problems are examined using univariate characteristics, including the scale function, marginal density, regression error, and regression function. When the correlation between the response and the predictor is reasonably straightforward, these qualities are helpful and instructive. Given the predictor, the response's conditional density provides more specific information regarding the relationship. This study aims to examine a nonparametric estimator of a scalar response variable's function of a density and mode, given a functional variable when the data are spatially dependent. The estimator is then derived and established by combining the local linear and the $ k $ nearest neighbors methods. Next, the suggested estimator's uniform consistency in the number of neighbors (UNN) is proved. Finally, to demonstrate the efficacy and superiority of the acquired results, we applied our new estimator to simulated and real data and compared it to the existing competing estimator.

    Citation: Fatimah Alshahrani, Wahiba Bouabsa, Ibrahim M. Almanjahie, Mohammed Kadi Attouch. $ k $NN local linear estimation of the conditional density and mode for functional spatial high dimensional data[J]. AIMS Mathematics, 2023, 8(7): 15844-15875. doi: 10.3934/math.2023809

    Related Papers:

  • Traditionally, regression problems are examined using univariate characteristics, including the scale function, marginal density, regression error, and regression function. When the correlation between the response and the predictor is reasonably straightforward, these qualities are helpful and instructive. Given the predictor, the response's conditional density provides more specific information regarding the relationship. This study aims to examine a nonparametric estimator of a scalar response variable's function of a density and mode, given a functional variable when the data are spatially dependent. The estimator is then derived and established by combining the local linear and the $ k $ nearest neighbors methods. Next, the suggested estimator's uniform consistency in the number of neighbors (UNN) is proved. Finally, to demonstrate the efficacy and superiority of the acquired results, we applied our new estimator to simulated and real data and compared it to the existing competing estimator.



    加载中


    [1] G. Collomb, W. Härdle, S. Hassani, A note on prediction via estimation of the conditional mode function, J. Stat. Plan. Infer., 15 (1987), 227–236. https://doi.org/10.1016/0378-3758(86)90099-6 doi: 10.1016/0378-3758(86)90099-6
    [2] F. Ferraty, P. Vieu, Nonparametric functional data analysis: theory and practice, New York: Springer, 2006. https://doi.org/10.1007/0-387-36620-2
    [3] A. Baíllo, A. Grané, Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100 (2009), 102–111. https://doi.org/10.1016/j.jmva.2008.03.008 doi: 10.1016/j.jmva.2008.03.008
    [4] J. Barrientos-Marin, F. Ferraty, P. Vieu, Locally modelled regression and functional data, J. Nonparametr. Stat., 22 (2010), 617–632. https://doi.org/10.1080/10485250903089930 doi: 10.1080/10485250903089930
    [5] J. Demongeot, A. Laksaci, F. Madani, M. Rachdi, Functional data: local linear estimation of the conditional density and its application, Statistics, 47 (2013), 26–44. https://doi.org/10.1080/02331888.2011.568117 doi: 10.1080/02331888.2011.568117
    [6] M. Rachdi, A. Laksaci, J. Demongeot, A. Abdali, F. Madani, Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data, Comput. Stat. Data Anal., 73 (2014), 53–68. https://doi.org/10.1016/j.csda.2013.11.011 doi: 10.1016/j.csda.2013.11.011
    [7] Z. Y. Zhou, Z. Y. Lin, Asymptotic normality of locally modelled regression estimator for functional data, J. Nonparametr. Stat., 28 (2016), 116–131. https://doi.org/10.1080/10485252.2015.1114112 doi: 10.1080/10485252.2015.1114112
    [8] I. M. Almanjahie, Z. Kaid, A. Laksaci, M. Rachdi, Estimating the conditional density in scalar-on-function regression structure: k-N-N local linear approach, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10060902 doi: 10.3390/math10060902
    [9] F. Belarbi, S. Chemikh, A. Laksaci, Local linear estimate of the nonparametric robust regression in functional data, Stat. Probabil. Lett., 134 (2018), 128–133. https://doi.org/10.1016/j.spl.2017.11.003 doi: 10.1016/j.spl.2017.11.003
    [10] A. Chahad, L. Ait-Hennani, A. Laksaci, Functional local linear estimate for functional relative-error regression, J. Stat. Theory Pract., 11 (2017), 771–789. https://doi.org/10.1080/15598608.2017.1321071 doi: 10.1080/15598608.2017.1321071
    [11] M. Attouch, A. Laksaci, F. Rafaa, Local linear estimate of the regression operator by the $k$NN method, C. R. Math., 355 (2017), 824–829. https://doi.org/10.1016/j.crma.2017.05.007 doi: 10.1016/j.crma.2017.05.007
    [12] J. Fan, I. Gijbels, Local polynomial modelling and its applications, London: Chapman & Hall, 1996. https://doi.org/10.1201/9780203748725
    [13] M. Hallin, Z. D. Lu, L. T. Tran, Local linear spatial regression, Ann. Statist., 32 (2004), 2469–2500. https://doi.org/10.1214/009053604000000850 doi: 10.1214/009053604000000850
    [14] M. Hallin, Z. D. Lu, K. M. Yu, Local linear spatial quantile regression, Bernouilli, 15 (2009), 659–686. https://doi.org/10.3150/08-BEJ168 doi: 10.3150/08-BEJ168
    [15] A. Chouaf, A. Laksaci, On the functional local linear estimate for spatial regression, Statist. Risk Model., 29 (2012), 189–214. https://doi.org/10.1524/strm.2012.1114 doi: 10.1524/strm.2012.1114
    [16] A. Laksaci, M. Rachdi, S. Rahmani, Spatial modelization: local linear estimation of the conditional distribution for functional data, Spatial Stat., 6 (2013), 1–23. https://doi.org/10.1016/j.spasta.2013.04.004 doi: 10.1016/j.spasta.2013.04.004
    [17] A. Gheriballah, A. Laksaci, R. Rouane, Robust nonparametric estimation for spatial regression, J. Stat. Plan. Infer., 140 (2010), 1656–1670. https://doi.org/10.1016/j.jspi.2010.01.042 doi: 10.1016/j.jspi.2010.01.042
    [18] M. Attouch, A. Laksaci, N. Messabihi, Nonparametric relative error regression for spatial random variables, Stat. Papers, 58 (2017), 987–1008. https://doi.org/10.1007/s00362-015-0735-6 doi: 10.1007/s00362-015-0735-6
    [19] M. Abeidallah, B. Mechab, T. Merouan, Local linear estimate of the point at high risk: spatial functional data case, Commun. Stat. Theory Methods, 49 (2020), 2561–2584. https://doi.org/10.1080/03610926.2019.1580735 doi: 10.1080/03610926.2019.1580735
    [20] M. Rachdi, A. Laksaci, F. A. Al-Awhadi, Parametric and nonparametric conditional quantile regression modelisation for dependent spatial functional data, Spatial Stat., 43 (2021), 100498. https://doi.org/10.1016/j.spasta.2021.100498 doi: 10.1016/j.spasta.2021.100498
    [21] M. Rachdi, A. Laksaci, N. M. Al-Kandari, Expectile regression for spatial functional data analysis (sFDA), Metrika, 85 (2022), 627–655. https://doi.org/10.1007/s00184-021-00846-x doi: 10.1007/s00184-021-00846-x
    [22] A. Amiri, S. Dabo-Niang, M. Yahaya, Nonparametric recursive density estimation for spatial data, C. R. Math., 354 (2016), 205–210. https://doi.org/10.1016/j.crma.2015.10.010 doi: 10.1016/j.crma.2015.10.010
    [23] R. Giraldo, S. Dabo-Niang, S. Martínez, Statistical modeling of spatial big data: an approach from a functional data analysis perspective, Stat. Probabil. Lett., 136 (2018), 126–129. https://doi.org/10.1016/j.spl.2018.02.025 doi: 10.1016/j.spl.2018.02.025
    [24] M. Chaouch, N. Laïb, D. Louani, Rate of uniform consistency for a class of mode regression on functional stationary ergodic data, Stat. Methods Appl., 26 (2017), 19–47. https://doi.org/10.1007/s10260-016-0356-9 doi: 10.1007/s10260-016-0356-9
    [25] B. Maillot, C. Chesneau, On the conditional density estimation for continuous time processes with values in functional in spaces, Stat. Probabil. Lett., 178 (2021), 109179. https://doi.org/10.1016/j.spl.2021.109179 doi: 10.1016/j.spl.2021.109179
    [26] J. L. Kirkby, A. Leitao, D. Nguyen, Nonparametric density estimation and bandwidth selection with B-spline bases: a novel Galerkin method, Comput. Stat. Data Anal., 159 (2021), 107202. https://doi.org/10.1016/j.csda.2021.107202 doi: 10.1016/j.csda.2021.107202
    [27] T. Cover, Estimation by the nearest neighbor rule, IEEE Trans. Inform. Theory, 14 (1968), 50–55. https://doi.org/10.1109/TIT.1968.1054098 doi: 10.1109/TIT.1968.1054098
    [28] N. L. Kudraszow, P. Vieu, Uniform consistency of $k$NN regressors for functional variables, Stat. Probabil. Lett., 83 (2013), 1863–1870. https://doi.org/10.1016/j.spl.2013.04.017 doi: 10.1016/j.spl.2013.04.017
    [29] L. Kara, A. Laksaci, M. Rachdi, P. Vieu, Data-driven $k$NN estimation in nonparametric functional data analysis, J. Multivariate Anal., 153 (2017), 176–188. https://doi.org/10.1016/j.jmva.2016.09.016 doi: 10.1016/j.jmva.2016.09.016
    [30] M. Attouch, W. Bouabsa, Z. Chiker el Mozoaur, The $k$-nearest neighbors estimation of the conditional mode for functional data under dependency, Int. J. Stat. Econ., 19 (2018), 48–60.
    [31] I. M. Almanjahie, K. A. Assiri, A. Laksaci, Z. Chikr Elmezouar, The $k$ nearest neighbors smoothing of the relative-error regression with functional regressor, Commun. Stat. Theory Methods, 51 (2022), 4196–4209. https://doi.org/10.1080/03610926.2020.1811870 doi: 10.1080/03610926.2020.1811870
    [32] W. Bouabsa, Nonparametric relative error estimation via functional regressor by the $k$ nearest neighbors smoothing under truncation random data, Appl. Appl. Math., 16 (2021), 97–116.
    [33] W. Bouabsa, Unform in bandwith of the conditional distribution function with functional explanatory variable: the case of spatial data with the k nearest neighbour method, Econometrics, 26 (2022), 30–46. https://doi.org/10.15611/eada.2022.2.03 doi: 10.15611/eada.2022.2.03
    [34] T. Bodnar, O. Okhrin, N. Parolya, Optimal shrinkage estimator for high-dimensional mean vector, J. Multivariate Anal., 170 (2019), 63–79. https://doi.org/10.1016/j.jmva.2018.07.004 doi: 10.1016/j.jmva.2018.07.004
    [35] Y. Gao, H. L. Shang, Y. R. Yang, High-dimensional functional time series forecasting: an application to age-specific mortality rates, J. Multivariate Anal., 170 (2019), 232–243. https://doi.org/10.1016/j.jmva.2018.10.003 doi: 10.1016/j.jmva.2018.10.003
    [36] J. R. Berrendero, B. Bueno-Larraz, A. Cuevas, An RKHS model for variable selection in functional linear regression, J. Multivariate Anal., 170 (2019), 25–45. https://doi.org/10.1016/j.jmva.2018.04.008 doi: 10.1016/j.jmva.2018.04.008
    [37] C. Aaron, A. Cholaquidis, R. Fraiman, B. Ghattas, Multivariate and functional robust fusion methods for structured big data, J. Multivariate Anal., 170 (2019), 149–161. https://doi.org/10.1016/j.jmva.2018.06.012 doi: 10.1016/j.jmva.2018.06.012
    [38] P. Hall, M. Hosseini-Nasab, On properties of functional principal components analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), 109–126. https://doi.org/10.1111/j.1467-9868.2005.00535.x doi: 10.1111/j.1467-9868.2005.00535.x
    [39] P. Hall, H. G. Muller, J. L. Wang, Properties of principal component methods for functional and longitudinal data analysis, Ann. Statist., 34 (2006), 1493–1517. https://doi.org/10.1214/009053606000000272 doi: 10.1214/009053606000000272
    [40] L. T. Tran, Kernel density estimation on random fields, J. Multivariate Anal., 34 (1990), 37–53. https://doi.org/10.1016/0047-259X(90)90059-Q doi: 10.1016/0047-259X(90)90059-Q
    [41] X. Guyon, Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien, In: Proceedings of the sixth Franco-Belgian meeting of statisticians, 1987.
    [42] P. Doukhan, Mixing: properties and examples, New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-2642-0
    [43] M. Carbon, L. T. Tran, B. Wu, Kernel density estimation for random fields (density estimation for random fields), Stat. Probabil. Lett., 36 (1997), 115–125. https://doi.org/10.1016/S0167-7152(97)00054-0 doi: 10.1016/S0167-7152(97)00054-0
    [44] S. Dabo-Niang, M. Rachdi, A. F. Yao, Kernel regression estimation for spatial functional random variables, Far East J. Theor. Stat., 37 (2011), 77–113.
    [45] A. Tadj, Sur les modèles non paramétriques conditionnels en statistique fonctionnelle, Thèse de doctorat, Université de Toulouse, 2011.
    [46] G. Biau, B. Cadre, Nonparametric spatial prediction, Stat. Infer. Stoch. Pro., 7 (2004), 327–349. https://doi.org/10.1023/B:SISP.0000049116.23705.88 doi: 10.1023/B:SISP.0000049116.23705.88
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(944) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog