
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(7): 15844–15875.
DOI: 10.3934/math.2023809
Received: 12 January 2023
Revised: 02 April 2023
Accepted: 11 April 2023
Published: 04 May 2023

Research article

kNN local linear estimation of the conditional density and mode for
functional spatial high dimensional data

Fatimah Alshahrani1, Wahiba Bouabsa2, Ibrahim M. Almanjahie3 and Mohammed Kadi
Attouch2,*

1 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman
University, Riyadh 11671, Saudi Arabia

2 Laboratory of Statistics and Stochastic Processes, University of Djillali Liabes, BP 89, Sidi Bel
Abbes 22000, Algeria

3 Department of Mathematics, College of Science, King Khalid University, Abha 62223, Saudi
Arabia

* Correspondence: Email: attou kadi@yahoo.fr.

Abstract: Traditionally, regression problems are examined using univariate characteristics, including
the scale function, marginal density, regression error, and regression function. When the correlation
between the response and the predictor is reasonably straightforward, these qualities are helpful and
instructive. Given the predictor, the response’s conditional density provides more specific information
regarding the relationship. This study aims to examine a nonparametric estimator of a scalar response
variable’s function of a density and mode, given a functional variable when the data are spatially
dependent. The estimator is then derived and established by combining the local linear and the k
nearest neighbors methods. Next, the suggested estimator’s uniform consistency in the number of
neighbors (UNN) is proved. Finally, to demonstrate the efficacy and superiority of the acquired results,
we applied our new estimator to simulated and real data and compared it to the existing competing
estimator.

Keywords: k nearest neighbors; spatial functional data analysis; local linear estimation; conditional
density; conditional mode
Mathematics Subject Classification: 62H12, 62G07, 62G35, 62G20

1. Introduction

The most prominent topic of covariance in mathematical statistics is the statistical investigation
between two random variables. Typically, regression modeling is employed to illustrate this
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relationship. However, there are several situations in which this strategy is not particularly
beneficial (for example, see Collomb et al. [1]). In this study, we investigate the conditional mode,
an alternative strategy that maximizes conditional density. Precisely, we focus on estimating the
conditional density and mode function using the local linear approach weighted by the k nearest
neighbors (kNN) smoothing methodology. The functional local linear estimating (LLE) problem
has been the subject of numerous studies since the publication of the monograph paper (Ferraty and
Vieu [2]) in non-parametric functional data analysis (NFDA). The first response to this query occurred
from Ballo and Grané [3], who showed the L2-consistency of an LLE’s Hilbertian regression function.
Barrientos et al. [4] then offered a different response that could be used as a more versatile functional
regressor. On the other hand, Demongeot et al. [5] developed the preliminary results on the LLE of
conditional density using functional variables and established the almost-complete consistency (a.co.)
of an LLE of the conditional density. Then, the LLE’s mean quadratic error of the conditional density in
Rachdi et al. [6] was explicitly mentioned as the leading term. In addition, Zhou and Lin [7] established
the local linear asymptotic normality of the regression function. Recently, Almanjahie et al. [8] treated
the kNN LLE of the conditional density in a scalar-on-function regression framework. For further
information on the LLE in NFDA, check, for instance, Belarbi et al. [9], Chahad et al. [10] and
Attouch et al. [11].

It should be mentioned that the LLE’s significant advantage over the classic kernel technique is that
it serves as the primary inspiration for all the research on functional LLE that has been referenced.
In particular, as we know, the local linear approach reduces the kernel method’s bias error. (For
additional information on the benefits of this approach, see, for example, Fan and Gijbels [12] and
Rachdi et al. [6]). The estimate of the conditional density/mode for functional and spatial data using
the LLE approach paired with the kNN smoothing process is the main novelty of the current study,
which we will refer to as spatial-kNN-LEE. In contrast, most research in this field employs the kernel
estimation method to estimate nonparametric functional models. In addition, combining these two
techniques with spatial data makes it possible to build an estimator that is less biased and more
attractive. Indeed, it is generally known that the kNN technique allows for selecting a parameter for a
smoothing bandwidth that is more appropriate due to the data’s local nature; in fact, this estimate may
be upgraded to account for any more additional notes. This estimator form is similarly robust, rapidly
converges, and is simple to create and apply in reality.

The spatial data issue has attracted a lot of interest. The local linear approach is thoroughly
discussed by Hallin et al. [13,14]. The quantile estimates and the local linear regression estimation were
given illustrations, together with the asymptotic normality results. To our knowledge, the functional
spatial local linear estimating scenario has only a few outcomes. For the regression model, we
remember that the contribution of the most original was made by Chouaf and Laksaci [15], which
focused on spatial LLE functional data. After that, the estimation of the conditional models utilizing
the local linear approach was demonstrated by Laksaci et al. [16] when the data are spatially dependent
and functional in structure.

Gheriballah et al. [17] presented the M-estimation spatial form of the regression function and
attained the asymptotic normality result. After that, the asymptotic normality spatial relative error
regression was proved by Attouch et al. [18]. Abeidallah et al. [19] then addressed the issue
of estimating specific conditional models using the LLE approach. More recent advances and
references in functional nonparametric estimation can be found in Rachdi et al. [20], who proved
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the parametric and nonparametric conditional quantile regression modelization, which focused on
dependent spatial functional; then, the expectile regression for spatial functional data analysis was
made by Rachdi et al. [21].

The current study, motivated by previous research, focuses on estimating the functional conditional
density using dependent spatial data and combining the LLE methodology and the kNN smoothing
method. Hence, for our proposed estimator, we examine the almost complete convergence rate.

There are various studies on estimating conditional densities; we quote, for instance, Amiri and
Dabo-Niang [22], who analyzed the recursive density kernel structure. They investigated the spatial
asymptotic behavior of the built estimator. We refer to Giraldo and Dabo-Niang [23] for a complete
discussion of spatial functional data analysis. The nonparametric functional modal regression’s
uniform consistency is shown by Chaouch and Laib [24], taking into account the ergodicity structure.
For functional space, the continuous time processes of the conditional density’s asymptotic properties
were established by Maillot and Chesneau [25] and determined the expectation and convergence of
the conditional mode. In order to develop a useful cross-validation approach for the selection of the
bandwidth parameter, Kirkby and Leitao [26] studied an alternative estimate of the conditional density.

The research on the estimation of the kNN approach in NFDA is still sparse and focuses on
the regression model. However, because of their adaptability and effectiveness, nonparametric kNN
techniques obtained much interest in the statistical literature. The functional kNN smoothing approach
has recently received more interest due to its favorable properties. Since Cover [27], which pioneered
work in this area, many publications have been published in a variety of estimating contexts, including
discrimination, density, and mode estimates, in addition to clustering analysis. The most recent
references are listed in the citations: Kudraszow and Vieu [28], Kara et al. [29], Attouch [30],
Almanjahie et al. [31], Bouabsa [32], Almanjahie et al. [8], Bouabsa [33].

In this study, we establish the almost complete convergence under a few general assumptions
(with rate). Our current work is the connection between Almanjahie et al. [8] study and Kara et al.
study’s [29]. Remember, for instance, that a random variable serves as the bandwidth parameter
in the kNN technique; this shows the difficulty and interest of our study. The distance amidst the
random functional variables is precisely used to construct the bandwidth parameter. It enables the
topological and spectral components of the data to be investigated. To create complex details of
the conditional density and mode functional estimators, we merge all advantages, techniques, and
methods in this paper. Therefore, the goal is to mix the two strategies with the functional spatial
dependency data, starting with their respective benefits. As we stated earlier, the innovation lies
in the combination of the technique of LLE with the smoothing method kNN to give a brand new
estimator of the functional conditional density with spatial data. With this combination, we can solve
the bandwidth selection issue and achieve a desirable estimator with a slight bias. However, our new
estimator has two significant difficulties: (1) On the other hand, in the strategy of the kernel, a fixed
scalar is the deterministic parameter, and in the kNN method, the bandwidth parameter is a random
variable, making it more difficult to examine its asymptotic characteristics; (2) While the optimal
number of neighbors varied depending on the data in practice, the bandwidth parameter’s number of
neighbors is deterministic. To cover the practical case, it is insufficient to focus only on determining
a standard asymptotic characteristic with a fixed number of neighbors. Hence and to incorporate the
actual case, the primary goal of this work, with respect to the number of neighbors, is to establish the
almost complete convergence of our new estimator.
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In order to favor connections between the FDA and high-dimensional statistics, We have included
a few references on this last topic, including the work by Bodnar et al. [34]. However, other papers are
at the cross-roads between the two fields and are therefore highly representative of the wide variety of
connections between FDA and “Big Data”. In the papers by Gao et al. [35] and Berrendero et al. [36],
high-dimensional methods are adapted to FDA. The relationship in Aaron et al. [37] comes from a
general modeling technique that gives a unified perspective of the two fields. The high-dimensional
characteristic of the work, in the contribution by Gao et al. [35], lies in the fact that the statistical
samples are formed of a large number of variables, each of which is possibly infinite-dimensional.
The suggested technique depends on the FDA as well as the high-dimensional statistical literature.
The infinite-dimensional variables are reduced to vectors using functional principal component
analysis (FPCA) (see for more details and explication [38, 39]), which are then processed using
high-dimensional factor analysis approach. Asymptotics are defined for this two-stage process and
simulation studies compare its behavior in finite samples to alternative multi-functional dependent
analysis methods.

The content of the article is as described in the following. In the next section, we discuss our
estimator. Then, we present the density and mode estimators’ hypotheses and asymptotic outcomes
in Section 3. Then, we exhibit our findings as well as implementation using a real-world data sample
in Section 4, Then, in Section 5, an appendix describing the proofs of the auxiliary results are provided.
Finally, our conclusion is stated in the last section.

2. Models and estimator

2.1. Spatial data presentation

To introduce the spatial functional form of the kNN conditional density estimator with local
linear estimation, assuming denote with Xi = (Zi,Wi) the measurable process and strictly stationary
technique, with i ∈ ZM and M ≥ 1 selected from X = (Z,W) random variables, which is valued in
(F × R), where we define a semi-metric space by (F , d). We denote by z a fixed curve in F , and we
indicate to the neighborhood of z by Nz, and to a fixed compact subset of R by ϱ. Then, we suppose that
the Xi’s are (i.d.), which means identically distributed to X = (Z,W) and that the conditional probability
of W given Z has a regular form. Furthermore, suppose that i = (i1, ..., iM) ∈ ZM is a point known as
a site.

We suppose that the process is accessible on the set

Ln = {i = (i1, ..., iM) ∈ ZM, 1 ≤ iϑ ≤ nϑ, ϑ = 1, ...,M}, where n = (n1, ..., nM) ∈ ZM.

When there is no possibility of confusion, we indicate any generic positive constants by C and C′,
and S a compact of R throughout the paper, and we write

if min
ϑ=1,...,M

{nϑ} → ∞ and |nj/nϑ| < C ∀j, ϑ ∈ {1, ...,M}, we have n→ ∞.

Since it permits increasing the region of observations while keeping the distance between
observation positions to a minimum, this is regarded as an asymptotically increasing area.

AIMS Mathematics Volume 8, Issue 7, 15844–15875.



15848

When the functional random field Xi = (Zi,Wi), i ∈ ZM fulfills the consequent mixing suppositions,
this study objective is to examine the kNN spacial conditional density f z with LLE: when υ→ ∞, there is a function Φ(υ) ↓ 0, as well as ∀G,G′a part of ZMcardinal finite
α (B(G),B (G′)) = sup

H∈B(G),E∈B(G′)
|P(H ∩ E) − P(H)P(E)| ≤ Ψ

(
Card(G),Card

(
G′

))
Φ

(
dist

(
G,G′

))
,

such that, B(G) (resp. B (G′) ) denoted the Borelian tribe produced by (Xi, i ∈ X); then, Card(G) and
respectively Card (G′) is the number of the cardinal of G (resp. Z′ ), dist (Z,Z′) assign the Euclidean
distance among G and G′ and Ψ a symmetric nondecreasing positive function: Z2 → R+, in every
variable in such a way that:

Ψ(m1,m2) ≤ C min(m1,m2), m1,m2 ∈ Z, (2.1)

or

Ψ(m1,m2) ≤ C(m1 + m2 + 1)ϑ̃, m1,m2 ∈ Z. (2.2)

For certain ϑ̃ ≥ 1 and C > 0, note that Tran [40] employed these requirements, and that many spatial
models can satisfy them (see Guyon [41]).

Take into account that when Eq (2.1) maintains with Ψ ≡ 1 or M = 1, the random area Xi =

(Zi,Wi) is described as strongly mixing (for further details and illustrations of mixing properties see
Doukhan [42]). Additionally, let’s suppose that the process X fulfills the next mixing criterion:

∞∑
i=1

iϑΦ(i) < ∞, ϑ > 0. (2.3)

We point out that the conditions (2.2) and (2.3) are the same as the mixing conditions used by
Carbon et al. [43] and Tran [40], and mixing conditions utilized by them are identical to the
conditions (2.2) and (2.3).

2.2. Methodology: notes & required general background

With the spatial-kNN-LLE technique, this study aims to determine and estimate the conditional
probability density. The purpose of this method is to approximate the function f (.|z) linearly. Then,
the local linear method is utilized using the Taylor expansion of f (.|z) in the vectorial situation. Such
extension is not obtainable in the functional data analysis. Instead, we assume that

∀z0 ∈ Nz,∀w ∈ R, f (w|z0) = a(w|z) + b(w|z)d(z0, z) + o(d(z0, z)). (2.4)

Now, the spatial-kNN-LLE of the functionals â(w|z) and b̂(w|z) is derived by the optimization rule

(â, b̂) = arg min
(a,b)∈R

∑
i∈Ln

(b−1
δ δ(b

−1
δ (w −Wi)) − a − bχ(Zi, z))2L(h−1

L ℘(z,Zi)), (2.5)

where the locating functions χ(.; .) and ℘(.; .) defined from F 2 into R, as follows:

d(.; .) = |℘(.; .)| and χ(ξ; ξ) = 0, ∀ξ ∈ F .
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The distribution function L, the kernel function δ, and the (hL, bδ) are the kNN smoothing parameters,
defined by

hL = min{h ∈ R+, such that
∑
i∈Ln

1B(z,hL)(Zi) = L},

and
bδ = min{h ∈ R+, such that

∑
i∈Ln

1w−b,w+b(Wi) = δ}.

When take z0 ∈ Nz, we obtain f (.|z) = a(w|z). Then, with respect to z, b(w|z) is the derivative form
of f (.|z). So, f (.|z) and b(w|z) are estimated by (2.5). Both estimators are explicit. Indeed, we have

t
L =

(
1, 1, . . . , 1

℘ (Z1, z) . . . , ℘ (Zn, z)

)
, L =

 L
(
h−1

L ℘ (z,Z1)
)
, 0, . . . , 0

0, . . . , 0, L
(
h−1

L ℘ (z,Zn)
))  ,

and

W =


b−1
δ δ

(
b−1
δ (w −W1)

)
...

b−1
δ δ

(
b−1
δ (w −Wn)

)
 .

To demonstrate that the minimizing of ( 2.5) using the partial derivative are zeros of

t
L

(
LW − LL

(
â(w | z)
b̂(w | z)

))
= 0,

it follows (
â(w | z)
b̂(w | z)

)
=

(tLLL
)−1 (t
LLW

)
.

Consequently,
â(w | z) = (1, 0)

(tLLL
)−1 (t
LLW

)
.

As a result, the spatial-kNN-LLE estimator for f (w|z) is written as

f̃ (w | z) =

∑
i,j∈Ln

i,j

Yij(z)δ
(
h−1
δ

(
w −Wj

))
bδ

∑
i,j∈Ln

i,j

Yij(z)
, (2.6)

where
Yij(z) =χ (Zi, z)

(
χ (Zi, z) − χ

(
Zj, z

))
× L

(
h−1

L ℘ (z,Zi)
)

L
(
h−1

L ℘
(
z,Zj

))
.

3. kNN estimators consistency

With regard to the number of neighbors (L, δ) ∈ (L1,n, L2,n) × (δ1,n, δ2,n), we aim to establish the
uniformly a.co. consistency of f̃ (w | z). To do this, we define the minimum number of open balls
required to cover the set of functions D with regard to M2(S ) as N(ε,D, ||.||M2(S ). Additionally, we
define ||φ||D = sup

q∈D
|φ(q)|.
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3.1. The conditional density estimator consistency

Our main finding is linked to the almost complete convergence rate of the spatial-kNN-LLE
conditional density’s. To be able to accomplish our outcomes, we present the hypotheses listed below
that are needed to validate the results of this section.

• (A1):

– (A1a) ∀g > 0,P(z ∈ B(Z, g)) := ζz(g) > 0.

– (A1b) lim
g→0

ζz(eg)
ζz(g)

= τz(e),∀e ∈ (0, 1) such that

L
(
1
2

)
τz

(
1
2

)
−

∫ 1
2

0
L′(e)τz(e)de > 0,

and (
1
4

)
L
(
1
2

)
τz

(
1
2

)
−

∫ 1
2

0

(
e2L(e)

)′
τz(e)ds > 0.

• (A2): For some 0 < ν < M−1,

0 < sup
i,j

P
[(

Zi,Zj
)
∈ B (z, hL) × B (z, hL)

]
≤ C (ζz (hL))(ν+1)/ν .

• (A3): The conditional f (.|z) is the probability density such that ∃ϖ1, ϖ2 ∈ (0, 1],∀ (z1, z2) ∈
Nz × Nz and (w1,w2) ∈ R2,

| f (w1 | z1) − f (w2 | z2)| ≤ C (℘ϖ1 (z1, z2) + |w1 − w2|
ϖ2) .

• (A4): d(·, ·) is the function written in such a way that

∀z1, z2 ∈ F ,C′ |℘ (z1, z2)| ≤ |℘ (z1, z2)| ≤ C |℘ (z1, z2)| .

• (A5): We have a positive kernel L and differentiable function with support for (−1, 1).

• (A6): δ is a differentiable function with a continuous derivative, δ′ is a bounded function, such
that ∫

|r|b2δ′(r)dr < ∞,
∫
δ′

2
(r)dr < ∞.

Additionally,
∀ (w1,w2) ∈ R2, |δ′ (w1) − δ′ (w2)| ≤ C |w1 − w2| .

• (A7): α < (k − 5M)/2M and η0 are positive numbers, expressed as

lim
n→∞

bδ = 0, lim
n→∞

n̂αbδ = ∞,

and
Cn̂

(5+2α)M−k
k +η0 ≤ ζz (hL) ,

where n̂ = n1 × · · · × nM.
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• (A8):

– (A8a) ∀ı = 0, 1, 2 and ℓ = 0, 1,

K ı,ℓ = {(·1, ·2) 7→ γ−ıL
(
γ−1d(z, ·1)

)
dı(·, z)γ−ℓδℓ

(
γ−1(w − ·2)

)
, λ > 0, γ > 0}

are pointwise measurable classes.

– (A8b) K ℓ,κ is such that

sup
S

∫ 1

0

√
1 + logN

(
ϵ
∥∥∥|F ı,ℓ∥∥∥ |M2(S ),K ı,ℓ, ∥ · ∥M2(S )

)
dϵ < ∞.

We indicate the envelope function of the classK ı,ℓ by F ı,ℓ, and call ∥ · ∥M2(S ) the M2(S ) norm.

• (A9): The next sets
(
L1,n

)
,
(
L2,n

)
,
(
δ1,n

)
and

(
δ2,n

)
, check: δ2,nn → 0, ζ−1

z

(
L2,n

n

)
→ 0 and for some

ϑ > 0, we have
n log n

δ1,n min
(
nζ−1

z

(
L1,n

n

)
, L1,n

) ,nϑ−1δ1,n → ∞.

Remark 3.1. Comments on the hypotheses: In the asymptotic theory of nonparametric functional
statistics, assumption (A1) is a prerequisite. The first part of this hypothesis is the explanatory
variable’s concentration in small balls. Numerous publications on nonparametric functional statistics
also consider the second part. To achieve the same convergence rate as in the independence case
indicated by condition (A2), the local dependency between the observations must hold. The hypothesis
of Lipschitz (A3) is applied to the conditional density function, demonstrating that each variable has
a continuous relationship with the function. The assumption (A4) is identical to the one employed by
Barrientos-Marin et al. [4]. Nonparametric function estimation frequently uses condition (A5). For
specific examples of kernels satisfying (A5) and (A6), we can see Ferraty and Vieu [2]. Hypothesis (A6)
imposes certain regularity constraints on the kernels δ and δ′ used in our findings. According to
Almanjahie et al. [8], conditions (A7) and (A9) are similar. An easy prerequisite is the assumption (A8)
on the bandwidth parameters and certain technical requirements that make the demonstration simpler
to comprehend.

Theorem 3.1. Under the assumptions (A1–A9), we obtain

sup
L1,n≤L≤L2,n

sup
δ1,n≤δ≤δ2,n

sup
w∈S
| f̃ (w | z) − f (w | z) |= O

(
ζ−1

z

(
L2,n

n

)ϖ1
)
+ O

(
δ2,n

n

)ϖ2

+ Oa·co


√

n log n
δ1,nL1,n

 .
Proof. For a fixed α ∈]0, 1[, we have

yn = ζ
−1
z

(
L2,n

n

)ϖ1

+

(
δ2,n

n

)ϖ2

+


√

n log n
δ1,nL1,n

 ,
where

ân = ζ
−1
z

(
αL1,n

n

)
, b̂n = ζ

−1
z

(
L2,n

nα

)
, ĉn =

αδ1,n

n
and d̂n =

δ2,n

nα
.

AIMS Mathematics Volume 8, Issue 7, 15844–15875.



15852

Then, ∀ε > 0, we get

P

 sup
L1,n≤L≤L2,n

sup
δ1,n≤δ≤δ2,n

sup
w∈S
| f̃ (w | z) − f (w | z)| ≥ εyn


≤P

 sup
L1,n≤L≤L2,n

sup
δ1,n≤δ≤δ2,n

sup
w∈S
| f̃ (w | z) − f (w | z)| ×I{

ân≤hL≤ζ
−1
z

(
L2,n
nα

)
,
αL1,n

n ≤bδ≤
δ2,n
nα

} ≥ εyn

2

}
+ P

{
hL <

(
ζ−1

z

(
αL1,n

n

)
, ζ−1

z

(
L2,n

nα

))}
+ P

{
bδ <

(
αδ1,n

n
,
δ2,n

nα

)}
.

Kara et al. [29] studied the latest two probabilities. As a result, just the first one has to be examined.
This latter is mostly the result of the following proposition.

Proposition 3.1. Based on the same Theorem 3.1 hypotheses, we have

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

| f̃ (w | z) − f (w | z)| = O
(
b̂ϖ1

n

)
+ O

(
d̂ϖ2

n

)
+ Oa.co

(√
log n̂

n̂ĉnζz(ân)

)
. (3.1)

Proof. The demonstration is focused on decomposition that follows and the corollary and lemmas
below:

f̃ (w | z) − f (w | z) = B̃n(w | z) +
R̃n(w | z)

f̃D(z)
+

Q̃n(w | z)

f̂D(z)
,

where

Q̃n(w | z) =
(

f̃N(w | z) − E f̃N(w | z)
)
− f (w | z)

(
f̃D(z) − E f̃D(z)

)
,

B̃n(w | z) :=
E f̃N(w | z)

E f̃D(z)
− f z(w) and R̂n(w | z) := −B̂n(w | z)

(
f̂D(z) − E f̃D(z)

)
,

with
f̃N(w | z) =

1
n̂(n̂ − 1)bδE[Y12(z)]

∑
i,j

Yij(z)δ′
(
b−1
δ (w −Wj)

)
,

f̃D(z) :=
1

n̂(n̂ − 1)E[Y12(z)]

∑
i,j

Yij(z).

Thus, Proposition 3.1 is a consequence of the following corollary and lemmas, where their proofs
are included in the Appendix.

Corollary 3.1. There exists u > 0 under the assumptions of Theorem 3.1, where∑
n∈ZM

P

 sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣1 − f̃D(z)
∣∣∣ < u

 < ∞.
Lemma 3.1. Similar to the condition of Theorem 3.1, we have

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣∣∣∣∣∣
E

[
f̃N(w | z)

]
− f (w | z)E

[
f̃D(z)

]
E

[
f̃D(z)

]
∣∣∣∣∣∣∣∣ = O

(
b̂ϖ1

n

)
+ O

(
d̂ϖ2

n

)
.

Lemma 3.2. Using the same conditions as in Theorem 3.1, we have

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

1
f̃D(z)

∣∣∣∣ f̃N(w | z) − E
[
f̃N(w | z)

]∣∣∣∣ = Oa.co

(√
log n̂

n̂ĉnζz(ân)

)
.
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3.2. kNN conditional mode estimator consistency

The prior results have a direct effect on the spatial-kNN-LLE of the conditional mode estimator
convergence rate, defined as

θ̃(z) = arg max
w∈S

f̃ (w | z), (3.2)

of the conditional mode given by θ(z) = arg maxw∈S f (w | z). Therefore, we will add this to the
conditions we assumed in Section 3.

• (A10)

– (i1) The f (. | z) function is j-times continuous and differentiable with regard to w on the
topological interior of S if ∃ j > 1 and ∀z ∈ Nz.

– (i2) f (w | z(l)) = 0 when 1 ≤ l < j.

– (i3) Since 0 < | f (w | z( j))| < ∞, f (w | z( j)) signifies the jth-the conditional density function
order derivative of f (w | z), is uniformly continuous on S.

Remark 3.2. Under the minimal condition in the functional estimation (A10)(i1), (A7) and (A8),
hypotheses in finite or infinite dimension spaces are classical assumptions, and the convergence of
the mode estimator can be established.

In the theorem that follows, the asymptotic behavior of θ̃(z) is described.

Theorem 3.2. Under conditions (A1)–(A10), we get

sup
L1,n≤L≤L2,n

sup
δ1,n≤δ≤δ2,n

sup
w∈S
|θ̃(z) − θ(z)| = Oζ−1

z

(
L2,n

n

)ϖ1
j

+ O
(
δ2,n

n

)ϖ2
j

+ Oa·co


√

n log n
δ1,nL1,n


1
j

.

The proof of this theorem is relegated to the Appendix.

4. Applications

In this section, we will compare the kNN local linear technique to the kernel one in a functional
spatial setting using both simulated and real data. First, we present the conditional mode as a
predictive tool that strongly correlates with conditional density estimation. Second, we suggest a more
straightforward and faster approach for implementing the estimator given by (2.6) and demonstrate how
its performance is affected by (3.2), the selection of smoothing parameters, and the locating functions.
Finally, a practical example using real data is shown to demonstrate the advantages of the local linear
estimating method over the kernel estimation approach.

4.1. A simulation study

In this section, we first demonstrate the finite sample behavior of the proposed estimator θ̃ by
simulating the observations (Zi,Yi) ∈ (F × R). For simplicity, we will assume that N = 2 and write
i = (i1, i2) with 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2 and ∀i ∈ Z2. The model was generated using

Zi(t) = cos(2πAit) + Bit, t ∈ [0, 1],
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and
Yi = r(Zi) + εi, (4.1)

where r(Z) = 5.
1∫ 1

0
|Z(t)|dt

. Then, we designate by GRF
(
m, σ2, s

)
a stationary Gaussian random field

with mean m and covariance function defined by

C(l) = σ2 exp
− (
∥l∥
s

)2 , l ∈ R2, s > 0.

Next, we simulated model (4.1) using the following parameters:

A = D ∗ sin
(G

2
+ .5

)
, B = GRF(2.5, 5, 3), ε = GRF(0, .1, 5),

G = GRF(0, 5, 3), Di =
1

n1 × n2

∑
j

exp
(
−
∥i − j∥

a

)
.

Specifically, we use

D(i,j) =
1

n1 × n2

∑
1≤ j1, j2≤25

exp
(
−
∥(i1, i2) − ( j1, j2)∥

a

)
.

The spatial mixing condition is ensured and controlled by the function D (even if using the Gaussian
Random Fields also brings some spatial dependency).

The utilized semi-metric is the first sample curves derivative, which is determined by

d
(
Zi,Zj

)
=

√∫ 1

0

(
Z′i (t) − Z′j (t)

)2
dt, for ∀Zi,Zj ∈ F .

Furthermore, the kernel function is selected: K(u) = 3
2

(
1 − u2

)
1[0,1](u).

Observations of sites i and j with ∥i − j∥ < 15 are spatially dependent and nearly independent
from ∥i − j∥ ≥ 15 because the model (under these conditions) is based on Gaussian random fields
with covariance function C and scale s = 5. As a result, our observations are a mix of dependent
and i.i.d. observations (see, Figures 1–4). Therefore, reducing the value of a is necessary to leave from
independence (our research is based on a = 0.5).
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Figure 1. The curves Zi, t ∈ [0, 1] for a = 5, 20, 50.
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Figure 2. Random field simulation for a = 5.
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Figure 3. Random field simulation for a = 20.
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Figure 4. Random field simulation for a = 50.

Recall that the main goal is to compare the introduced estimator (spatial-kNN-LLE, θ̃n(ω)) with the
local linear without kNN (spatial-LLE, θ̂n(ω)), and the kernel estimator case (KNW, θ̄n(ω)) defined by
Dabo-Niang et al. [44]. To test the performance of the proposed estimator, we randomly divided our
data (Zi,Yi)i into two subsets: the training sample (Zi,Yi)i∈I and the test sample (Zi,Yi) ∈ I′. The training
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sample was used to calculate the hkopt smoothing parameters for the kNN cross-validation procedures:

hk = min

h ∈ R+such that
∑
i∈I

1B(z,h) (Zi) = k

 ,
where kopt = arg mink CV(k) with CV(k) =

∑
i∈I

(
θi − θ̌

(−i)
n (Zi)

)2
and θ̌(−i)

n are the leave one out of θ̌n (see
Ferraty and Vieu [2]). The θ̌n(·) of θ(·) accuracy was quantified via mean square errors (MSE):

MSE =
1

# (I′)

∑
i∈I′

(
θ̌n (Zi) − θ (Zi)

)2
,

where #(I′) is the length of testing sample I′, and θ̌n(·) can mean either θ̃n(ω), θ̂n(ω) and θ̄n(ω). Figure 5
depicts the obtained results for the three models, shown as the predicted values against the real values.
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Figure 5. Predictions of the 3 model.

For these three models, we conduct 100 simulations with a = 5, 20 and 50 with different sample
sizes (see Figure 6, 7 and 8 respectively).
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Figure 8. Mean squared error of the 3 models with different values of n1, n2 and a = 50.

Based on Figures 6–8, we can observe that the values of MSE decrease to 0 as n1 and n2 increases.
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The MS E under the KNW, LLE, and kNN-LLE are reported in Table 1 for various values of a, n1

and n2.
According to Table 1, the kNN-LLE model exhibits superior prediction effects in comparison to the

other models.

Table 1. Mean squared error for KNW, LLE and kNN-LLE models respectively.

a 5 20 50

n1 n2 KNW LLE kNN-LLE KNW LLE kNN-LLE KNW LLE kNN-LLE

10 0.0668 0.0677 0.0869 0.1144 0.1073 0.1252 0.1322 0.1292 0.1374
10 20 0.0862 0.0844 0.0725 0.1224 0.1136 0.0948 0.1030 0.0948 0.0831

30 0.0679 0.0673 0.0636 0.0789 0.0768 0.0733 0.0866 0.0842 0.0789

10 0.0819 0.0795 0.0716 0.0899 0.0927 0.0862 0.1319 0.1127 0.0951
20 20 0.0501 0.0468 0.0498 0.0618 0.0636 0.0643 0.0929 0.0918 0.0805

30 0.0519 0.0481 0.0507 0.0650 0.0630 0.0622 0.0688 0.0698 0.0679

10 0.0658 0.0660 0.0573 0.0996 0.0921 0.0801 0.0938 0.0862 0.0790
30 20 0.0461 0.0479 0.0478 0.0676 0.0634 0.0661 0.0853 0.0711 0.0686

30 0.0498 0.0455 0.0488 0.0552 0.0501 0.0513 0.0608 0.0595 0.0610

4.2. Real data study

Our aim in this section is to apply the theoretical results from the preceding section to real data.
More specifically, we investigate the performance of the proposed estimator using the k nearest
neighbors local linear estimating (kNN-LLE) technique in the context of spatial functional prediction
using real data application that emphasizes the usefulness of controlling for the spatial locations of the
data.

Our real example is related to the chemical concentrations, like ozone O3, that cause air pollution.
Undoubtedly, air pollution is caused by various chemicals influencing air quality and human health.
There are a variety of sources for these substances, some of them naturally and others through human
industrial activities. In this example, we are interested in predicting the future concentration of O3

using the past concentration curve. We considered hourly O3 concentration for this application between
January 1st, 2021 and May 2nd, 2021. The data was provided by 131 stations in the United States.
Figure 9 displays the locations of 131 stations throughout the United States. This information is
accessible at the following website: https://www.epa.gov/outdoor-air-quality-data.
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Figure 9. The 131 location stations in the USA.

The following regression equation is assumed to be a link between the observations:

Ys = r(Zs) + ϵ, s = 1, 2, ...24,

where the response variable can be taken as : Ys = O3;(s) (for the hour s in the day: May 2nd 2021). For
the functional variable, we take : Zs = O3;(s)(t); t = s, ..., s + 24 (for the day: May 1st 2021). According
to the notation introduced in the previous section, the functional predictor Zi is the daily ozone curve
in the ith station (identified by its geographic coordinates i = (Latitude; Longitude)), and Yi is the
predicted ozone concentration in the same station. In order to see the spatial stationarity hypothesis in
the data, the starting data must be prepared in advance for this form of spatial modeling, as mentioned
in Hallin et al. [14]. The latter regulates the spatial heterogeneity connected to the differentiation
of space’s impacts on the sample units. For the multivariate situation in finite dimension, where the
geographical heterogeneity of the two variables (explanatory and response) is modeled by the following
regression, we adopt the approach given by Hallin et al. [14] and Rachdi et al. [21] to regulate this
aspect:

Z̃i = r1(i) + Zi, Ỹi = r2(i) + Yi.

So, rather than the initial observations (Zi,Yi), the conditional mode estimator θ̃n is computed from the
statistics (Zi,Yi). These results are achieved by

Ẑi = Z̃i − r1(i), Ŷi = Ỹi − r2(i),

and r̂1(.) (resp. r̂2(.)) is the kernel estimator of the r1(.) (respectively r2(.)) regression function, which
is denoted by

r̂1 (i) =
∑

j∈In H
(
l−1
n ∥i − j∥

)
Xj∑

j∈In H
(
l−1
n ∥i − j∥

) resp . r̂2 (j) =
∑

i∈In H
(
d−1

n ∥j − i∥
)

Yi∑
i∈In H

(
d−1

n ∥j − i∥
)  ,
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where H is a kernel function, and ln and dn are the real regression bandwidth parameters. Such a
step, termed “detrending step”, is crucial to non-parametric geographical data analysis. For our real
data set, we emphasize the effects of this detrending procedure. To accomplish this, we evaluate the
performance of the conditional mode regression in both instances (with and without detrending).

The functional curves Zi are depicted in Figure 10.
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Figure 10. Ozone levels daily at 131 different US monitoring sites for both cases (detrending
and no-detrending).

In particular, we compare the prediction of ozone pollution in a station using the three described
models in the simulation part. We divided the observations as follows: Learning sample (Zi,Yi)i∈I (104
stations), and test sample (Zi,Yi)i∈I′ (27 stations).

The quadratic kernel K is chosen as K(u) = 3
4

(
12
11 − u2

)
I[0,1](u). The selection of the bandwidth

parameter h is an important subject in nonparametric estimation, we propose utilizing a cross-validation
approach to select the optimal bandwidth for the other methods. We use the cross-validation selection
rule suggested by Ferraty and Vieu [2].

The standard PCA semi-metrics are used, where

dPCA
q

(
Zi,Zj

)
=

√√ q∑
k=1

(∫ [
Zi(t) − Zj(t)

]
vk(t)dt

)2

.

In this case, q = 4 is used, and the vk is chosen from the eigenfunctions of the empirical covariance
operator:

Γn̂
Z(s, t) =

1
n̂

∑
i∈I

Zi(s)Zi(t).

About the real regressions r̂1(.) and r̂2(.), we utilized the R-package np routine code npreg.
The three estimators θ̃n(ω), θ̂n(ω) and θ̄n(ω) performance and behavior is expressed by the mean

square error (MSE), defined by

MSE =
1

# (I′)

∑
i∈I′

(Yi − θ (Zi))2 , (4.2)
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where (Zi,Yi) represents the output observations (testing sample) and θ refers to either θ̃n, θ̂n and θ̄n(ω).
The outcome of the prediction indicates that the kNN-LLE method is significantly superior to other
given estimators. We plot the predicted values versus the real values for both methods in Figure 11 to
illustrate the outcomes.
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Figure 11. The predicted results for both tree methods.

The kernel method results are given on the right part. The center one gives the local linear method,
while the left part of Figure 11 presents the kNN local linear method. Then, we remark that the
performance of the prediction is controlled by the continuous line, in the sense that the efficiency
of the prediction method is quantified by the closeness of the dark point to this continuous line.
However, when the initial data are utilized without detrending, it is evident that there is a significant
difference between the detrending case and the non-stationary case. In particular, detrending permits
the MSE to be decreased. Boxplot (see Figure 12) reveals that the median error in the detrending
scenario is 0.00196 while in the alternative situation it is 0.00467. In conclusion, we may state that the
stationarity hypothesis is crucial to the non-parametric analysis of spatio-functional data, and that the
proposed detrending method is an ideal instrument for verifying this hypothesis.
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The result of the kNN-LLE method’s conditional mode prediction reveals that the trending case is
much superior to the other non-trending case. Figure 13 illustrates the results by plotting the forecasted
values against the true numbers for both data types.
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Figure 13. The predicted results for conditional mode in both cases with and without
detrending.

Clearly, the comparison results in Figures 11–17 indicate that the method based on the kNN
local linear polynomial estimation is significantly superior and more effective than the other
methods (Predictions were taken in 4 different spatial areas). Furthermore, when the initial data are
used without detrending, there is a significant superiority between the detrending case and the non-
stationary case; this is confirmed by the mean squared errors MSE(kNN-LLE)detrending= 0.0027814,
MSE(kNN-LLE)= 0.006185477 whereas MSE(LLE)= 0.0065786 and MSE(KNW)= 0.006699258.
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Figure 14. Prediction for zone 1 on May 2nd, 2021. The true values are linked by the solid
black curve.
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Figure 15. Prediction for zone 2 on May 2nd, 2021. The true values are linked by the solid
black curve.
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Figure 16. Prediction for zone 3 on May 2nd, 2021. The true values are linked by the solid
black curve.
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Figure 17. Prediction for zone 4 on May 2nd, 2021. The true values are linked by the solid
black curve.

5. Conclusions

The functional kNN local linear technique (kNN-LLE), which combines the kNN algorithm and the
local linear smoothing method to generate an estimate of the conditional mode, is a very interesting
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way to get a different estimator that benefits from the advantages of both strategies. To estimate the
conditional density and mode for functional spatial data, this work proposes conditional distribution
function and mode estimators. Using kernel estimations and several usual assumptions, we were able
to establish the uniform, almost complete convergence of those models. To show the effectiveness of
our suggested estimator and the theoretical conclusions, we conducted simulations and analyses of real
data.

The estimation of conditional density is extremely valuable in practice. It provides more insightful
details on the relationship between the input and output variables. In fact, the conditional density
explains both the behavior of the center and the behavior extremes of the data, in contrast to the
standard regression, which analyzes the central tendency of the data. Additionally, it plays a crucial
part in statistical modeling, including prediction by conditional mode function, interval prediction
by shortest conditional modal interval, risk analysis by shortfall expectation model, and association
testing. The study presented in this paper provides some promising possibilities for future research.
For instances:

• The functional response case: The nonparametric conditional mode has been presented in the
nonparametric FDA where both variables (outcome and regressors) are of a functional sort (see,
for example, Tadj et al. [45] for the kernel approach). However, there is still a lack of literature
on this topic. Indeed, a natural extension is to apply our contribution results to this case.

• The spatial data: Other research questions, such as extensions to the semiparametric linear
regression model, can also be investigated using the spatial data.
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3. A. Baı́llo, A. Grané, Local linear regression for functional predictor and scalar response, J.
Multivariate Anal., 100 (2009), 102–111. https://doi.org/10.1016/j.jmva.2008.03.008

4. J. Barrientos-Marin, F. Ferraty, P. Vieu, Locally modelled regression and functional data, J.
Nonparametr. Stat., 22 (2010), 617–632. https://doi.org/10.1080/10485250903089930

AIMS Mathematics Volume 8, Issue 7, 15844–15875.

http://dx.doi.org/https://doi.org/10.1016/0378-3758(86)90099-6
http://dx.doi.org/https://doi.org/10.1007/0-387-36620-2
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2008.03.008
http://dx.doi.org/https://doi.org/10.1080/10485250903089930


15865

5. J. Demongeot, A. Laksaci, F. Madani, M. Rachdi, Functional data: local linear
estimation of the conditional density and its application, Statistics, 47 (2013), 26–44.
https://doi.org/10.1080/02331888.2011.568117

6. M. Rachdi, A. Laksaci, J. Demongeot, A. Abdali, F. Madani, Theoretical and practical aspects
of the quadratic error in the local linear estimation of the conditional density for functional data,
Comput. Stat. Data Anal., 73 (2014), 53–68. https://doi.org/10.1016/j.csda.2013.11.011

7. Z. Y. Zhou, Z. Y. Lin, Asymptotic normality of locally modelled regression estimator for functional
data, J. Nonparametr. Stat., 28 (2016), 116–131. https://doi.org/10.1080/10485252.2015.1114112

8. I. M. Almanjahie, Z. Kaid, A. Laksaci, M. Rachdi, Estimating the conditional density in scalar-
on-function regression structure: k-N-N local linear approach, Mathematics, 10 (2022), 1–16.
https://doi.org/10.3390/math10060902

9. F. Belarbi, S. Chemikh, A. Laksaci, Local linear estimate of the nonparametric
robust regression in functional data, Stat. Probabil. Lett., 134 (2018), 128–133.
https://doi.org/10.1016/j.spl.2017.11.003

10. A. Chahad, L. Ait-Hennani, A. Laksaci, Functional local linear estimate for
functional relative-error regression, J. Stat. Theory Pract., 11 (2017), 771–789.
https://doi.org/10.1080/15598608.2017.1321071

11. M. Attouch, A. Laksaci, F. Rafaa, Local linear estimate of the regression operator by the kNN
method, C. R. Math., 355 (2017), 824–829. https://doi.org/10.1016/j.crma.2017.05.007

12. J. Fan, I. Gijbels, Local polynomial modelling and its applications, London: Chapman & Hall,
1996. https://doi.org/10.1201/9780203748725

13. M. Hallin, Z. D. Lu, L. T. Tran, Local linear spatial regression, Ann. Statist., 32 (2004), 2469–2500.
https://doi.org/10.1214/009053604000000850

14. M. Hallin, Z. D. Lu, K. M. Yu,Local linear spatial quantile regression, Bernouilli, 15 (2009), 659–
686. https://doi.org/10.3150/08-BEJ168

15. A. Chouaf, A. Laksaci, On the functional local linear estimate for spatial regression, Statist. Risk
Model., 29 (2012), 189–214. https://doi.org/10.1524/strm.2012.1114

16. A. Laksaci, M. Rachdi, S. Rahmani, Spatial modelization: local linear estimation
of the conditional distribution for functional data, Spatial Stat., 6 (2013), 1–23.
https://doi.org/10.1016/j.spasta.2013.04.004

17. A. Gheriballah, A. Laksaci, R. Rouane, Robust nonparametric estimation for spatial regression, J.
Stat. Plan. Infer., 140 (2010), 1656–1670. https://doi.org/10.1016/j.jspi.2010.01.042

18. M. Attouch, A. Laksaci, N. Messabihi, Nonparametric relative error regression for spatial random
variables, Stat. Papers, 58 (2017), 987–1008. https://doi.org/10.1007/s00362-015-0735-6

19. M. Abeidallah, B. Mechab, T. Merouan, Local linear estimate of the point at high
risk: spatial functional data case, Commun. Stat. Theory Methods, 49 (2020), 2561–2584.
https://doi.org/10.1080/03610926.2019.1580735

20. M. Rachdi, A. Laksaci, F. A. Al-Awhadi, Parametric and nonparametric conditional quantile
regression modelisation for dependent spatial functional data, Spatial Stat., 43 (2021), 100498.
https://doi.org/10.1016/j.spasta.2021.100498

AIMS Mathematics Volume 8, Issue 7, 15844–15875.

http://dx.doi.org/https://doi.org/10.1080/02331888.2011.568117
http://dx.doi.org/https://doi.org/10.1016/j.csda.2013.11.011
http://dx.doi.org/https://doi.org/10.1080/10485252.2015.1114112
http://dx.doi.org/https://doi.org/10.3390/math10060902
http://dx.doi.org/https://doi.org/10.1016/j.spl.2017.11.003
http://dx.doi.org/https://doi.org/10.1080/15598608.2017.1321071
http://dx.doi.org/https://doi.org/10.1016/j.crma.2017.05.007
http://dx.doi.org/https://doi.org/10.1201/9780203748725
http://dx.doi.org/https://doi.org/10.1214/009053604000000850
http://dx.doi.org/https://doi.org/10.3150/08-BEJ168
http://dx.doi.org/https://doi.org/10.1524/strm.2012.1114
http://dx.doi.org/https://doi.org/10.1016/j.spasta.2013.04.004
http://dx.doi.org/https://doi.org/10.1016/j.jspi.2010.01.042
http://dx.doi.org/https://doi.org/10.1007/s00362-015-0735-6
http://dx.doi.org/https://doi.org/10.1080/03610926.2019.1580735
http://dx.doi.org/https://doi.org/10.1016/j.spasta.2021.100498


15866

21. M. Rachdi, A. Laksaci, N. M. Al-Kandari, Expectile regression for spatial functional data analysis
(sFDA), Metrika, 85 (2022), 627–655. https://doi.org/10.1007/s00184-021-00846-x

22. A. Amiri, S. Dabo-Niang, M. Yahaya, Nonparametric recursive density estimation for spatial data,
C. R. Math., 354 (2016), 205–210. https://doi.org/10.1016/j.crma.2015.10.010

23. R. Giraldo, S. Dabo-Niang, S. Martı́nez, Statistical modeling of spatial big data: an approach
from a functional data analysis perspective, Stat. Probabil. Lett., 136 (2018), 126–129.
https://doi.org/10.1016/j.spl.2018.02.025

24. M. Chaouch, N. Laı̈b, D. Louani, Rate of uniform consistency for a class of mode
regression on functional stationary ergodic data, Stat. Methods Appl., 26 (2017), 19–47.
https://doi.org/10.1007/s10260-016-0356-9

25. B. Maillot, C. Chesneau, On the conditional density estimation for continuous time
processes with values in functional in spaces, Stat. Probabil. Lett., 178 (2021), 109179.
https://doi.org/10.1016/j.spl.2021.109179

26. J. L. Kirkby, A. Leitao, D. Nguyen, Nonparametric density estimation and bandwidth selection
with B-spline bases: a novel Galerkin method, Comput. Stat. Data Anal., 159 (2021), 107202.
https://doi.org/10.1016/j.csda.2021.107202

27. T. Cover, Estimation by the nearest neighbor rule, IEEE Trans. Inform. Theory, 14 (1968), 50–55.
https://doi.org/10.1109/TIT.1968.1054098

28. N. L. Kudraszow, P. Vieu, Uniform consistency of kNN regressors for functional variables, Stat.
Probabil. Lett., 83 (2013), 1863–1870. https://doi.org/10.1016/j.spl.2013.04.017

29. L. Kara, A. Laksaci, M. Rachdi, P. Vieu, Data-driven kNN estimation in
nonparametric functional data analysis, J. Multivariate Anal., 153 (2017), 176–188.
https://doi.org/10.1016/j.jmva.2016.09.016

30. M. Attouch, W. Bouabsa, Z. Chiker el Mozoaur, The k-nearest neighbors estimation of the
conditional mode for functional data under dependency, Int. J. Stat. Econ., 19 (2018), 48–60.

31. I. M. Almanjahie, K. A. Assiri, A. Laksaci, Z. Chikr Elmezouar, The k nearest neighbors smoothing
of the relative-error regression with functional regressor, Commun. Stat. Theory Methods, 51
(2022), 4196–4209. https://doi.org/10.1080/03610926.2020.1811870

32. W. Bouabsa, Nonparametric relative error estimation via functional regressor by the k nearest
neighbors smoothing under truncation random data, Appl. Appl. Math., 16 (2021), 97–116.

33. W. Bouabsa, Unform in bandwith of the conditional distribution function with functional
explanatory variable: the case of spatial data with the k nearest neighbour method, Econometrics,
26 (2022), 30–46. https://doi.org/10.15611/eada.2022.2.03

34. T. Bodnar, O. Okhrin, N. Parolya, Optimal shrinkage estimator for high-dimensional mean vector,
J. Multivariate Anal., 170 (2019), 63–79. https://doi.org/10.1016/j.jmva.2018.07.004

35. Y. Gao, H. L. Shang, Y. R. Yang, High-dimensional functional time series forecasting:
an application to age-specific mortality rates, J. Multivariate Anal., 170 (2019), 232–243.
https://doi.org/10.1016/j.jmva.2018.10.003

AIMS Mathematics Volume 8, Issue 7, 15844–15875.

http://dx.doi.org/https://doi.org/10.1007/s00184-021-00846-x
http://dx.doi.org/https://doi.org/10.1016/j.crma.2015.10.010
http://dx.doi.org/https://doi.org/10.1016/j.spl.2018.02.025
http://dx.doi.org/https://doi.org/10.1007/s10260-016-0356-9
http://dx.doi.org/https://doi.org/10.1016/j.spl.2021.109179
http://dx.doi.org/https://doi.org/10.1016/j.csda.2021.107202
http://dx.doi.org/https://doi.org/10.1109/TIT.1968.1054098
http://dx.doi.org/https://doi.org/10.1016/j.spl.2013.04.017
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2016.09.016
http://dx.doi.org/https://doi.org/10.1080/03610926.2020.1811870
http://dx.doi.org/https://doi.org/10.15611/eada.2022.2.03
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2018.07.004
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2018.10.003


15867

36. J. R. Berrendero, B. Bueno-Larraz, A. Cuevas, An RKHS model for variable
selection in functional linear regression, J. Multivariate Anal., 170 (2019), 25–45.
https://doi.org/10.1016/j.jmva.2018.04.008

37. C. Aaron, A. Cholaquidis, R. Fraiman, B. Ghattas, Multivariate and functional robust
fusion methods for structured big data, J. Multivariate Anal., 170 (2019), 149–161.
https://doi.org/10.1016/j.jmva.2018.06.012

38. P. Hall, M. Hosseini-Nasab, On properties of functional principal components analysis, J. R. Stat.
Soc. Ser. B Stat. Methodol., 68 (2006), 109–126. https://doi.org/10.1111/j.1467-9868.2005.00535.x

39. P. Hall, H. G. Muller, J. L. Wang, Properties of principal component methods
for functional and longitudinal data analysis, Ann. Statist., 34 (2006), 1493–1517.
https://doi.org/10.1214/009053606000000272

40. L. T. Tran, Kernel density estimation on random fields, J. Multivariate Anal., 34 (1990), 37–53.
https://doi.org/10.1016/0047-259X(90)90059-Q

41. X. Guyon, Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique
et application au cas Markovien, In: Proceedings of the sixth Franco-Belgian meeting of
statisticians, 1987.

42. P. Doukhan, Mixing: properties and examples, New York: Springer, 1994.
https://doi.org/10.1007/978-1-4612-2642-0

43. M. Carbon, L. T. Tran, B. Wu, Kernel density estimation for random fields (density estimation
for random fields), Stat. Probabil. Lett., 36 (1997), 115–125. https://doi.org/10.1016/S0167-
7152(97)00054-0

44. S. Dabo-Niang, M. Rachdi, A. F. Yao, Kernel regression estimation for spatial functional random
variables, Far East J. Theor. Stat., 37 (2011), 77–113.

45. A. Tadj, Sur les modèles non paramétriques conditionnels en statistique fonctionnelle, Thèse de
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Appendix

Proof of Corollary 3.1
Remember that for any hL ∈

(
ân, b̂n

)
and bδ ∈

(
ĉn, d̂n

)
, we have

∣∣∣1 − f̃D(z)
∣∣∣ ≤ (

1 − f̃D(z)
)

2
implies

∣∣∣ f̃D(z) − fD(z)
∣∣∣ ≥ (

1 − f̃D(z)
)

2
.

Therefore, we have ∑
n∈ZM

P

 inf
hL∈(ân,b̂n),bδ∈(ĉn,d̂n)

∣∣∣1 − f̃D(z)
∣∣∣ ≤ 1 − f̃D(z)

2


≤

∑
n∈ZM

P

 sup
hL∈(ân,b̂n),bδ∈(ĉn,d̂n)

∣∣∣ f̃D(z) − fD(z)
∣∣∣ ≥ 1 − f̃D(z)

2

 < ∞.
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Proof of Lemma 3.1
Due to the expectation’s linearity, we have ∀hL ∈ (ân, b̂n) and bδ ∈ (ĉn, d̂n),

E
[
f̃N(w | z)

]
− f (w | z)E

[
f̃D(z)

]
=

1
bδY12

E
[
Y12

[
E [δ2(w) | Z2] − f (w | z)

]]
,

where δ2(w) = b−1
δ δ(b

−1
δ (w −W2)).

Then, we apply (A3), uniformly on w ∈ S,∀hL ∈ (ân, b̂n) and bδ ∈ (ĉn, d̂n), to obtain

1IB(z,hL) (Z2) |E [δ2(w) | Z2] − f (w | z)| ≤ C
[
hϖ1

L + bϖ2
δ

∫
R
|t|ϖ2δ2(t)dt

]
dt.

Finally, assumption (A6) and Corollary 3.1 lead in the demonstration of this lemma.
Proof of Lemma 3.2

To begin, we take into account the subset’s S compactness condition, permitting us to create a

sequence (r1, r2, · · · rsn) ∈ S. Hence, we haveS ∈
sn⋃
j=1

(r j−tn, r j+tn), with tn = n̂(−1/2− 3α
2 ) and sn ≤ n̂1/2+α.

Then, ∀w ∈ S, we place rw = arg mint∈{r1,...,rsn } |w − r j|, and consider the following decomposition:∣∣∣ f̃N(w | z) − E f̃N(w | z)
∣∣∣ ≤ f̃N(w | z) − f̃N

(
r j(z)

)
|︸                    ︷︷                    ︸

Γ1

+ f̃N

(
r j(z)

)
− E f̃N

(
r j|z

)
|︸                     ︷︷                     ︸

Γ2

+
∣∣∣∣E f̃N

(
r j(z)

)
− E f̃N(w | z)

∣∣∣∣︸                        ︷︷                        ︸
Γ3

.

• For the terms Γ1 and Γ3, we use (A6) to get successively

sup
ĉn≤bδ≤d̂n

max
w∈{r j−tn,r j+tn}

∣∣∣∣ f̃N(w | z) − f̃N

(
r j(z)

)∣∣∣∣
≤

1
n̂(n̂ − 1)bδE [Y12(z)]

∑
i,j

Yij(z)
∣∣∣∣δ′i(z) − δ′i

(
r j(z)

)∣∣∣∣
≤C

tn

b2
δ

f̃D(z).

Under (A7) and by using the definition of tn, we deduce that
tn

b2
δ

= o


√

log n̂
n̂bδζz(hL)

 .
Next, we get

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣∣ f̃N(w|z) − f̃N

(
r j(z)

)∣∣∣∣ = o


√

log n̂
n̂dnζz(an)

 , (a1)

and

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣∣E f̃N

(
r j(z)

)
− E f̃N(w|z)

∣∣∣∣ = o


√

log n̂
n̂d̂nζz(ân)

 . (a2)

• For the term Γ2, for any η > 0, we must assess the quantity

P

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

max
w∈{r j−tn,r j+tn}

max
X∈{1,2,...,sn}

| f̃N

(
r j(z)

)
− E f̃N

(
r j(z)

)
| > η

√
log n̂

n̂dnζz(an)


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= P

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

max
w∈{r j−tn,r j+tn}

max
X∈{1,2,...,sn}

| f̃ z
N

(
r j(z)

)
− E f̃ z

N

(
r j(z)

)
| > η

√
log n̂

n̂dnζz(an)


≤ sn sup

w∈S
max

w∈{r j−tn,r j+tn}
max

X∈{1,2,...,sn}
P

 sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

| f̃ z
N

(
r j(z)

)
− E f̃ z

N

(
r j(z)

)
| > η

√
log n̂

n̂dnζz(an)

 ,
for some η > 0.

Additionally, highlight that this latter condition may be handled using the same methods as in
Barrientos-Marin et al. [4]. In effect, we can use the breakdown described below:

f̂N

(
r j(z)

)
=

n̂2h2
Lζ

2
z (hL)

n̂(n̂ − 1)E [Y12]︸             ︷︷             ︸
U0

[

1
n̂

∑
j∈tn

Ljδ
′
j

(
r j(w)

)
bδζz (hL)

︸                   ︷︷                   ︸
D1

1
n̂

∑
i∈tn

Liχ
2
i

h2
Lζz (hL)

︸               ︷︷               ︸
D2

−

1
n̂

∑
X∈tn

LXχXδ′X
(
r j(w)

)
hLbδζz (hL)

︸                        ︷︷                        ︸
D3

1
n̂

∑
i∈tn

Liχi

hLζz (hL)


︸                 ︷︷                 ︸

D4

.

(a3)

The result demonstrates the following equations for some positive numbers, b̂0 and d̂0,

∑
n

snP

 sup
ân≤hL≤b̂0

sup
ĉn≤bδ≤d̂0

|DX − E [DX]| > η0

(
log n̂

n̂ζz (hL)

)1/2
 < ∞, for X = 2, 4. (a4)

∑
n

snP

 sup
ân≤hL≤b̂0

sup
ĉn≤bδ≤d̂0

|DX − E [DX]| > η0

(
log n̂

n̂bδζz (hL)

)1/2
 < ∞, for X = 1, 3. (a5)

Cov (D1,D2) = o


√

log n̂
n̂bδζz (hL)

 , (a6)

and

Cov (D3,D4) = o


√

log n̂
n̂bδζz (hL)

 . (a7)

Let’s now show the (a4) and (a5) results. It is sufficient to show that using the same method in
Barrientos-Marin et al. [4] as in the (i.i.d.) case. We are going to evaluate U0. To illustrate the findings
of (a4) and (a5), we use the two variables Ωi and Υi, defined by

ΩXi =
1
hXL

Liχ
X

i −
1
hXL

E
[
Liχ

X

i

]
, for X = 1, 2,

and

ΥXi =
Liχ

X

i δ
′
i

(
r j | w

)
hXLbδ

− E

Liχ
X

i δ
′
i

(
r j | w)

)
.

hXLbδ

 , for X = 0, 1.
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It can then be observed that for i = 2, 4,∃X as well as Di − E [Di] =
1

n̂ζz (hL)

∑
i∈tn

ΩXi .

Next, by considering the spatial breakdown of Tran [40] on the Ωi and Υi variables, expressed, for
a constant integer ρn, shown below:

A(1,n, j) =
2 jρqn+qn∑

iρ=2 jρqn+1
X=1,...,M

ΩXi ,

A(2,n, j) =
∑

iρ=2 jρqn+1
X=1,...,M−1

2( jM+1)qn∑
iM=2 jMqn+qn+1

ΩXi ,

A(3,n, j) =
2 jρqn+qn∑

iρ=2 jρqn+1
X=1,...,M−2

2( jM−1+1)qn∑
iM−1=2 jM−1qn+qn+1

2 jMqn+qn∑
iM=2 jMqn+1

ΩXi ,

A(4,n, j) =
2 jρqn∑

iρ=2 jρqn+1
X=1,...,M−2

2( jM−1+1)qn∑
iM−1=2 jM−1qn+qn+1

2( jM+1)σn∑
iM=2 jMqn+qn+1

ΩXi ,

the final two terms, in this series, are

A
(
2M−1,n, j

)
=

2( jρ+1)qn∑
iρ=2 jρqn+qn+1
X=1,...,M−1

2 jMqn+qn∑
iM=2 jMqn+1

ΩXi and A
(
2M,n, j

)
=

2( jρ+1)qn∑
iρ=2 jρqn+qn+1
X=1,...,M

ΩXi ,

for i = 1, . . . ,M, ςi = 2−1niq−1
n , and Q = {0, . . . , ς1 − 1} × · · · × {0, . . . , ςM − 1}. We indicate

H(n, i) =
∑
j∈Q

A(i,n, j,X) for 1 ≤ i ≤ 2M,

in which it is simple and easy to see that

1
n̂ζz (hL)

∑
i∈In

ΩiX − E

 1
n̂ζz (hL)

∑
i∈In

ΩXi

 = 1
n̂ζz (hL)

2M∑
i=1

H(n, i,X).

It is crucial to take remark that larger blocks are preferred, the summation of the random variables ΩXi
isH(n, 1); the other terms, however, are sums over small blocks, which isH(n, i), for 2 ≤ i ≤ 2M.

We mainly emphasize that, like previously stated in Biau and Cadre [46], the term H
(
n, 2M + 1

)
(that includes the ΩXi is at the end and is not part of the above blocks) can be added if we don’t have the
equality ni = 2ςiqn. Since this expression has minimal effects on the proof, we can express, for every
η > 0,

P


∣∣∣∣∣∣∣ 1
n̂ζz (hL)

∑
i∈In

ΩXi − E

 1
n̂ζz (hL)

∑
i∈In

ΩXi


∣∣∣∣∣∣∣ ≥ η

 ≤ 2M max
i=1,...,2M

P (H(n, i) ≥ ηn̂ζz (hL)) .
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Consequently, when the following quantities are evaluated, the desired outcome follows.

P (H(n, i) ≥ η0n̂ζz (hL)) , for all i = 1, . . . ., 2M.

Due to the similarity of the other situations, we only discuss the situation when i = 1, just for shortness.
To accomplish that, we list the random variables

β =

M∏
X=1

ςX = 2−Mn̂q−M
n ,

A(1,n, j,X) for every j ∈ Q in an arbitrary way HX1 , . . . ,H
X
β . This means that there are specific j in β for

each HXj such that

HXj =
∑

i∈I(1,n,j)

ΩXi ,

with I(1,n, j) =
{
i : 2 jρqn + 1 ≤ iX ≤ 2 jρpn + qn for X = 1, . . . ,M}. Obviously, the ensemble I(1,n, j)

includes qM
n domains; hence, there is a qn distance between these sites. Additionally, it is implied by

assumptions (A4) and (A5) that a positive constant named C exists, where

1
hXL

Liχ
X

i ≤
1
hXL

Li |Ω (Zi, z)|X ≤
1
hXL

L
(
h−1

L ℘ (z,Zi)
)
|℘ (Zi, z)|X I

]
− 1, 1

[(
h−1

L δ (z,Zi)
)
≤ L

(
h−1

L ℘ (z,Zi)
)
≤ C .

Consequently, as indicated in (Carbon et al. [43], Lemma 4.5), for j = 1, . . . , β, that one may obtain
independent random variables H∗1, . . . ,H

∗
β that are i.i.d. as HXj and such that

β∑
j=1

E
∣∣∣HXj − H∗j

∣∣∣ ≤ 2CβqM
n Ψ

(
(β − 1)qM

n , q
M
n

)
Φ (qn) .

We are able to write
P (H(n, i) ≥ η0n̂ζz (hL)) ≤ Q1(n) + Q2(n),

where

Q1(n) = P

|| β∑
j=1

H∗j |≥
βη0n̂ζz (hL)

2β

 ,
and

Q2(n) = P

 β∑
j=1

∣∣∣HXj − H∗j
∣∣∣ ≥ η0n̂ζz (hL)

2

 .
Regarding the expression Q1(n), the inequality of Bernstein implies that

Q1(n) = P


∣∣∣∣∣∣∣
β∑

j=1

H∗j

∣∣∣∣∣∣∣ ≥ βη0n̂ζz (hL)
2β

 ≤ 2 exp

− (η0n̂ζz (hL))2

βVar
[
HX∗1

]
+CqM

n η0n̂ζz (hL)

 .
To understand how this expression behaves, asymptotically, we should compute Var

[
H∗1

]
. In fact,

Var
[
HX∗1

]
= Var

 ∑
i∈I(1,n,1)

ΩXi

 = ∑
i,j∈I(1,n,1)

∣∣∣∣Cov
(
ΩXi ,Ω

X

j

)∣∣∣∣ .
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Let Rn =
∑

i∈I(1,n,1)

Var
[
ΩiX

]
and Tn =

∑
i,j∈I(1,n,1)

∣∣∣∣Cov
(
ΩXi ,Ω

X

j

)∣∣∣∣. From hypothesis (A1) and Eq (a8), it

follows
Var

[
ΩXi

]
≤ C

(
ζz (hL) + (ζz (hL))2

)
.

As a result, we have
Rn = O

(
qM

n ζz (hL)
)
.

Then, we introduce the following sets for Tn:

F1 = {0 < ∥i − j∥ ≤ kn, i, j ∈ I(1,n, 1)} and
F2 = {∥i − j∥ > kn, i, j ∈ I(1,n, 1)} ,

with the real sequences kn diverge to +∞ and that is going to be explained afterward. By dividing the
sum Tn into two separate different summations over sites under F1 and F2, we are able to write

Tn =
∑

(i,j)∈F1

∣∣∣∣Cov
(
ΩXi ,ΩjX

)∣∣∣∣ + ∑
(i,j)∈F2

∣∣∣∣Cov
(
ΩXi ,Ω

X

j

)∣∣∣∣ = T 1
n + T 2

n .

We have on the one side

T 1
n = C

∑
(i,j)∈F1

∣∣∣∣E [
LiLj

]∣∣∣∣ + ∣∣∣∣E [Li] E
[
Lj

]∣∣∣∣ ≤ CqM
n kM

n ζz (hL)
(
(ζz (hL))1/ν + ζz (hL)

)
≤ CqM

n kM
n ζz (hL)(ν+1)/ν .

However, we also have
T 2

n =
∑

(i,j)∈E2

∣∣∣∣Cov
(
ΩXi ,ΩjX

)∣∣∣∣ .
As a result of (Tran et al. [40], Lemma 2.1(ii)), we have∣∣∣∣Cov

(
ΩXi ,Ω

X

j

)∣∣∣∣ ≤ CΦ(∥i − j∥).

Consequently,

T 2
n ≤ C

∑
(i,j)∈F2

Φ(∥i − j∥) ≤ CqM
n

∑
i:∥i∥≥kn

Φ(∥i∥) ≤ CqM
n k−Mν

n

∑
i:∥i∥≥kn

∥i∥MνΦ(∥i∥).

By taking kn = (ζz (hL))−1/Mν, we have

T 2
n ≤ CqM

n k−Mν
n

∑
i:∥i∥≥kn

∥i∥MνΦ(∥i∥) ≤ CqM
n ζz (hL)

∑
i:∥i∥≥kn

∥i∥MνΦ(∥i∥).

As a result, it follows from Eq (2.3) that

T 2
n ≤ CqN

n ζz (hL) .

Additionally, using the same kn choice as before, we get

T 1
n ≤ CqM

n ζz (hL) .

AIMS Mathematics Volume 8, Issue 7, 15844–15875.



15873

Var
[
H∗1

]
= O

(
qM

n ζz (hL)
)
.

For any hL ∈
(
ân, b̂0

)
and bδ ∈

(
ĉn, d̂0

)
, this final outcome in combination with the definitions of qn, β

and η0 is sufficient to demonstrate
Q1(n) ≤ e(−C(η0) log n̂).

Hence, a suitable selection of η0 enables us to show that∑
n

snQ1(n) < ∞.

Concerning the expression Q2(n), and due to the Markov inequality, we may create

Q2(n) =P

 β∑
j=1

∣∣∣HXj − H∗j
∣∣∣ ≥ ηn̂ζz (hL)

2

 ≤ 1
ηn̂ζz (hL)

β∑
j=1

E
∣∣∣HXj − H∗j

∣∣∣
≤2

βqM
n

ηn̂ζz (hL)
Ψ

(
(β − 1)qM

n , q
M
n

)
Φ (qn) .

Afterwards, because n̂ = 2MβqM
n and Ψ

(
(β − 1)qM

n , q
M
n

)
≤ qM

n , if we consider η = η0

(
log n̂

n̂ζz (hL)

)1/2

, we

get
Q2(n) ≤ n̂qM

n (log n̂)−1/2 (n̂ζz (hL))−1/2Φ (qn) .

Furthermore, write qn = C
(
n̂ζz (hL)

log n̂

)1/2M

, to obtain

Q2(n) ≤ n̂Φ (qn) . (a8)

The hypothesis (A8) guarantees that ∑
n

snQ2(n) < ∞.

The demonstration of Eq (a5) is the same as to the one utilised for (a4) with ΥXi variables and by taking

qn = C
(

n̂bδ
log n̂

)1/2M
.

Now, let us demonstrate (a6) and (a7) results. It is sufficient to show that

Cov (D1,D2) =
1

n̂2ζz (hL)

∑
i∈Ln

Cov
(
Liδ
′
i ,

Liχ
2
i

h2
L

)
+

1
n2ζ2

z (hL)

∑
i,j∈Ln

Cov
(
Ljδ
′
j,

Liχ
2
i

h2
L

)
,

and

Cov (D3,D4) =
1

n̂2ζ2
z (hL)

∑
i∈Ln

Cov
(

Liχiδ
′
i

hL
,

Liχi

hL

)
+

1
n̂2ζ2

z (hL)

∑
i,j∈Ln

Cov
(Ljχjδ

′
j

hL
,

Liχi

hL

)
.

Notice that, using (A4) and (A6) assumptions, for (X′, l′) ∈ {(0, 2)}, and for (X′, l′) ∈ {(1, 1)}, we obtain∣∣∣∣∣∣Cov
(

Liχ
X′
i δ
′
i

hX′L

,
Liχ

l
i′

hl′
L

)∣∣∣∣∣∣ =
∣∣∣∣∣∣E

[
L2

i χ
X′+l′
i δ′i

hX′+l′
L

]
− E

[
Liχ

X′
i δ
′
i

hX′L

]
E

[
Liχ

l′
i

hl′
L

]∣∣∣∣∣∣ .
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Through Zi conditioning, we have that

E
[
δ′i | Zi

]
= O (bδ) and E

[
δ′iδ
′
j |

(
Zi,Zj

)]
= O

(
b2
δ

)
, for all i , j.

Consequently, we get ∑
i∈Ln

Cov
(

Liχ
X′
i δ
′
i

hX′L

,
Liχ

l′
i

hl′
L

)
= O (n̂bδζZ (hL)) .

Then, the following quantity must be established:

∑
j,i∈Ln

Cov

Ljχ
X′
j δ
′
j

hX′L

,
Liχ

l′
i

hl′
L

 .
We take into consideration the following decomposition:

∑
j,i∈Ln

Cov

Ljχ
X′
j δ
′
j

hX′L

,
Liχ

l′
i

hl′
L

 = ∑
i,i

(i,j)∈F1

Cov

Ljχ
X′
j δ
′
j

hX′L

,
Liχ

l′
i

hl′
L

 + ∑
j,i

(i,j)∈F2

Cov

Ljχ
X′
j δ
′
j

hX′L

,
Liχ

l′
i

hl′
L

 .
∑

(i,j)∈F1

Cov

Ljδ
′
jχ
X′
j

hX′L

,
Liχ

l′
i

hl′
L

 ≤ Cn kM
n b2
δζz (hL)(ν+1)/ν ,

and ∑
(i,j)∈F2

Cov

Ljχ
X′
j H′j

hX′L

,
Liχ

′′
i

h′′L

 ≤ Cn̂ k−Mν
n

∑
i:∥i∥≥kn

∥i∥MνΦ(∥i∥).

By selecting kn = (bδζz (hL))−1/Mν, we get

∑
j,i∈tn

Cov

Ljχ
X′
j δ
′
j

hX′L

,
Liχ

l′
i

h′′L

 = O (n̂bδζz (hL)) .

For X′ = 0 and l′ = 2 with the condition (A7), we conclude that

Cov (D1,D2) = O
(

1
n̂bδζz (hL)

)
= o

(
log n̂

n̂bδζz (hL)

)1/2

,

then, for X′ = 1 and X′ = 1, we deduce that

Cov (D3,D4) = O
(

1
n̂bδζz (hL)

)
= o

(
log n̂

n̂bδζz (hL)

)1/2

.

Finally, we have

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣∣ f̂N

(
r j(w) | z

)
− E f̂N

(
r j(w) | z

)∣∣∣∣ = Oa.co.


√

log n̂
n̂bδζz (hL)

 . (a9)

Then, the proof of this lemma can be obtained from (a1), (a2) and (a9).
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Proof of Theorem 3.2
By the unimodality of f (. | z), the assumption (A10)(i2) allows us to indicate that f (θ(z) | z(l)) =

f (θ̃(z) | z(l)) = 0. In addition, by expanding the function f (. | z) at θ(z) using the Taylor procedure and
for any hL ∈

(
ân, b̂n

)
and bδ ∈

(
ĉn, d̂n

)
, we have, with θ•(z) within θ(z) and θ̃(z), that

f (θ̃(z) | z) = f (θ(z) | z) +
1
j!

f (θ•(z) | z( j))(θ̃(z) − θ(z)) j. (a10)

Next, we obtain by easy manipulation that∣∣∣ f (θ̃(z) | z) − f (θ(z) | z)
∣∣∣ ≤ 2 sup

w∈S
sup

ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣ f̃ (w | z) − f (w | z)
∣∣∣ . (a11)

In fact, the proof of the following assertion is needed to conclude the proof of Theorem 3.2.

lim
n→∞
|θ̃(z) − θ(z)| = 0, a.co.

Proof. Assuming the function f (. | z) is continuous, it follows that

∀ε > 0, ∃δ(ε) > 0, | f (w | z) − f (θ(z) | z)| ≤ δ(ε)⇒ |w − θ(z) |≤ ε.

This last result implies that

∀ε > 0, ∃δ(ε) > 0, P(|θ̃(z) − θ(z)| > ε) ≤ P
(∣∣∣ f (θ̃(z) | z) − f (θ(z) | z)

∣∣∣ > δ(ε)) . (a12)

Finally, the stated result can be determined by combining (a11), (a12) and Theorem 3.1.

Now, we will return to the demonstration of Theorem 3.2. Since

f (θ(z) | z( j))→ f (θ(z) | z),

and by using (A10)(i3), we obtain

∃c > 0,
∞∑

n=1

P (| f (θ•(z) | z( j))| < c) < ∞.

Hence, we have

|θ̃(z) − θ(z)| j = O

sup
w∈S

sup
ân≤hL≤b̂n

sup
ĉn≤bδ≤d̂n

∣∣∣ f̃ (w | z) − f (w | z)
∣∣∣ , a.co.

This final result is obtained by the mixing statements (a10)–(a12). Thus, the proof of Theorem 3.2 is
directly deduced from the Theorem 3.1 and the Proposition 3.1.
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