Research article

Estimation of the general population parameter in single- and two-phase sampling

  • Received: 06 February 2023 Revised: 01 April 2023 Accepted: 10 April 2023 Published: 21 April 2023
  • MSC : 62D05, 62F10, 62J05

  • Estimation of population characteristics has been an area of interest for many years. Various estimators of the population mean and the population variance have been proposed from time-to-time with a view to improve efficiency of the estimates. In this paper, we have proposed some estimators for estimation of the general population parameters. The estimators have been proposed for single-phase and two-phase sampling using information of single and multiple auxiliary variables. The bias and mean square errors of the proposed estimators have been obtained. Some comparison of the proposed estimators has been done with some existing estimators of mean and variance. Some specific cases of the proposed estimators have been discussed. Simulation and numerical study have also been conducted to see the performance of the proposed estimators.

    Citation: Saman Hanif Shahbaz, Aisha Fayomi, Muhammad Qaiser Shahbaz. Estimation of the general population parameter in single- and two-phase sampling[J]. AIMS Mathematics, 2023, 8(7): 14951-14977. doi: 10.3934/math.2023763

    Related Papers:

  • Estimation of population characteristics has been an area of interest for many years. Various estimators of the population mean and the population variance have been proposed from time-to-time with a view to improve efficiency of the estimates. In this paper, we have proposed some estimators for estimation of the general population parameters. The estimators have been proposed for single-phase and two-phase sampling using information of single and multiple auxiliary variables. The bias and mean square errors of the proposed estimators have been obtained. Some comparison of the proposed estimators has been done with some existing estimators of mean and variance. Some specific cases of the proposed estimators have been discussed. Simulation and numerical study have also been conducted to see the performance of the proposed estimators.



    加载中


    [1] W. G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio gain to total produce, J. Agric. Soc., 30 (1940), 262–275. https://doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
    [2] S. K. Srivastava, H. S. Jhajj, A class of estimators of the population mean in survey sampling using auxiliary information, Biometrika, 68 (1981), 341–343. https://doi.org/10.1093/biomet/68.1.341 doi: 10.1093/biomet/68.1.341
    [3] H. P. Singh, M. R. Espejo, On linear regression and ratio-product estimation of a finite population mean, J. R. Stat. Soc., 52 (2003), 59–67. https://doi.org/10.1111/1467-9884.00341 doi: 10.1111/1467-9884.00341
    [4] M. Samiuddin, M. Hanif, Estimation of population mean in single- and two-phase sampling with or without additional information, Pak. J. Stat., 23 (2007), 1–9.
    [5] A. Y. Dar, N. Saeed, M. O. A. Abu-Shawiesh, S. H. Shahbaz, M. Q. Shahbaz, A new class of ratio estimator in single- and two-phase sampling, AIMS Math., 7 (2022), 14208–14226. https://doi.org/10.3934/math.2022783 doi: 10.3934/math.2022783
    [6] Z. Ahmad, M. Q. Shahbaz, M. Hanif, Two phase sampling, Cambridge Scholars Publishing, 2013. https://doi.org/10.13140/2.1.4488.7042
    [7] M. Hanif, M. Q. Shahbaz, M. Ahmed, Sampling techniques: methods and applications, Nova Science Publishers, 2018.
    [8] S. K. Srivastava, H. S. Jhajj, A class of estimators using auxiliary information for estimating finite population variance, Sankhya, 42 (1980), 87–96.
    [9] C. Isaki, Variance estimation using auxiliary information, J. Am. Stat. Assoc., 78 (1983), 117–123. https://doi.org/10.2307/2287117 doi: 10.1080/01621459.1983.10477939
    [10] C. Kadilar, H. Cingi, Ratio estimators for the population variance in simple and stratified random sampling, Appl. Math. Comput., 173 (2006), 1047–1059. https://doi.org/10.1016/j.amc.2005.04.032 doi: 10.1016/j.amc.2005.04.032
    [11] W. Abu-Dayyeh, M. S. Ahmed, Ratio and regression estimator for the variance under two-phase sampling, Int. J. Stat. Sci., 4 (2005), 49–56.
    [12] R. Singh, P. Chauhan, N. Sawan, F. Smarandache, Improved exponential estimator for population variance using two auxiliary variables, arXiv, 2009. https://doi.org/10.48550/arXiv.0902.0126
    [13] A. Asghar, A. Sanaullah, M. Hanif, Generalized exponential type estimator for population variance in survey sampling, Rev. Colomb. Estad., 37 (2014), 211–222. https://doi.org/10.15446/rce.v37n1.44368 doi: 10.15446/rce.v37n1.44368
    [14] J. Shabbir, S. Gupta, A note on generalized exponential type estimator of population variance in survey sampling, Rev. Colomb. Estad., 38 (2015), 385–397. https://doi.org/10.15446/rce.v38n2.51667 doi: 10.15446/rce.v38n2.51667
    [15] R. Singh, M. Mishra, B. P. Singh, P. Singh, N. K. Adichwal, Improved estimators for population coefficient of variation using auxiliary variable, J. Stat. Manage. Syst., 21 (2018), 1335–1355. https://doi.org/10.1080/09720510.2018.1503405 doi: 10.1080/09720510.2018.1503405
    [16] S. Gupta, J. Shabbir, Variance estimation in simple random sampling using auxiliary information, Hacettepe J. Math. Stat., 37 (2008), 57–67.
    [17] J. Subramani, G. Kumarapandiyan, Variance estimation using median of the auxiliary variable, Int. J. Prob. Stat., 1 (2012), 62–66. https://doi.org/10.5923/j.ijps.20120103.02 doi: 10.5923/j.ijps.20120103.02
    [18] S. K. Yadav, C. Kadilar, Improved exponential type ratio estimator of population variance, Rev. Colomb. Estad., 36 (2013), 145–152.
    [19] A. H. Al-Marshadi, A. H. Alharby, M. Q. Shahbaz, On some new estimators of population variance in single and two-phase sampling, Maejo Int. J. Sci. Technol., 12 (2018), 272–281.
    [20] T. Akhlaq, M. Ismail, M. Q. Shahbaz, On efficient estimation of process variability, Symmetry, 11 (2019), 554. https://doi.org/10.3390/sym11040554 doi: 10.3390/sym11040554
    [21] C. Long, W. Chen, R. Yang, D. Yao, Ratio estimation of the population mean using auxiliary information under the optimal sampling design, Probab. Eng. Inf. Sci., 36 (2022), 449–460. https://doi.org/10.1017/S0269964820000625 doi: 10.1017/S0269964820000625
    [22] N. K. Adichwal, A. A. H. Ahmadini, Y. S. Raghav, R. Singh, I. Ali, Estimation of general parameters using auxiliary information in simple random sampling without replacement, J. King Saud Univ. Sci., 34 (2022), 101754. https://doi.org/10.1016/j.jksus.2021.101754 doi: 10.1016/j.jksus.2021.101754
    [23] L. N. Upadhyaya, H. P. Singh, S. Chatterjee, R. Yadav, Improved ratio and product exponential type estimators, J. Stat. Theory Pract., 5 (2011), 285–302. https://doi.org/10.1080/15598608.2011.10412029 doi: 10.1080/15598608.2011.10412029
    [24] S. Bahl, R. K. Tuteja, Ratio and product type exponential estimators, J. Inf. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058 doi: 10.1080/02522667.1991.10699058
    [25] C. Kadilar, H. Cingi, Ratio estimators in simple random sampling, Appl. Math. Comput., 151 (2004), 893–902. https://doi.org/10.1016/S0096-3003(03)00803-8 doi: 10.1016/S0096-3003(03)00803-8
    [26] G. N. Singh, On the improvement of product method of estimation in sample surveys, J. Indian Soc. Agrci. Stat., 56 (2003), 267–275.
    [27] S. Weisberg, Applied linear regression, 2 Eds., John Wiley, 1987. https://doi.org/10.2307/2531984
    [28] M. H. Kutner, Applied linear statistical models, 5 Eds., McGraw Hill Irwin, 2005.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1280) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog