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Abstract: Estimation of population characteristics has been an area of interest for many years. Various 

estimators of the population mean and the population variance have been proposed from time-to-time 

with a view to improve efficiency of the estimates. In this paper, we have proposed some estimators 

for estimation of the general population parameters. The estimators have been proposed for single-

phase and two-phase sampling using information of single and multiple auxiliary variables. The bias 

and mean square errors of the proposed estimators have been obtained. Some comparison of the 

proposed estimators has been done with some existing estimators of mean and variance. Some specific 

cases of the proposed estimators have been discussed. Simulation and numerical study have also been 

conducted to see the performance of the proposed estimators. 
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1. Introduction 

Estimation of some population parameters, using a specific sampling design, has been an 

interesting area of research. The popular parameters which have been an area of interest, in simple 

random sampling, are the population mean and variance. The basic estimators of the population mean 

and variance in simple random sampling are sample mean, y , and sample variance, 
2s . In certain 

situations, the information of some auxiliary variables is also available and can be used to obtain more 

efficient estimators for some population parameters. Several authors have proposed some improved 
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estimators of the population mean and the population variance by using the information of the auxiliary 

variables. The popular estimators of population mean, using information of auxiliary variables, are the 

ratio and regression estimators given by [1]. The ratio and regression estimators have attracted several 

authors, and different modifications have been proposed from time to time. A class of estimators of 

population mean by using information of some auxiliary variables has been proposed by [2]. Another 

class of regression and ratio-product type estimators has been proposed by [3], and it performs better 

than the classical ratio estimator. Several estimators of population mean in cases of single- and two-

phase sampling have been proposed by [4]. A general class of estimators of the population mean in 

single- and two-phase sampling has been proposed by [5]. More details on estimators of population 

mean can be found in [6,7], among others. 

In recent years, the estimation of population variance has also attracted a lot of authors. Classical 

ratio and regression estimators of the population variance in single-phase sampling have been proposed 

by [8,9]. An improved ratio type estimator of the population variance has been proposed by [10]. Some 

ratio and regression type estimators of population variance in two-phase sampling have been 

proposed by [11]. The exponential type estimators have also attracted some authors in recent times 

and [12] have proposed an exponential estimator of population variance. Some general classes of 

exponential estimators have been proposed by [13,14]. An estimator of coefficient of variation in 

single-phase sampling has been proposed by [15]. Some other notable works on variance estimation 

are [16–21], among others. 

Recently, [22] proposed an estimator of general population parameters in single-phase sampling. 

The estimator has been proposed by using information of a single auxiliary variable. The estimator 

provides a unified way to estimate the population mean, variance and coefficient of variation for 

specific values of the constants involved. In this paper, we have proposed some estimators of general 

population parameters in single- and two-phase sampling. The estimators have been proposed using 

information of a single and multiple auxiliary variables. The plan of the paper is as follows. 

Some methodology and notations are given in Section 2. The new estimators of general 

population parameters for single phase sampling are proposed in Section 3. The estimators have been 

proposed by using information of single and multiple auxiliary variables. The expressions for the bias 

and the mean square error (MSE) of the proposed estimators are obtained. In Section 4, estimators for 

the general population parameters are proposed for two-phase sampling alongside the expressions for 

the bias and MSE of the proposed two-phase sampling estimators. In Section 5, the comparison of the 

estimators of specific parameters is given. Some numerical study of the proposed estimator is given in 

Section 6. The numerical study comprises simulation study and applications using some real 

populations, and the conclusions and recommendations are given in Section 7. 

2. Methodology and notations 

In this section, we have given some methodology and notations that will be used in this paper. 

Suppose that the units of a population are labeled as 1 2, , , NU U U  while the values of some variable 

of interest are 1 2, , , NY Y Y . Suppose, further, that the estimation of some general population parameter 

( ) ( )
2

2

,

b
a

ya b
t Y S=  

is required, where 

1

1

N

ii
Y N Y−

=
=   
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and 

( ) ( )
212

1
1

N

y ii
S N Y Y

−

=
= − −  

are, respectively, the population mean and variance of Y. It is to be noted that the general parameter 

( ),a b
t  reduces to the population mean for a=1 and b=0, and it reduces to the population variance for a=0 

and b=2 and to the coefficient of variation for 𝑎 = −1 and b=1. When information of some auxiliary 

variable is known, then the conventional regression estimator, using a sample of size n, is 

( )lry y X x= + − ,         (1) 

where 2

xy xS S =  is the population regression coefficient between X and Y, and 

1

1

N

ii
X N X−

=
=   

and 

1

1

n

ii
x n x−

=
=   

are the population and the sample mean of the auxiliary variable X. The mean square error of (1) is 

( ) ( )2 21lr y yxMSE y S = − ,         (2) 

where 

1 1n N −= −  

and 

2 2

yx x yS S S =  

is the population correlation coefficient between X and Y. 

In some situations, the population information of auxiliary variable is not available, and in such 

situations the regression estimator (1) cannot be used. The problem can be solved by using a two-phase 

sampling technique. In two-phase sampling, a first phase sample of size n1 is drawn from a population 

of size N, and information of an auxiliary variable is recorded. A sub-sample of size n2<n1 is drawn 

from the first-phase sample, and information of the auxiliary variable and the study variable is recorded. 

The conventional regression estimator, in two phase sampling, is given as 

( ) ( ) ( ) ( )2 2 1 2lr
y y x x  = + −

 
,       (3) 

where 

( )
21

22 1

n

ii
y n y−

=
= 

 

is second phase sample mean of study variable Y, 

( )
21

22 1

n

ii
x n x−

=
= 

 

is the second-phase sample mean of auxiliary variable X, and 
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( )
11

1 1 1

n

ii
x n x−

=
= 

 

is the first-phase sample mean of auxiliary variable X. The MSE of two-phase sampling regression 

estimator is 

( )( ) ( )2 2 2 2

2 12
1y yx yxlr

MSE y Y C     = − +
 

,       (4) 

where 

1 1

2 2n N − −= − , 

and 

1 1

1 1n N − −= − . 

The regression estimator of population variance is given by [9] as 

( ) ( )2 2 2 2

y x xy lr
s s S s= + − ,        (5) 

where   is a constant, 
2

xS  and 
2

xs  are, respectively, the population and the sample variances of the 

auxiliary variable, and 2

ys  is the sample variance of Y. The estimator for two-phase sampling can be 

easily written. Several modifications of the two-phase sampling regression estimator of mean are given 

in [6]. 

The derivation of bias and MSE of the estimators of the mean and the variance require certain 

notations. In this paper, we will assume that the sample mean and the sample variance of study and 

auxiliary variable are connected with the population mean and the population variance as 

( )1 yy Y = + , ( )1
jj xx X = + , ( )2 2 1y y ys S e= + , 

and 

( )2 2 1
j jx x xs S e= + . 

The relation between sample estimates and the population parameters in case of two-phase sampling 

is 

( ) ( )( )2 2
1

y
y Y = + , ( ) ( )( )2 2

1
jj x

x X = + , ( ) ( )( )2 2

2 2
1yy y

s S e= + , 

and 

( ) ( )( )2 2

2 2
1

j j
xx x

s S e= + . 

The expected values of error terms s  and e s  are all zero. Some additional expectations for single- 

and two-phase sampling and for single auxiliary variable, are 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2 2 * 2 *

40 04

*

03 30 21 12 22.

y y x x y x y x yx x y

x x x y y y y x x y x y y x

E C E C E e E e E C C

E e C E e C E e C E e C E e e

        

        

= = = = = 


= = = = = 

, , , , ,

, , , ,
 (6) 
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( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2
2 2 2 * 2

2 2 40 2 30 2 12 2 2 2 2 1

2
*

2 1 04 2 12 1 2 2 1

*

2 1 22 2 1 122 2 1 2 2 1

2 1 212 2 1

, , , ,

, ,

, ,

y y xy y y y x x

yx x yx x y x x

yy x x y x x

y x x

E C E e E e C E C

E e e E C C

E e e e E e e C

E e C

          

        

      

    

 
=  = = − = −

  

   − = − − = −
    

   − = − − = −
   

 − = −
  ( ) ( ) ( )( ) ( )2 1 032 2 1

, .x xx x x
E e e C   











 − = − 
  

 (7) 

In case of multiple auxiliary variables, we will use the following results for single- and two-phase 

sampling: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

/ /

21 012

* / * / *

12 22 22 2

/ /

2 1 2 1 0122 2 1 2 2 1

/

2 12 2 1 2 2 1

, , , ,

, , , ,

, ,

,

y x y x x x x y x x x x

y x y y x x x x xx x

xx x x x x x

y xy x x y x x

E C E E e E

E C E e E E

E E

E C E

    

    

   

   

= = = =

= = = =

   
− = − − = −

      

 − = − −
  

ε Rc ε ε C ε Φ c ε e Φ

e φ e φ e e Φ e e Φ

ε ε ε C ε e e Φ

ε ε Rc e e ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

2 1 12

*

2 1 21 2 1 222 2 1 2 2 1

,

, .

y

xy x x y x x

C

E e E e

 

   











= −  
   − = − − = −
    

φ

ε ε Φ c e e φ

  (8) 

where 
1

/

qx x x  =
 

ε ,
1

/

qx x xe e =
 

e , ( )
jyxdiag =R , ( )21 21 j

diag =Φ , ( )*

jx xdiag C=C  and 

1 1 2 11 1 1

2 2 2 2 1 2 2

1 2

2*
12 112 22

* 2
12 22 21 2*

12 22

* 2
12 22 1 2

, , , ,

q

q

q q q q q q

x x x q x xx

x x x x q x x

x x

x q x x q x x x

C C C C CC
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and 

1 1 1 2 1 1 1
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Also, 

( )* 1
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20 02j j j
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( )*

0 0 1
j h j hs t s t = − , ( )2 2

0 0 02 0 00 2j h j h j h j h

s t

s t s t   = , 

( ) ( ) ( )1

1
1

j

srN

rs i ij ji
N y Y x X

−

=
= − − − , 

and 

( ) ( ) ( )
1

0 1
1

j h

s tN

s t ij j ih hi
N x X x X

−

=
= − − − . 

We will, now, propose some new estimators for single-phase sampling. 

3. Estimators for single-phase sampling 

In this section, we have proposed some new estimators of the general population parameter for 

single-phase sampling. These estimators have been proposed using information of a single and several 

auxiliary variables. These estimators are proposed in the following. 

3.1. Estimator with single auxiliary variable 

In the following, we have proposed a new estimator of general population parameter using 

information of a single auxiliary variable. The proposed estimator is 

( ) ( ) ( )
2

2 2 2

1 1
b

a

y x xt y s X x S s  = + − + −
 

.       (9) 

It is easy to see that the proposed estimator reduces to the classical estimator of mean for 

( ) ( ), , , 1,0,0,0a b   = . 

Also, for 

( ) ( ), , , 0,2,0,0a b   = , 

the estimator (9) reduces to the classical estimator of variance. For 

( ) ( ), , , 1,0, ,a b    = , 

the estimator (9) becomes a regression type estimator of the population mean, and for 

( ) ( ), , , 0,2, ,a b    = , 

we have a regression type estimator of the population variance. Further, for 

( ) ( ), , , 1,1, ,a b    = − , 

the estimator (9) becomes a regression type estimator of coefficient of variation. Now, to obtain the 

bias and MSE of (9), we write the estimator using the error notations as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2

1 ,
1 1 1 1 1 1 .

a b a b
a b

y y y x x x y y x x xa b
t Y S e X S e t e X S e        = + + − − = + + − −

  
 

Expanding, and retaining only the linear terms, we have 
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( ) ( ) ( )

( )

2

1 ,

2 2 2

,

1 1 1
2

1 ,
2 2 2 2

y y x x xa b

y y y y x y x y x x x x y x x y xa b

b
t t a e X S e

b ab b b
t a e e X a X Xe S e a S e S e e

   

 
          

 
= + + − − 

 

 
= + + + − − − − − − 

 

 

or 

( ) ( )1 , ,

2 2 2

2 2

.
2 2

y y y y x y xa b a b

y x x x x y x x y x

b ab
t t t a e e X a X

b b
Xe S e a S e S e e

      

 
   


− = + + − −




 − − − − 



      (10) 

Applying expectation and simplifying, the bias of the proposed estimator (9) is 

( ) ( ) ( )2 2 *

1 30 12 21 22,
2 2

y yx x x x xa b

b b
Bias t t aC X C S X C S         

  
= − − − −  

  
.   (11) 

Again, squaring (10) and retaining only the quadratic terms, we have 

( )( ) ( )

22
2 2 2 2 2 2 2 2 4 2

1 , ,

2 2 2

2
4

2 2 .

y y x x x y y y xa b a b

x y x y x x y x x x x

b
t t t a e X S e ab e a X

a S e bXe b S e e XS e

       

      


− = + + + + −



      − − − + 

 

Applying expectation and using (6), the MSE of (9) is 

( ) ( ) ( )

( )

2
2 2 2 2 2 2 * 2 4 * 2

1 40 04 12 30,

2 2 *

21 03 22

2
4

2 2 .

y x x x ya b

yx x y x x x

b
MSE t t a C X C S a S ab C

a X C C bX XS C b S

       

       


= + + + − −



   − − − −


   (12) 

We will, now, obtain the optimum values of  and   which minimize (12). For this, we 

differentiate (12) with respect to  and  , equate the derivatives to zero and solve the resulting 

equations simultaneously. Now, the derivatives of (12) with respect to  and   are 

( ) ( ) ( )2 2

1 03 21,
2 2 2x x x yx ya b

MSE t t XC XC S a C b     



= + − −


, 

and 

( ) ( ) ( )2 2 2 * *

1 03 04 12 22,
2 2 2x x x ya b

MSE t t S XC S aC b      



= + − −


. 

Equating the above derivatives to zero and simultaneously solving the resulting equations, the 

optimum values of  and   which minimizes (9) are 

( ) ( )
( )

* * *

04 03 12 04 21 03 22

* 2

04 03

2

2

y yx

x

aC b

XC

       


 

− + −
=

−
,       (13) 

and 
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( ) ( )
( )

*

12 03 22 03 21

2 * 2

04 03

2

2

y yx

x

aC b

S

     


 

− + −
=

−
.       (14) 

Using these values in (12), the minimum MSE of estimator given in (9) is 

( )
( )

( )

2 2
, 2 2 * * *

min 1 1 2 3* 2

04 03

,
4

a b

y y

t b
MSE t a C f abC f f



 

 
= + + 

−  
      (15) 

where 

( )

( ) ( ) ( )

* * 2 2 2

1 04 03 03 12 12

* * 2 * * *

2 30 04 03 04 21 03 22 12 22 03 21

1 2 ,

,

yx yx

yx

f

f

      

           

= − − + −

= − − − − −
 

and 

( ) ( )* * * 2 * * *2

3 40 04 03 21 03 22 04 21 222f         = − + − − . 

The MSE for specific cases of (9) are readily obtained. For example, if 

( ) ( ), , , 1,0, ,opt opta b    = , 

then the MSE of a regression type estimator of population mean is obtained as 

( ) ( )
1

2 2 * * 2

min 1 1 04 03yMSE t Y C f  
−

= − .       (16) 

Further, if 

( ) ( ), , , 0,2, ,opt opta b    = , 

the expression for MSE of a regression type estimator of variance is obtained as 

( ) ( )
1

4 * * 2

min 1 3 04 03yMSE t S f  
−

= − .        (17) 

Again, if 

( ) ( ), , , 1,1, ,opt opta b    = − , 

the MSE of a regression type estimator of coefficient of variation is obtained as 

( )
( )

( )

2

, 2 * * *

min 1 1 2 3* 2

04 03

1

4

a b

y y

t
MSE t C f C f f



 

 
= − + 

−  
.      (18) 

It is interesting to note that for 

( ) ( ), , , 1,0, ,0a b   = , 

the optimum MSE of (9) reduces to the MSE of classical regression estimator given in (2). Also, for 

( ) ( ), , , 0,2,0,a b   = , 
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the optimum MSE of (9) reduces to the classical regression type estimator of variance as given by [9]. 

3.2. Estimator with several auxiliary variables 

In this section, we will give an estimator of general population parameter in single-phase sampling 

using the information of several auxiliary variables. The proposed estimator is 

( ) ( ) ( )
2

2 2 2

2 1 1
1

j j

b q qa

y j j j j x xj j
t y s X x S s 

= =
 = + − + −
   .     (19) 

Again, it is easy to see that the proposed estimator (19) provides certain estimators as a special case 

for different values of ( ), , ,j ja b   . Using error notations, the estimator (19) can be written as 

( ) ( )

( ) ( ) ( ) ( )

2
2 2

2 1 1

2 2
2 / /

1 1 1

1 1 1 ,

j j

ba q qa

y y y j j x j j xj j

b a b
a

y y y x x x

t Y S e X S e

Y S e

   



= =

    = + + − −
     

 = + + − −

 

α Xε β S e

 

where 

( ) ( )/ 2

1 2 1 2, , ,
jq q j x xdiag X diag S        = = = =   α β X S . 

Expanding, and retaining only the linear terms, we have 

( ) ( )/ /

2 ,
1 1

2 2
y y y y x x xa b

b ab
t t a e e 

 
= + + + − − 

 
α Xε β S e , 

or 

( )
/ / /

2 ,

/ / /

2 2 2

.
2

y y y y x y x y xa b

x x x y x x y x

b ab b
t t a e e a e

b
a e

  




− = + + − − −




 − − − 



α Xε α X ε α X ε

β S e β S e β S e

    (20) 

Taking expectation on both sides, the bias of the proposed estimator (18) is 

( ) ( )
/ / / / *

2 30 12 21 22,
2 2 2

x x x xa b

ab b b
Bias t t a a 

  
= − − − −  

  
α XRc β S φ α XΦ c β S φ .    (21) 

Again, squaring (20) and retaining only the quadratic terms, we have 

( )( ) ( )

22
2 2 2 2 / / / / /

2 , ,

/ / / / /

2
4

2 2 .

y y x x x x x x y y y xa b a b

x y x y x x y x x x x

b
t t t a e ab e a

a b e b e

  




− = + + + + −



      − − − + 

α Xε ε Xα β S e e S β α X ε

β S e α X ε β S e α Xε e S β

 

Taking expectation of the above equation and using (8), the MSE of (19) is 
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( ) ( )

2
2 2 2 * / / /

2 4 3,

/ / / * /

12 21 22 012

2
4

2 2 .

y x x x x y y xa b

y x x x x

b
MSE t t a C ab C aC

aC b b

  


= + + + + −


               − − − + 

0 0α XC Xα β S Φ S β α XRc

β S φ α XΦ c β S φ α XΦ S β

  (22) 

We will, now, obtain the optimum values of α  and β  which minimizes (22). For this, we will 

first differentiate (22) with respect to α  and β . The derivatives are 

( ) ( ) ( )2

2 21 012,
2 2 2x y x x xa b

MSE t t aC b


= − − +


XC Xα XRc XΦ c XΦ S β
α

, 

and 

( ) ( ) ( )2 * /

2 12 22 012,
2 2 2x x x y x x xa b

MSE t t aC b


= − − +


S Φ S β S φ S φ S Φ Xα
β

. 

Equating the derivatives to zero, the normal equations are 

012 21
2

x x y x x

b
aC+ = +   XC Xα XΦ S β XRc XΦ c

 

and 

/ *

012 12 22.
2

x x x x y x x

b
aC+ = +S Φ Xα S Φ S β S φ S φ

 

Writing the above equations in matrix form, we have 

( )

( )
21012

*/
12 22012

2

2

y x xx x

y x xx x x x

aC b

aC b

 +   
=      +    

XRc XΦ cαXC X XΦ S

S φ S φβS Φ X S Φ S
. 

Solving the above matrix equations, the optimum values of α  and β  are given as the solution of 

( ) 

( ) 

1
21

012

/ *
012 12 22

2

2

y xopt x x

opt x x x x x y

aC b

aC b

−  +   
 =   
 +    

X R Φ cα XC X XΦ S

β S Φ X S Φ S S φ φ
.    (23) 

Now, we invert the above partitioned matrix as below. Let 

11 12012

/
21 22012

x x

x x x x

   
= =   

  

A AXC X XΦ S
Σ

A AS Φ X S Φ S
, 

and then 

11 121

21 22

−  
=  

 

B B
Σ

B B
, 

where 
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( ) ( ) 

( )

( )( ) ( )

( ) ( )

11 11 /

11 11 12 22 21 012 012

1
1 /

012 012

111 1 1 / 1 1

12 11 12 22 11 012 012 012 012

11 / 1

21 22 21 11 012 11

x x x x x x

x x

x x x x x x x x

x x x x x x

−− −−

−
−

−−− − − − −

−− − −

 = − = −
  

 = −
 

= − = − = − −

= − = − = −

B A A A A X C Φ S S Φ S S Φ X

X C Φ Φ Φ X

B B A A B XΦ S S Φ S X C Φ Φ Φ Φ Φ S

B A A B S Φ S S Φ X B S Φ

，

，

( )
1

1 / 1 / 1

012 012 012x x

−
− −−Φ C Φ Φ Φ X ，

 

and 

( ) ( ) ( ) ( )( )

( ) ( )

1 11 1 /

22 22 21 11 12 22 012 11 012

11 1 1 / 1 / 1 1

012 012 012 012 .

x x x x x x x x

x x x x x x x x x

− −− −

−− − − − − −

 = + = +
 

 = + −

B A I A B A A S Φ S I S Φ X B XΦ S S Φ S

S Φ S S Φ Φ C Φ Φ Φ Φ Φ S

 

Using the values of the inverted matrix in (22), the optimum values of α  and β  are 

( )  ( ) *

11 21 12 12 222 2opt y x x yaC b aC b  = + + +
   

α B X R Φ c B S φ φ     (24) 

and 

( )  ( ) *

21 21 22 12 222 2opt y x x yaC b aC b  = + + +
   

β B X R Φ c B S φ φ .    (25) 

Using these optimum values of α  and β  in (21), the minimum MSE of (18) is 

( ) ( )

( ) ( )

2
2 2 2 * / /

min 2 3 4,

/ / * /

21 12 22 012

4

2 2 2 .

y y opt x opt opt x x x opta b

opt y x opt x y opt x opt

b
MSE t t a C ab C

aC b aC b

  


= + + + +


       − + − + +


0 0 α XC Xα β S Φ S β

α X R Φ c β S φ φ α XΦ S β

 (26) 

It is interesting to note that, for 

( ) ( ), , , 1,0, ,opta b =α β α 0 , 

the minimum MSE, given in (26), reduces to the minimum mean square error of the classical regression 

estimator of mean with several auxiliary variables; see [6]. Also, for 

( ) ( ), , , 0,2, , opta b =α β 0 β , 

the minimum MSE, given in (26), reduces to the minimum MSE of a general estimator of variance 

given by [19]. 

4. Estimators for two-phase sampling 

In this section, we have proposed some new estimators of the general population parameter for 

two-phase sampling. The estimators have been proposed using information of a single and several 

auxiliary variables. 
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4.1. Two-phase sampling estimator with single auxiliary variable 

In the following, we have proposed a new estimator of general population parameter for two-

phase sampling using information of a single auxiliary variable. The proposed estimator is 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
2

2 2 2

1 2 2 2 2 1 2 2 1 2
1

b
a

y x x
t y s x x s s   = + − + −

   
.     (27) 

It is easy to see that the proposed estimator (27) reduces to the regression type estimator of mean in 

two-phase sampling for 

( ) ( )( ) ( )( )2 2 2
, , , 1,0, ,0a b   = . 

The estimator (27) reduces to the regression type estimator of variance in two-phase sampling for 

( ) ( )( ) ( )( )2 2 2
, , , 0,2,0,a b   = . 

Now, to derive the bias and MSE of (27), we write the estimator (27), using error notations, as 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
22

2 2

1 2 2 2 2 1 2 2 1 2
1 1 1

a bb
a

y xy y x x x x
t Y S e X S e e     = + + + − + −

 
. 

Now, expanding the power series and retaining only the linear terms, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2

1 2 , 2 2 2 2 2 2 1 2 2 1
1 1

2 2
xa b y y y y x x x x

b ab
t t a e e X S e e     

   = + + + − − − −    
, 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1 2 , , 2 2 2 2 2 2 1

2

2 2 2 1 2 2 2 1 2 2 1

2 2

2 2 2 1 2 2 2 1

2 2

2

.
2

a b a b y y y y x x

xy x x y x x x x

x xy x x y x x

b ab
t t t a e e X

b
a X Xe S e e

b
a S e e S e e e

    

       

  


− = + + − −



− − − − − −


− − − − 



  (28) 

Applying expectation on (28) and using (7), the bias of (27) is 

( )( ) ( ) ( ) ( ) 

( ) ( ) ( ) 

2

2 30 2 1 2 121 2 , 2

2 *

2 1 21 222 2

2

.
2

y y yx x xa b

x x

ab
Bias t t C aC X C S

b
X C S

       

     


= − − −




                 − − − 



   (29) 

Again, squaring (29) and retaining only the terms whose powers add up to 2, we have 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

22 2 2
2 2 2 2 2 2 2 4

1 2 , , 2 2 2 2 1 2 2 1

2 22 2 2 2 1 2 2 1

2

2 2 2 1 2 2 2 1

2

2 2 2 1 2 1

4

2 2

2 .

xa b a b y y x x x x

y y y x x y x x

xy x x y x x

x x x x x

b
t t t a e X S e e

ab e a a e e

bXe b S e e e

XS e e

    

      

   

   


− = + + − + −



        + − − − −

        − − − −

        + − −


 

Applying expectation, and using (7), the mean square error of (29) is 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 2 2 * 2 2 2 2 4 *

2 2 40 2 1 2 1 04 2 301 2 , 2 2

2

2 1 2 2 1 12 2 1 212 2

2 * 2

2 1 22 2 1 032 2 2

4

2 2

2 .

y x x ya b

yx y x x y x

x x x

b
MSE t t a C X C S ab C

a X C C a S C bX C

b S XS C

           

           

        


= + + − + − +



      − − − − − −

      − − + −


 (30) 

The optimum values of   and   which minimize (30) are the same as given in (13) and (14). The 

minimum mean square error is obtained by using the optimum values of  and   in (28) and is 

( )( ) ( )

( ) ( ) ( ) ( )

2 2
, 2 2 * * *

min 1 2 1 2 2 2 3 2* 2

04 03

,
4

a b

y y

t b
MSE t a C f abC f f

 

 
= + + 

−  
     (31) 

where 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

* * 2 2 * 2 2

2 04 1 04 2 03 2 1 12 03 121 2

* * 2 * * *

2 30 04 03 2 1 04 21 03 22 12 22 03 212 2

1 2 ,

,

yx yx

xy

f

f

            

              

= − + − − − −

 = − − − − + −
 

 

and 

( ) ( ) ( )( )* * * 2 * 2 * *2

2 40 04 03 2 1 04 21 03 21 22 223 2
2f            = − − − − + . 

It is to be noted that the minimum MSE, given in (31), reduces to (15) for 1 0 = . Further, for 

( ) ( )( ) ( )( )2 2 2
, , , 1,0, ,0opta b   = , 

the minimum MSE, given in (31), reduces to the MSE of the two-phase sampling regression estimator 

of the population mean. Also, for 

( ) ( )( ) ( )( )2 2 2
, , , 0,2,0, opta b   = , 

the minimum MSE, given in (31), reduces to the MSE of the two-phase sampling regression estimator 

of the population variance; see, for example, [19]. Further, for 

( ) ( )( ) ( ) ( )( )2 2 2 2
, , , 1,1, ,opt opta b    = − , 
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the minimum MSE, given in (31), reduces to the MSE of the two-phase sampling estimator of 

coefficient of variation and is given as 

( )( )
( ) ( ) ( ) ( )

2

2 * * *

min 1 2 1 2 2 2 3 22 * 2

04 03

1

4

y

y y

S
MSE t C f C f f

Y  

 
= − + 

−  
.     (32) 

We will, now, propose a new estimator of general population parameter in two-phase sampling using 

information of several auxiliary variables. 

4.2. Two-phase sampling estimator with several auxiliary variables 

The proposed estimator of general population parameter in two-phase sampling with multiple 

auxiliary variables is 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
2

2 2 2

2 2 2 2 2 1 2 2 1 21 1
1

j j

b q qa

y j j j j x xj j
t y s x x s s 

= =

 = + − + −
   .   (33) 

The estimator (33) provides various estimators as special cases for specific choices of the 

parameters involved. For example, if 

( ) ( )( ) ( )( )2 2 2
, , , 1,0, ,0

j j j
a b   = , 

then we have a regression type estimator of the population mean for two-phase sampling with multiple 

auxiliary variables. Again, if 

( ) ( )( ) ( )( )2 2 2
, , , 0,2,0,

j j j
a b   = , 

then we have a regression type estimator of the population variance in two-phase sampling with 

multiple auxiliary variables. Further, if 

( ) ( )( ) ( ) ( )( )2 2 2 2
, , , 1,1, ,

j j j j
a b    = − , 

then we have a two-phase sampling estimator of the coefficient of variation with multiple auxiliary 

variables. Now, to derive the bias and MSE of the proposed two-phase sampling estimator, we write it 

as 

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
2

2

2 2 2 2 2 1 2 2 1 21 1
1 1 1 .

jj j j j

a b q qa b

y j xy y j x x j x xj j
t Y S e X S e e    

= =

 = + + + − + −
  

 

Expanding the powers and retaining only the linear terms, we have 



14965 

AIMS Mathematics  Volume 8, Issue 7, 14951–14977. 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

/ /

2 2 2 2 2 1 2 2 1 2

/ /

, 2 2 2 2 2 2 1 2 2 2 1

/ / /

2 2 2 1 2 2 1 2 2 2 1

/

2 2 2 1

1 1 1
2

1
2 2

2

,
2

a b

y xy y x x x x

a b y y y y x x y x x

x xy x x x x y x x

x y x x

b
t Y S a e

b ab
t a e e a

b
e a

b
e



  



   = + + + − + −    


= + + + − − − −



       − − − − − −


       − − 



α X ε ε β S e e

α X ε ε α X ε ε

α X ε ε β S e e β S e e

β S e e

 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

/ /

2 2 , 2 2 2 2 2 2 1 2 2 2 1

/ / /

2 2 2 1 2 2 1 2 2 2 1

/

2 2 2 1

2 2

2

.
2

a b y y y y x x y x x

x xy x x x x y x x

x y x x

b ab
t t a e e a

b
e a

b
e

  




− = + + − − − −



    − − − − − −


    − − 



α X ε ε α X ε ε

α X ε ε β S e e β S e e

β S e e

  (34) 

Applying expectations, and using (8), the bias of the proposed estimator is 

( )( ) ( ) ( ) ( )

( ) ( )

/ /

2 03 2 1 212 2 2 2

/ / *

12 222 2

2 2

.
2

y y x x

y x x

ab b
Bias t C a C

b
aC

   
 

= − − −



     − − 



α X Rc α XΦ c

β S φ β S φ

    (35) 

Again, squaring (34), applying expectation and using (8), the MSE of (35) is 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2 2 * /

2 2 4 2 3 2 12 2 , 2 2

/ / / /

12 212 2 2 2 2

/ * /

22 0122 2 2

4

2 2

2 .

y y xa b

x x x y x y x x

x x

b
MSE t t a C abC

aC aC b

b

      


= + + + −


      + − − −

      − +


0 0 α XC Xα

β S Φ S β α XRc β S φ α XΦ c

β S φ α XΦ S β

   (36) 

The optimum values of ( )2
α  and ( )2

β  which minimizes (36) are the same as given in (24) and (25). 

Using the optimum values 
( )2

α  and 
( )2
β  in (36), the minimum MSE is 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 2 2 * /* *

min 2 2 4 2 3 2 12 2 , 2 2

/* * /*

212 2 2

/* * /* *

12 22 0122 2 2

4

2

2 2 .

y y xa b

x x x y x

x y x

b
MSE t t a C abC

aC b

aC

      


= + + + −


          + − +

          − + +


0 0 α XC Xα

β S Φ S β α X R Φ c

β S φ φ α XΦ S β

  (37) 

The mean square error of specific cases of (33) can be easily obtained from (37) by using the specific 

values of the parameters. 
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5. Comparison of the proposed estimators 

In this section we have given some comparison of the proposed estimators with some existing 

estimators. The comparison will be given in case of a single auxiliary variable. The comparison for the 

multiple auxiliary variables case is analogous. 

We will first give a comparison of the proposed estimators with the general estimator of 

population parameter suggested by [22]. The estimator is 

( ) ( )
( )
( )

( )
( )

2 2

21

, 2 2
ˆ exp exp

1 1

x xa b

ya b

x x

w S sw X x
t y s k X x

X x S s 

   −−
   = + −    + − + −     

,    (38) 

with mean square error 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
1

2 * 2 2 * 2

04 03 03 04, , 1 , 3 , 2 , 3 , 2 ,
ˆ 2

a b a b a b a b a b a b a b
MSE t t f f f f f    

− = − − − +
  

,  (39) 

where 

( ) ( )

2
2 2 *

03 40 211 , 2 ,
4 2

y y yx ya b a b

b b
f a C abC f a C   = + + = +， , 

and 

( )
*

12 223 ,
2

ya b

b
f aC  = + . 

A close comparison of (39) with (15) indicates that the MSEs of the two estimators are equal. It 

is interesting to note that our proposed estimator (9) is much simpler in application than (38). We will, 

now, give a comparison of the estimators of specific population parameters. 

5.1. Comparison with estimators of the population mean 

In the following, we will give a comparison of estimators for estimation of the mean. We know 

that the proposed estimator reduces to the estimator of mean for ( ) ( ), , , 1,0, ,opt opta b    =  and is 

given as 

( ) ( ) ( )2 2

1
1 x xM

t y X x S s  = + − + −
 

.       (40) 

The MSE of the above estimator is given in (16) and can also be written as 

( )( ) ( ) ( )
1

2 2 * 2 * 2 2 2

min 04 03 04 03 03 12 121
1 2y yx yxM

MSE t Y C         
−

 = − − − + −
 

, 

or 

( )( ) ( )
( )

( )

* 2 2

04 03 12 12

min 1 * 2

04 03

2
1 ,

yx yx

M
MSE t Var y

     

 

 − +
 = −

−  

     (41) 



14967 

AIMS Mathematics  Volume 8, Issue 7, 14951–14977. 

where ( ) 2 2

yVar y Y C=  is the variance of the mean per unit estimator. From above, we can see that 

the proposed estimator of the mean is always more efficient than the mean per unit estimator. Again, 

the MSE of the proposed estimator of the mean can be written as 

( )( ) ( )
( )

( )( )

2

03 12

min 1 * 2 2

04 03

1 ,
1

yx

lrM

yx

MSE t Var y
  

  

 −
 = −
 − −
 

      (42) 

where 

( ) ( )2 2 21lr y yxVar y Y C = −  

is variance of the classical regression estimator of the mean. It is clear that the proposed estimator will 

be more efficient than the classical regression estimator of the mean if 1

03 12yx  − . Since the MSE of 

the estimators of the mean proposed by [23] is the same as the MSE of the classical regression estimator, 

the proposed estimator of the mean, (40), is more efficient than the estimator proposed by [23] if 
1

03 12.yx  −  

Further, the estimators proposed by [24,25] are less efficient than the classical regression 

estimator; therefore, they are less efficient than the proposed estimator of the mean, given in (40). 

5.2. Comparison with estimators of the population variance 

It is easy to see that the proposed estimator reduces to the regression type estimator of variance 

for 

( ) ( ), , , 0,2, ,opt opta b    =  

and is given as 

( ) ( ) ( )2 2 2

1
1y x xV

t s X x S s  = + − + −
 

.       (43) 

The MSE of the above estimator is given in (17) and can also be written as 

( )( ) ( ) ( )
2 1

4 * 2 * * 2

40 21 22 03 21 04 031 yV
MSE t S       

− = − − − −
  

,     (44) 

or 

( )( ) ( ) ( ) ( )
2 1

2 2 2 * * 2

21 22 03 21 04 031 y yV
MSE t MSE s S      

− = − + − −
  

, 

where 

( )2 4 *

40y yMSE s S =  

is the MSE of the classical estimator of the variance. The expression of MSE, (44), is same as the 

expression of the MSE of the variance estimator proposed by [14], but the construction of our proposed 

estimator of the variance, (42), is much simpler as compared with the variance estimator given by [14]. 

Further, it is easy to show that our proposed estimator, (42), is more efficient than the classical 

estimator of variance, 2

ys , and the estimator proposed by [13]. 
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We will, now, compare our proposed estimator of variance with the estimators proposed by [18,19]. 

For this, we first see that the MSE of estimators proposed by [18,19] is the same and is given as 

( ) ( )2 4 * *2 * 1

min 1 40 22 04
ˆ

MHS YMSE S S    −= − . 

Now, our proposed estimator of variance will be more efficient than the estimators proposed by [18,19], 

if 

( ) ( )( )
2

* * 2 * * 1 2

22 03 21 04 03 22 04 21       −−  − − . 

6. Numerical study 

In this section, we have conducted numerical study of the specific cases of the proposed estimator 

of general population parameter. The numerical study has been conducted in two ways: simulation and 

study using real population. These numerical studies are given in the following sub-sections. 

6.1. Simulation 

In this section, the comparison of the proposed estimator is done with some existing estimators 

through simulation. The simulation has been done using some popular single- and two-phase sampling 

estimators of the mean and the variance. We have used two-phase versions of some of the estimators 

of mean and variance which are not available in the literature. The estimators used in the simulation, 

in addition to classical ratio and regression estimators of the mean, are given in Tables 1 and 2 below. 

The simulation algorithm for single-phase sampling is as below: 

1) Generate an artificial population of size 5000 from a bivariate normal distribution 

( )2 2

2 60,45,5 ,4 ,N   by using different values of the correlation coefficient. 

2) Generate random samples of sizes 50, 100, 200 and 500 from the generated population. 

3) Compute different estimators by using the generated samples. 

4) Repeat steps 2 and 3 for 20000 times for each sample size. 

5) Compute mean square error of each estimator of mean and variance at different sample sizes 

by using 

( ) ( ) ( )
20000 20000

2

1 1

1 1
; ; , , , , , ,1 ;

20000 20000
i ij i i ij

j j

MSE t t t t t i C R BT S KC AR M
= =

= − = =   

( ) ( ) ( )
20000 20000

2
* * * * *

1 1

1 1
; ; , , , , ,1 .

20000 20000
k kj k k kj

j j

MSE t t t t t k C R YK MHS AR V
= =

= − = =   
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Table 1. Estimators of the mean. 

Estimator Single-Phase Two-Phase 

Bhal and Tuteja [23] exp
BT

X x
t y

X x

−
=

+

 
 
 

 
( ) ( )

( ) ( )

( ) ( )

1 2

2 2

1 2

exp
BT

x x
t y

x x

−
=

+

 
 
 

 

Singh [26] 
x

S

x

X
t

S
y

x S

+

+
=

 
 
 

 
( ) ( )

( ) ( )

( ) ( )

1 1

2 2

2 1

x

S

x

x s
y

x
t

s

+

+
=

 
 
 

 

Kadilar and Cingi [24] ( ) 
KC

y b x
X

t X
x

= + −  ( ) ( ) ( ) ( )( ) ( )

( )

2 1 2

2

1

2KC
y b xt x

x

x
+ −=   

 

Adichwal et al. [21] 

( )
( )

( )

2 2

2 2

exp
1

exp
1

AR R

x x

x x

X x
t t

X x

S s

S s





−
=

+ −

−
      

+ −

 
 
 

 
 
 

 
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 2

2 2

1 2

2 2

1 2

2 2

1 2

exp
1

exp
1

AR R

x x

x x

x x
t t

x x

s s

s s





−
=

+ −

−
         

+ −

 
 
 

 
 
 

 

Proposed ( ) ( ) ( )2 2

1
1

M x x
t y X x S s = + − + −  

 
( )( ) ( ) ( ) ( )( )2 2

1 2 1 2 1 2
1

M x x
t y x x s s = + − + −  

 

Table 2. Estimators of the variance. 

Estimator Single-Phase Two-Phase 

Isaki [9] 
* 2 2 2

C y x x
t s S s=  ( ) ( ) ( ) ( )

* 2 2 2

2 2 1 2C y x x
t s s s=  

Isaki [9] ( )* 2 2 2

R y x x
t s S s= + −  

( ) ( ) ( ) ( )( )* 2 2 2

2 2 1 2R y x x
t s s s= + −  

Yadav and Kadilar 

[18] ( )

2 2

* 2

2 2
exp

1

x x

YK y

x x

S s
t s

S a s

−
=

+ −

 
 
 

 
( ) ( )

( ) ( )

( ) ( ) ( )

2 2

1 2* 2

2 2 2 2

1 2

exp
1

x x

YK y

x x

s s
t s

s a s

−
=

+ −

 
 
  

 

Al-Marshadi [19] ( )* 2 2 2
ln

MHS y x x
t s s S



= +  
( ) ( ) ( ) ( )( )* 2 2 2

2 2 2 1
ln

MHS y x x
t s s s



= +  

Adichwal et al. [21] 

( )
( )

( )

2

2 2

2 2

exp
1

exp
1

AR y

x x

x x

X x
t s k X x

X x

S s

S s





−
= + −

+ −

−


+ −

 
    

 

 
 
 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1 22

2 1 2

1 2

2 2

1 2

2 2

1 2

exp
1

exp
1

AR y

x x

x x

x x
t s k x x

x x

s s

s s





−
= + −

+ −

−
   

+ −

 
    

  

 
 
  

 

Proposed ( ) ( ) ( )2 2 2

1
1

V y x x
t s X x S s = + − + −  

 
( )( ) ( ) ( ) ( )( ) ( ) ( )( )2 2 2

1 2 2 1 2 1 2
1

V y x x
t s x x s s = + − + − 

 
 

In the above tables ( )2
y  and ( )

2

2y
s  are the second phase mean and variance of the study variable. 

Similar notations hold for the auxiliary variable. 

The simulation algorithm for two-phase sampling is as below: 

1) Generate an artificial population of size 5000 from a bivariate normal distribution 

( )2 2

2 60,45,5 ,4 ,N   by using different values of the correlation coefficient. 
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2) Generate first phase random samples of sizes 500 and 1000 from the generated population. 

3) Generate second phase random samples of sizes 5%, 10% and 20% of the first phase sample.  

4) Compute different estimators by using the second phase sample mean of Y, first and second 

phase sample means of auxiliary variable X and some population measures of auxiliary variable 

X. 

5) Repeat steps 2–4 for 20000 times for each combination of first and second phase sample size. 

6) Compute bias and mean square error of each estimator at different sample sizes as given in step 

5 for the single-phase case above. 

The results of the simulation study are given in Tables 3–6 below. 

Table 3. Mean square error of estimators of mean in single-phase sampling. 

xy  n t(C) t(R) t(BT) t(S) t(KC) t(AAR) t1(M) 

–0.9 

50 1.0427 0.6061 0.6287 0.9567 1.0519 0.7035 0.4151 

100 0.5201 0.2969 0.3133 0.4771 0.5227 0.3304 0.2006 

200 0.2571 0.1479 0.1566 0.2363 0.2575 0.1605 0.0991 

500 0.0959 0.0535 0.0575 0.0879 0.0960 0.0592 0.0357 

–0.5 

50 1.0844 0.6233 0.6561 0.9966 1.0931 0.7246 0.4283 

100 0.5172 0.3000 0.3141 0.4753 0.5198 0.3395 0.2030 

200 0.2526 0.1442 0.1526 0.2319 0.2533 0.1587 0.0966 

500 0.0945 0.0541 0.0572 0.0868 0.0945 0.0607 0.0361 

0.5 

50 1.0713 0.6151 0.6479 0.9843 1.0826 0.7256 0.4232 

100 0.5140 0.2954 0.3116 0.4724 0.5157 0.3342 0.1997 

200 0.2577 0.1475 0.1566 0.2369 0.2581 0.1619 0.0989 

500 0.0950 0.0541 0.0578 0.0873 0.0949 0.0598 0.0361 

0.9 

50 1.0681 0.6224 0.6477 0.9812 1.0797 0.7154 0.4279 

100 0.5247 0.2952 0.3150 0.4814 0.5272 0.3317 0.1990 

200 0.2560 0.1435 0.1534 0.2347 0.2560 0.1600 0.0962 

500 0.0972 0.0540 0.0583 0.0892 0.0973 0.0599 0.0360 

Table 4. Mean square error of estimators of variance in single-phase sampling. 

xy  n 
*

Ct  
*

Rt  
*

YKt  
*

MHSt  
*

AARt  ( )1 V
t  

–0.9 

50 61.6715 26.9648 26.9308 26.8381 27.7020 22.0301 

100 27.7252 13.1662 13.1631 13.1524 13.3192 10.6404 

200 12.8528 6.3378 6.3375 6.3360 6.3789 5.1016 

500 4.6520 2.3183 2.3183 2.3183 2.3230 1.8582 

–0.5 

50 59.5725 27.2676 27.2198 27.1438 27.9374 22.2485 

100 27.4137 13.0218 13.0167 13.0075 13.1495 10.5085 

200 12.8765 6.2683 6.2680 6.2685 6.2991 5.0372 

500 4.6790 2.3569 2.3569 2.3568 2.3614 1.8891 

0.5 

50 58.6802 26.2101 26.1634 26.0787 26.9010 21.4129 

100 26.9036 12.7161 12.7129 12.7077 12.8867 10.2948 

200 12.6693 6.0603 6.0600 6.0589 6.0901 4.8706 

500 4.5555 2.2384 2.2384 2.2383 2.2453 1.7961 

0.9 

50 56.5997 24.9762 24.9441 24.8933 25.6947 20.4355 

100 26.0339 12.1086 12.1053 12.1030 12.2614 9.7939 

200 12.4012 5.8972 5.8967 5.8956 5.9264 4.7395 

500 4.5886 2.2476 2.2476 2.2476 2.2505 1.8003 
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Table 5. Mean square error of estimators of mean in two-phase sampling. 

yx n1 n2 t(C) t(R) t(BT) t(S) t(KC) t(AAR) t1(M) 

–0.9 

500 
25 2.0890 1.0373 1.9112 1.9194 2.1234 1.1317 0.8782 

50 0.9999 0.5051 0.9329 0.9213 1.0102 0.5195 0.4134 

100 0.4722 0.2473 0.4534 0.4369 0.4746 0.2507 0.2003 

1000 

50 1.0267 0.5036 0.9417 0.9438 1.0365 0.5205 0.4134 

100 0.5100 0.2496 0.4710 0.4694 0.5129 0.2521 0.2015 

200 0.2321 0.1216 0.2230 0.2148 0.2328 0.1221 0.0977 

–0.5 

500 
25 2.0671 1.0531 1.9128 1.9030 2.1063 1.1463 0.8937 

50 1.0167 0.5058 0.9433 0.9365 1.0255 0.5211 0.4152 

100 0.4712 0.2495 0.4559 0.4366 0.4739 0.2525 0.2018 

1000 

50 1.0273 0.4998 0.9395 0.9445 1.0371 0.5154 0.4099 

100 0.4932 0.2450 0.4587 0.4545 0.4954 0.2479 0.1982 

200 0.2315 0.1211 0.2222 0.2142 0.2317 0.1217 0.0973 

0.5 

500 
25 2.0570 1.0334 1.8796 1.8898 2.0893 1.1305 0.8792 

50 1.0152 0.5163 0.9491 0.9359 1.0239 0.5310 0.4228 

100 0.4744 0.2517 0.4595 0.4397 0.4760 0.2542 0.2031 

1000 

50 1.0414 0.5136 0.9596 0.9584 1.0559 0.5271 0.4196 

100 0.4927 0.2492 0.4619 0.4544 0.4948 0.2527 0.2017 

200 0.2330 0.1212 0.2237 0.2157 0.2334 0.1217 0.0973 

0.9 

500 
25 2.0973 1.0670 1.9361 1.9292 2.1516 1.1602 0.9049 

50 1.0017 0.5139 0.9407 0.9236 1.0123 0.5300 0.4219 

100 0.4711 0.2470 0.4530 0.4360 0.4733 0.2488 0.1989 

1000 

50 1.0307 0.5008 0.9377 0.9464 1.0417 0.5150 0.4101 

100 0.4979 0.2491 0.4637 0.4586 0.5004 0.2520 0.2014 

200 0.2337 0.1219 0.2236 0.2160 0.2346 0.1224 0.0979 

Table 6. Mean square error of estimators of variance in two-phase sampling. 

yx  n1 n2 
*

Ct  
*

Rt  
*

YKt  
*

MHSt  
*

AARt  ( )1 V
t  

–0.9 

500 
25 140.5358 57.3500 56.9743 56.3199 61.4633 48.0799 

50 57.6091 26.9982 26.9350 26.8751 27.7169 22.0829 
100 24.3699 13.1517 13.1486 13.1413 13.2844 10.6166 

1000 
50 58.5709 26.8444 26.7882 26.6943 27.5534 21.9302 
100 26.1174 12.8386 12.8346 12.8230 12.9687 10.3608 
200 11.7293 6.3042 6.3039 6.3032 6.3292 5.0615 

–0.5 

500 
25 138.3087 57.6001 57.1780 56.5402 61.8000 48.1299 

50 57.1008 26.5565 26.4872 26.4285 27.1874 21.6863 
100 24.3847 12.9400 12.9366 12.9321 13.0727 10.4453 

1000 
50 59.4134 27.1282 27.0971 27.0369 27.9262 22.2336 
100 26.4397 13.0561 13.0523 13.0450 13.2347 10.5728 
200 11.5907 6.2638 6.2633 6.2621 6.2878 5.0286 

0.5 

500 
25 136.2103 54.8615 54.5167 53.8812 58.8619 45.7701 

50 56.2874 26.2092 26.1650 26.1164 26.8153 21.3371 
100 23.7153 12.4007 12.3988 12.3934 12.4807 9.9721 

1000 
50 56.8057 25.9255 25.8763 25.7851 26.5693 21.1616 
100 25.5146 12.5213 12.5186 12.5121 12.6728 10.1253 
200 11.3721 6.0205 6.0202 6.0187 6.0462 4.8353 

0.9 

500 
25 129.8467 54.2527 53.9338 53.3785 57.7821 45.2401 

50 54.9371 25.4004 25.3675 25.3054 26.0071 20.6980 
100 23.6268 12.3209 12.3179 12.3106 12.4336 9.9337 

1000 
50 57.6789 25.1016 25.0690 25.0215 25.8700 20.5610 
100 24.9836 12.3588 12.3558 12.3502 12.4728 9.9643 
200 11.3057 5.8657 5.8654 5.8639 5.8861 4.7076 
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We can see, from the above tables, that our proposed estimators of the mean and the variance 

outperform other competing estimators. The results given in the above tables also indicate that the 

mean square error of all of the estimators decreases with the increase in the sample size. 

The graphs of relative efficiency of various estimators of the mean and the variance, relative to 

the ratio estimators of mean and variance, are given in Figures 1 and 2 below. The graphs also show 

that our proposed estimators of the mean and the variance have the best efficiency as compared with 

the competing estimators. We can also see, from the figures, that the estimator proposed by [25] is the 

worst estimator to estimate the population mean. This estimator is even worse than the ratio estimator. 

The derived estimator of the mean by [22] is better than some of the estimators used in the study, but 

still this estimator performs worse than the classical regression estimator of the mean and the estimator 

proposed by [24]. Similar conclusions can be drawn from the comparison of estimators of the variance, 

and we can see that our derived estimator of variance outperforms all other estimators used in the study. 

The relative efficiencies of the estimators of the variance show that all of the estimators used in the 

study perform better than the classical ratio estimator of variance proposed by [9]. 

 

0.9yx = −  

 

0.5yx = −  

 

0.5yx =  

 

0.9yx =  

Figure 1. Relative efficiency of various estimators of mean. 
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0.9yx = −  

 

0.5yx = −  

 

0.5yx =  

 

0.9yx =  

Figure 2. Relative efficiency of various estimators of variance. 

6.2. Empirical study using real populations 

In this section, we have conducted an empirical study of some popular estimators of the mean and 

the variance by using some real populations. We have used five populations for this empirical study. 

The first three populations are taken from [27], and the last two are taken from [28]. Summary 

measures of the populations are given in Table 7 below. 
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Table 7. Summary measures of the populations. 

Measures Pop-I Pop-II Pop-III Pop-IV Pop-V 

N 17 58 32 23 110 

Y  202.9529 13.1879 55.9062 61.3478 6.8317 

X  25.0588 31.8207 4.4222 39.6087 27.4273 

2

yS  33.1739 2.4702 247.5071 279.3281 5.2488 

2

xS  9.1211 24.4701 2.1090 71.7036 278.3754 

yx  0.9972 0.5557 0.7815 -0.7737 -0.0645 

*

40  0.9469 2.0227 2.2414 1.4656 1.6078 

*

04  0.9062 1.7776 1.8657 0.9113 0.7985 

*

22  0.9199 0.2282 1.2776 0.5534 -0.0469 

03  0.3713 0.4208 0.9532 0.2330 0.0280 

21  0.3175 0.0146 0.5743 -0.1069 0.1094 

12  0.3438 -0.0931 0.6016 0.0190 0.0139 

The empirical study has been conducted by using a 25% sample from each of the populations. 

We have used six estimators of the mean and five estimators of the variance in this empirical study. 

The estimators of the mean that we have used are given in Table 1 above, excluding the estimator 

by [22], as it has the same mean square error as the mean square error of our proposed estimator. The 

estimators of variance that we have used in this empirical study are classical ratio and regression 

estimators by [9], estimator by [12], estimator by [13] and our derived estimator of variance, given in 

Table 2 above. The mean square error of various estimators is computed for each population. The results 

are given in Tables 8 and 9 below. 

Table 8. Mean square error of selected estimators of mean. 

Estimator Population-1 Population-2 Population-3 Population-4 Population-5 

Ct  67.0059 0.1675 12.4789 123.7334 0.6637 

Rt  0.0353 0.0925 9.0312 17.5502 0.1461 

BTt  8.0789 0.0938 9.9412 76.9963 0.2845 

St  49.5017 0.1365 9.2494 105.7338 0.3546 

KCt  114.4157 0.3203 40.6317 44.4738 0.6287 

( )1 M
t  0.0296 0.0836 8.5327 15.5233 0.1460 
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Table 9. Mean square error of selected estimators of variance. 

Estimator Population-1 Population-2 Population-3 Population-4 Population-5 

*

Ct  2.8368 1.1056 8912.8527 15510.8332 1.9248 

*

Rt  2.7938 0.6591 7848.1442 13794.3352 1.2358 

*

SCt  53.3671 0.7403 8213.9491 13922.3775 1.4277 

*

AAt  191.9420 0.6700 11944.0214 18316.7933 1.2579 

( )1 V
t  1.9203 0.6585 7779.2856 12993.2609 1.2263 

From the above tables, we can see that our proposed estimators of the mean and the variance 

perform better than all other competing estimators. We can also see that the estimator of the mean 

proposed by [25] and the estimator of the variance proposed by [13] are the worst estimators. The 

performance of these estimators increases where population variance of the study variable is much 

smaller as compared with the population variance of the auxiliary variable. 

7. Conclusions 

In this paper, we have proposed some estimators of the general population parameters for single- 

and two-phase sampling. These estimators have been proposed by using information of a single and 

several auxiliary variables. The proposed estimators can be used to obtain estimators of population 

mean, population variance and population coefficient of variation. The expressions for the mean square 

error of the proposed estimators have been obtained for single- and two-phase sampling. We have seen 

that our proposed estimators have smaller mean square error as compared with some of the existing 

estimators. We have conducted extensive simulation study of the proposed estimator for single- and 

two-phase sampling. Several available estimators are compared in the simulation study. We have seen 

that our proposed estimators of the mean and the variance perform better than the competing estimators 

used in the study. We have also seen that the simulated mean square errors of various estimators 

decrease with increase in the sample size. We have also conducted an empirical study using some real 

populations. The empirical study has been conducted by computing the analytical mean square error 

of various estimators. The empirical study shows that our proposed estimators of the mean and the 

variance are better than the other estimators used in the study. It is, therefore, recommended that the 

proposed estimators are better choices for estimation of population mean and population variance as 

compared with the existing estimators. 
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