Research article Special Issues

Further generalizations of the Ishikawa algorithm

  • Received: 27 October 2022 Revised: 06 March 2023 Accepted: 08 March 2023 Published: 22 March 2023
  • MSC : 90C48, 47H09, 46B20

  • We provide an iterative algorithm for fixed point issues in vector spaces in the paragraphs that follow. We demonstrate that, compared to the Ishikawa technique in Banach spaces, the iterative algorithm presented in this study performs better under weaker conditions. In order to achieve this, we compare the convergence behavior of iterations, and taking into account a few offered cases, we support the major findings.

    Citation: Mohammad Reza Haddadi, Vahid Parvaneh, Monica Bota. Further generalizations of the Ishikawa algorithm[J]. AIMS Mathematics, 2023, 8(5): 12185-12194. doi: 10.3934/math.2023614

    Related Papers:

  • We provide an iterative algorithm for fixed point issues in vector spaces in the paragraphs that follow. We demonstrate that, compared to the Ishikawa technique in Banach spaces, the iterative algorithm presented in this study performs better under weaker conditions. In order to achieve this, we compare the convergence behavior of iterations, and taking into account a few offered cases, we support the major findings.



    加载中


    [1] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [2] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [3] J. Jia, K. Shabbir, K. Ahmad, N. A. Shah, T. Botmart, Strong convergence of a new hybrid iterative scheme for nonexpensive mappings and applications, J. Funct. Spaces, 2022 (2022), 4855173. https://doi.org/10.1155/2022/4855173 doi: 10.1155/2022/4855173
    [4] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [5] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 69. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
    [6] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
    [7] P. Lamba, A. Panwar, A Picard-$S^{*}$ iterative algorithm for approximating fixed points of generalized $\alpha$-nonexpansive mappings, J. Math. Comput. Sci., 11 (2021), 2874–2892.
    [8] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
    [9] G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. https://doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z
    [10] J. Srivastava, Introduction of new Picard-S hybrid iteration with application and some results for nonexpansive mappings, Arab J. Math. Sci., 28 (2022), 61–76. https://doi.org/10.1108/AJMS-08-2020-0044 doi: 10.1108/AJMS-08-2020-0044
    [11] H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116 (2003), 659–678. https://doi.org/10.1023/A:1023073621589 doi: 10.1023/A:1023073621589
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1197) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog