Research article

Exponential sums involving the divisor function over arithmetic progressions

  • Received: 04 November 2022 Revised: 13 February 2023 Accepted: 23 February 2023 Published: 08 March 2023
  • MSC : 11F30, 11L07, 11N37

  • Let $ \phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \phi^{(j)}(x)\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $.

    Citation: Rui Zhang, Yang Li, Xiaofei Yan. Exponential sums involving the divisor function over arithmetic progressions[J]. AIMS Mathematics, 2023, 8(5): 11084-11094. doi: 10.3934/math.2023561

    Related Papers:

  • Let $ \phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \phi^{(j)}(x)\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $.



    加载中


    [1] R. Acharya, S. Singh, An exponential sum involving Fourier coefficients of eigenforms for $SL(2, \mathbb{Z})$, Ramanujan J., 54 (2021), 699–716. https://doi.org/10.1007/s11139-020-00255-0 doi: 10.1007/s11139-020-00255-0
    [2] W. Chung, T. Kim, H. Kwon, On the $q$-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156–168. https://doi.org/10.1134/S1061920814020034 doi: 10.1134/S1061920814020034
    [3] X. He, Exponential sums involving automorphic forms for $GL(3)$ over arithmetic progressions, Front. Math. China, 13 (2018), 1355–1368. https://doi.org/10.1007/s11464-018-0732-x doi: 10.1007/s11464-018-0732-x
    [4] J. Huang, T. Li, H. Liu, F. Xu, The general two-dimensional divisor problems involving Hecke eigenvalues, AIMS Math., 7 (2022), 6396–6403. https://doi.org/10.3934/math.2022356 doi: 10.3934/math.2022356
    [5] J. Huang, H. Liu, Divisor problems related to Hecke eigenvalues in three dimensions, J. Math., 2021 (2021), 9928233. https://doi.org/10.1155/2021/9928233
    [6] A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-function, Sieve Methods, Exponential Sums, and their Applications in Number Theory, London Math Soc Lecture Note Series, 237 (1997), 205–243. https://doi.org/10.1017/CBO9780511526091.015
    [7] H. Lao, The cancellation of Fourier coefficients of cusp forms over different sparse sequences, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1963–1972. https://doi.org/10.1007/s10114-013-2706-y doi: 10.1007/s10114-013-2706-y
    [8] H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58–71. https://doi.org/10.1007/s10474-019-00996-5 doi: 10.1007/s10474-019-00996-5
    [9] H. Lao, S. Luo, Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms, Rocky MT J. Math., 51 (2021), 1701–1714. https://doi.org/10.1216/rmj.2021.51.1701 doi: 10.1216/rmj.2021.51.1701
    [10] H. Liu, Notes on general divisor problems related to Maass cusp forms, Period. Math. Hung., In press.
    [11] T. Kim, D. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. https://doi.org/10.1134/S1061920817020091 doi: 10.1134/S1061920817020091
    [12] L. Ma, X. Yan, Resonance between the representation function and exponential functions over arithemetic progression, J. Math., 2021 (2021), 6616348. https://doi.org/10.1155/2021/6616348
    [13] X. Ren, Y. Ye, Resonance between automorphic forms and exponential functions, Sci. China Math., 53 (2010), 2463–2472. https://doi.org/10.1007/s11425-010-3150-4 doi: 10.1007/s11425-010-3150-4
    [14] X. Ren, Y. Ye, Resonance of automorphic forms for $GL(3)$, Trans. Amer. Math. Soc., 367 (2015), 2137–2157. https://doi.org/10.1007/s11425-010-3150-4 doi: 10.1007/s11425-010-3150-4
    [15] X. Ren, Y. Ye, Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for $GL(3)$, Sci. China Math., 58 (2015), 2105–2124. https://doi.org/10.1007/s11425-014-4955-3 doi: 10.1007/s11425-014-4955-3
    [16] Q. Sun, Y. Wu, Exponential sums involving Maass forms, Front. Math. China, 9 (2014), 1349–1366. https://doi.org/10.1007/s11464-014-0360-z doi: 10.1007/s11464-014-0360-z
    [17] Q. Sun, D. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. https://doi.org/10.1016/j.jnt.2016.04.010 doi: 10.1016/j.jnt.2016.04.010
    [18] X. Yan, On some exponential sums involving Maass forms over arithmetic progressions, J. Number Theory, 160 (2016), 44–59. https://doi.org/10.1016/j.jnt.2015.08.010 doi: 10.1016/j.jnt.2015.08.010
    [19] D. Zhang, Y. Lau, Y. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math. (Basel), 108 (2017), 263–269. https://doi.org/10.1007/s00013-016-0996-x doi: 10.1007/s00013-016-0996-x
    [20] D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. https://doi.org/10.1016/j.jnt.2016.12.018 doi: 10.1016/j.jnt.2016.12.018
    [21] D. Zhang, Y. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_{0}(N)$, Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6 doi: 10.1007/s11139-018-0051-6
    [22] D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 37 (2021), 1453–1464. https://doi.org/10.1007/s10114-021-0174-3 doi: 10.1007/s10114-021-0174-3
    [23] A. Zou, H. Lao, S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math., 2021 (2021), 2462693. https://doi.org/10.1155/2021/2462693
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1246) PDF downloads(182) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog