Let $ \phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \phi^{(j)}(x)\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $.
Citation: Rui Zhang, Yang Li, Xiaofei Yan. Exponential sums involving the divisor function over arithmetic progressions[J]. AIMS Mathematics, 2023, 8(5): 11084-11094. doi: 10.3934/math.2023561
Let $ \phi(x) $ be a smooth function supported on $ [1, 2] $ with derivatives bounded by $ \phi^{(j)}(x)\ll 1 $ and $ d_3(n) $ be the number of ways to write $ n $ as a product of three factors. We get the asymptotic formula for the nonlinear exponential sum $ \sum\limits_{n\ \equiv\ l\ mod\ q}d_3(n)\phi\left(\frac{n}{X}\right)e\left(\frac{3\sqrt[3]{kn}}{q}\right) $.
[1] | R. Acharya, S. Singh, An exponential sum involving Fourier coefficients of eigenforms for $SL(2, \mathbb{Z})$, Ramanujan J., 54 (2021), 699–716. https://doi.org/10.1007/s11139-020-00255-0 doi: 10.1007/s11139-020-00255-0 |
[2] | W. Chung, T. Kim, H. Kwon, On the $q$-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156–168. https://doi.org/10.1134/S1061920814020034 doi: 10.1134/S1061920814020034 |
[3] | X. He, Exponential sums involving automorphic forms for $GL(3)$ over arithmetic progressions, Front. Math. China, 13 (2018), 1355–1368. https://doi.org/10.1007/s11464-018-0732-x doi: 10.1007/s11464-018-0732-x |
[4] | J. Huang, T. Li, H. Liu, F. Xu, The general two-dimensional divisor problems involving Hecke eigenvalues, AIMS Math., 7 (2022), 6396–6403. https://doi.org/10.3934/math.2022356 doi: 10.3934/math.2022356 |
[5] | J. Huang, H. Liu, Divisor problems related to Hecke eigenvalues in three dimensions, J. Math., 2021 (2021), 9928233. https://doi.org/10.1155/2021/9928233 |
[6] | A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-function, Sieve Methods, Exponential Sums, and their Applications in Number Theory, London Math Soc Lecture Note Series, 237 (1997), 205–243. https://doi.org/10.1017/CBO9780511526091.015 |
[7] | H. Lao, The cancellation of Fourier coefficients of cusp forms over different sparse sequences, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1963–1972. https://doi.org/10.1007/s10114-013-2706-y doi: 10.1007/s10114-013-2706-y |
[8] | H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58–71. https://doi.org/10.1007/s10474-019-00996-5 doi: 10.1007/s10474-019-00996-5 |
[9] | H. Lao, S. Luo, Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms, Rocky MT J. Math., 51 (2021), 1701–1714. https://doi.org/10.1216/rmj.2021.51.1701 doi: 10.1216/rmj.2021.51.1701 |
[10] | H. Liu, Notes on general divisor problems related to Maass cusp forms, Period. Math. Hung., In press. |
[11] | T. Kim, D. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. https://doi.org/10.1134/S1061920817020091 doi: 10.1134/S1061920817020091 |
[12] | L. Ma, X. Yan, Resonance between the representation function and exponential functions over arithemetic progression, J. Math., 2021 (2021), 6616348. https://doi.org/10.1155/2021/6616348 |
[13] | X. Ren, Y. Ye, Resonance between automorphic forms and exponential functions, Sci. China Math., 53 (2010), 2463–2472. https://doi.org/10.1007/s11425-010-3150-4 doi: 10.1007/s11425-010-3150-4 |
[14] | X. Ren, Y. Ye, Resonance of automorphic forms for $GL(3)$, Trans. Amer. Math. Soc., 367 (2015), 2137–2157. https://doi.org/10.1007/s11425-010-3150-4 doi: 10.1007/s11425-010-3150-4 |
[15] | X. Ren, Y. Ye, Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for $GL(3)$, Sci. China Math., 58 (2015), 2105–2124. https://doi.org/10.1007/s11425-014-4955-3 doi: 10.1007/s11425-014-4955-3 |
[16] | Q. Sun, Y. Wu, Exponential sums involving Maass forms, Front. Math. China, 9 (2014), 1349–1366. https://doi.org/10.1007/s11464-014-0360-z doi: 10.1007/s11464-014-0360-z |
[17] | Q. Sun, D. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. https://doi.org/10.1016/j.jnt.2016.04.010 doi: 10.1016/j.jnt.2016.04.010 |
[18] | X. Yan, On some exponential sums involving Maass forms over arithmetic progressions, J. Number Theory, 160 (2016), 44–59. https://doi.org/10.1016/j.jnt.2015.08.010 doi: 10.1016/j.jnt.2015.08.010 |
[19] | D. Zhang, Y. Lau, Y. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math. (Basel), 108 (2017), 263–269. https://doi.org/10.1007/s00013-016-0996-x doi: 10.1007/s00013-016-0996-x |
[20] | D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. https://doi.org/10.1016/j.jnt.2016.12.018 doi: 10.1016/j.jnt.2016.12.018 |
[21] | D. Zhang, Y. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_{0}(N)$, Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6 doi: 10.1007/s11139-018-0051-6 |
[22] | D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 37 (2021), 1453–1464. https://doi.org/10.1007/s10114-021-0174-3 doi: 10.1007/s10114-021-0174-3 |
[23] | A. Zou, H. Lao, S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math., 2021 (2021), 2462693. https://doi.org/10.1155/2021/2462693 |