Research article Special Issues

T-spherical fuzzy information aggregation with multi-criteria decision-making

  • Received: 10 November 2022 Revised: 23 December 2022 Accepted: 29 December 2022 Published: 24 February 2023
  • MSC : 03E72, 94D05, 90B50

  • T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to account for uncertainty more effectively and spanning a larger domain. The sum of the t-$ th $ power of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a result, this set outperforms traditional fuzzy structures. The "multi-criteria decision-making" (MCDM) approach is a widely used technique that requires the use of some aggregation tools, and various such aggregation operators (AOs) have been developed over the years to achieve this purpose. The purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy environment. In this regard, we presented some new neutral or fair operational rules that combine the concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence, and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational rules, we presented the "T-spherical fuzzy fairly weighted average operator" and the "T-spherical fuzzy fairly ordered weighted averaging operator". Compared to earlier methodologies, the proposed AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an actual case study of "food waste treatment technology" (FWTT) selection under T-SPFSs scenarios. A comparison with an existing model has also been undertaken to confirm the validity and robustness of the acquired results.

    Citation: Hafiz Muhammad Athar Farid, Muhammad Riaz, Gustavo Santos Garcia. T-spherical fuzzy information aggregation with multi-criteria decision-making[J]. AIMS Mathematics, 2023, 8(5): 10113-10145. doi: 10.3934/math.2023512

    Related Papers:

  • T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to account for uncertainty more effectively and spanning a larger domain. The sum of the t-$ th $ power of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a result, this set outperforms traditional fuzzy structures. The "multi-criteria decision-making" (MCDM) approach is a widely used technique that requires the use of some aggregation tools, and various such aggregation operators (AOs) have been developed over the years to achieve this purpose. The purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy environment. In this regard, we presented some new neutral or fair operational rules that combine the concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence, and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational rules, we presented the "T-spherical fuzzy fairly weighted average operator" and the "T-spherical fuzzy fairly ordered weighted averaging operator". Compared to earlier methodologies, the proposed AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an actual case study of "food waste treatment technology" (FWTT) selection under T-SPFSs scenarios. A comparison with an existing model has also been undertaken to confirm the validity and robustness of the acquired results.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] B. C. Cuong, Picture fuzzy sets-first results, part 1, Seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013.
    [4] B. C. Cuong, Picture fuzzy sets-first results, part 2, Seminar neuro-fuzzy systems with applications, Institute of Mathematics, Hanoi, 2013.
    [5] B. C. Cuong, P. V. Hai, Some fuzzy logic operators for picture fuzzy sets, In 2015 Seventh International Conference on Knowledge and Systems Engineering, Vietnam, IEEE, 2015,132–137. https://doi.org/10.1109/KSE.2015.20
    [6] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Technol., 30 (2014), 409–420.
    [7] P. H. Phong, D. T. Hieu, R. T. H. Ngan, P. T. Them, Some compositions of picture fuzzy relations, In proceedings of the 7th national conference on fundamental and applied information technology research, FAIR'7, Thai Nguyen, 2014, 19–20.
    [8] G. W. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Projection models for multiple attribute decision making with picture fuzzy information, Int. J. Mach. Learn. Cyb., 9 (2018), 713–719. https://doi.org/10.1007/s13042-016-0604-1 doi: 10.1007/s13042-016-0604-1
    [9] G. W. Wei, H. Gao, The generalized dice similarity measures for picture fuzzy sets and their applications, Informatica, 29 (2018), 107–124.
    [10] G. W. Wei, Some similarity measures for picture fuzzy sets and their applications, Iran. J. Fuzzy Syst., 15 (2018), 77–89.
    [11] P. Singh, Correlation coefficients for picture fuzzy sets, J. Intell. Fuzzy Syst., 27 (2014), 2857–2868. https://doi.org/10.3233/IFS-141247 doi: 10.3233/IFS-141247
    [12] L. H. Son, DPFCM: A novel distributed picture fuzzy clustering method on picture fuzzy sets, Expert Syst. Appl., 2 (2015), 51–66.
    [13] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [14] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
    [15] G. W. Wei, Picture fuzzy hamacher aggregation operators and their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
    [16] C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
    [17] C. Tian, J. J. Peng, S. Zhang, W. Y. Zhang, J. Q. Wang, Weighted picture fuzzy aggregation operators and their applications to multi-criteria decision-making problems, Comput. Ind. Eng., 137 (2019), 106037. https://doi.org/10.1016/j.cie.2019.106037 doi: 10.1016/j.cie.2019.106037
    [18] L. Wang, H. Y. Zhang, J. Q. Wang, G. F. Wu, Picture fuzzy multi-criteria group decision-making method to hotel building energy efficiency retrofit project selection, RAIRO Oper. Res., 54 (2020), 211–229. https://doi.org/10.1051/ro/2019004 doi: 10.1051/ro/2019004
    [19] R. Wang, J. Wang, H. Gao, G. Wei, Methods for MADM with picture fuzzy muirhead mean operators and their application for evaluating the financial investment risk, Symmetry, 11 (2019), 6. https://doi.org/10.3390/sym11010006 doi: 10.3390/sym11010006
    [20] B. Li, J. Wang, L. Yang, X. Li Novel generalized simplified neutrosophic number Einstein aggregation operator, Int. J. Appl. Math., 48 (2016), 1–6.
    [21] M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanic, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
    [22] A. Iampan, G. S. Garcia, M. Riaz, H. M. A. Farid, R. Chinram, Linear diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math., 2021 (2021), 5548033. https://doi.org/10.1155/2021/5548033 doi: 10.1155/2021/5548033
    [23] H. M. A. Farid, M. Riaz, Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws, Int. J. Intell. Syst., 36 (2021), 7239–7273. https://doi.org/10.1002/int.22587 doi: 10.1002/int.22587
    [24] S. Ashraf, S. Abdullah, T. Mahmood, M, Aslam, Cleaner production evaluation in gold mines using novel distance measure method with cubic picture fuzzy numbers, Int. J. Fuzzy Syst., 21 (2019), 2448–2461. https://doi.org/10.1007/s40815-019-00681-3 doi: 10.1007/s40815-019-00681-3
    [25] S. Ashraf, S. Abdullah, T. Mahmood, Aggregation operators of cubic picture fuzzy quantities and their application in decision support systems, Korean J. Math., 28 (2020), 1976–8605.
    [26] A. Saha, D. Dutta, S. Kar, Some new hybrid hesitant fuzzy weighted aggregation operators based on Archimedean and Dombi operations for multi-attribute decision making, Neural Comput. Appl., 33 (2021), 8753–8776. https://doi.org/10.1007/s00521-020-05623-x doi: 10.1007/s00521-020-05623-x
    [27] A. Saha, P. Majumder, D. Dutta, B. K. Debnath, Multi-attribute decision making using q-rung orthopair fuzzy weighted fairly aggregation operators, J. Amb. Intell. Humaniz. Comput., 12 (2021), 8149–8171. https://doi.org/10.1007/s12652-020-02551-5 doi: 10.1007/s12652-020-02551-5
    [28] G. Wei, Z. Zhang, Some single-valued neutrosophic bonferroni power aggregation operators in multiple attribute decision making, J. Amb. Intell. Humaniz. Comput., 10 (2019), 863–882. https://doi.org/10.1007/s12652-018-0738-y doi: 10.1007/s12652-018-0738-y
    [29] F. Karaaslan, S. Ozlu, Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis, Int. J. Intell. Syst., 35 (2020), 1200–1229. https://doi.org/10.1002/int.22239 doi: 10.1002/int.22239
    [30] J. C. R. Alcantud, The relationship between fuzzy soft and soft topologies, J. Intell. Fuzzy Syst., 2022. https://doi.org/10.1007/s40815-021-01225-4 doi: 10.1007/s40815-021-01225-4
    [31] M. Akram, K. Ullah, D. Pamucar, Performance evaluation of solar energy cells using the interval-valued T-spherical fuzzy Bonferroni mean operators, Energies, 15 (2022), 292. https://doi.org/10.3390/en15010292 doi: 10.3390/en15010292
    [32] A. Hussain, K. Ullah, M. S. Yang, D. Pamucar, Aczel-Alsina aggregation operators on T-spherical fuzzy (TSF) information with application to TSF multi-attribute decision making, IEEE Access, 10 (2022), 26011–26023. https://doi.org/10.1109/ACCESS.2022.3156764 doi: 10.1109/ACCESS.2022.3156764
    [33] B. Cao, Y. Yan, Y. Wang, X. Liu, J. C. W. Lin, A. K. Sangaiah, et al., A multiobjective intelligent decision-making method for multistage placement of PMU in power grid enterprises, IEEE Trans. Industr. Inform., 2022.
    [34] K. Liu, Z. Yang, W. Wei, B. Gao, D. Xin, C. Sun, et al., Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables, High Volt., 2022. https://doi.org/10.1049/hve2.12258 doi: 10.1049/hve2.12258
    [35] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [36] F. K. Gundogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [37] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach towards decision making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural. Comput. Appl., 31 (2018), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [38] M. Munir, H. Kalsoom, K. Ullah, T. Mahmood, Y. M. Chu, T-spherical fuzzy Einstein hybrid aggregation operators and their applications in multi-attribute decision making problems, Symmetry, 12 (2020), 365. https://doi.org/10.3390/sym12030365 doi: 10.3390/sym12030365
    [39] S. Zeng, M. Munir, T. Mahmood, M. Naeem, Some T-spherical fuzzy Einstein interactive aggregation operators and their application to selection of photovoltaic cells, Math. Probl. Eng., 2020 (2020), 1904362.
    [40] P. Liu, Q. Khan, T. Mahmood, N. Hassan, T-spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making, IEEE Access, 7 (2019), 22613–22632. https://doi.org/10.1109/ACCESS.2019.2896107 doi: 10.1109/ACCESS.2019.2896107
    [41] K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
    [42] Q. Khan, J. Gwak, M. Shahzad, M. K. Alam, A novel approached based on T-spherical fuzzy Schweizer-Sklar power Heronian mean operator for evaluating water reuse applications under uncertainty, Sustainability, 13 (2021), 7108. https://doi.org/10.3390/su13137108 doi: 10.3390/su13137108
    [43] X. Gou, P. Xiao, D. Huang, F. Deng, Probabilistic double hierarchy linguistic alternative queuing method for real economy development evaluation under the perspective of economic financialization, Econ. Res.-Ekon. Istraž., 34 (2021), 3225–3244. https://doi.org/10.1080/1331677X.2020.1870520 doi: 10.1080/1331677X.2020.1870520
    [44] X. Gou, Z. Xu, H. Liao, F. Herrera, Probabilistic double hierarchy linguistic term set and its use in designing an improved VIKOR method: The application in smart healthcare, J. Oper. Res. Soc., 72 (2021), 2611–2630. https://doi.org/10.1080/01605682.2020.1806741 doi: 10.1080/01605682.2020.1806741
    [45] X. Gou, Z. Xu, W. Zhou, E. H. Viedma, The risk assessment of construction project investment based on prospect theory with linguistic preference orderings, Econ. Res.-Ekon. Istraž., 34 (2021), 709–731.
    [46] J. C. R. Alcantud, G. S. García, M. Akram, OWA aggregation operators and multi-agent decisions with N-soft sets, Expert Syst. Appl., 203 (2022), 1–17. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430
    [47] M. Sitara, M. Akram, M. Riaz, Decision-making analysis based on q-rung picture fuzzy graph structures, J. Appl. Math. Comput., 67 (2021), 541–577. https://doi.org/10.1007/s12190-020-01471-z doi: 10.1007/s12190-020-01471-z
    [48] F. Feng, Y. Zheng, B. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granular Comput., 7 (2022), 95–111. https://doi.org/10.1007/s41066-021-00253-7 doi: 10.1007/s41066-021-00253-7
    [49] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intel. Hum. Comp., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
    [50] F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, Rehoboth, American Research Press, 1999, 1–141.
    [51] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single-valued neutrosophic sets, Infinite study, 2010, 1–4.
    [52] P. Rani, A. R. Mishra, A. Saha, I. M. Hezam, D. Pamucar, Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: An application to food waste treatment technology selection, Int. J. Intell. Syst., 37 (2022), 2612–2647. https://doi.org/10.1002/int.22787 doi: 10.1002/int.22787
    [53] A. M. Buyuk, G. T. Temur, Food waste treatment option selection through spherical fuzzy AHP, J. Intell. Fuzzy Syst., 42 (2022), 97–107. https://doi.org/10.3233/JIFS-219178 doi: 10.3233/JIFS-219178
    [54] P. Rani, A. R. Mishra, R. Krishankumar, K. S. Ravichandran, S. Kar, Multi-criteria food waste treatment method selection using single-valued neutrosophic-CRITIC-MULTIMOORA framework, Appl. Soft Comput., 111 (2021), 107657. https://doi.org/10.1016/j.asoc.2021.107657 doi: 10.1016/j.asoc.2021.107657
    [55] T. Chen, Y. Jin, X. Qiu, X. Chen, A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods, Expert Syst. Appl., 41 (2014), 7328–7337. https://doi.org/10.1016/j.eswa.2014.06.006 doi: 10.1016/j.eswa.2014.06.006
    [56] J. Y. Ho, J. Ooi, Y. K. Wan, V. Andiappan, Synthesis of wastewater treatment process (WWTP) and supplier selection via Fuzzy Analytic Hierarchy Process (FAHP), J. Clean. Prod., 314 (2021), 128104. https://doi.org/10.1016/j.jclepro.2021.128104 doi: 10.1016/j.jclepro.2021.128104
    [57] UNEP food waste index report 2021. Available from: https://www.unep.org/resources/report/unep-food-waste-index-report-2021.
    [58] K. L. Thyberg, D. J. Tonjes, J. Gurevitch, Quantification of food waste disposal in the United States: A meta-analysis, Environ. Sci. Technol., 49 (2015), 13946–13953. https://doi.org/10.1021/acs.est.5b03880 doi: 10.1021/acs.est.5b03880
    [59] Z. Wen, Y. Wang, D. D. Clercq, What is the true value of food waste? A case study of technology integration in urban food waste treatment in Suzhou City China, J. Clean. Prod., 118 (2016), 88–96. https://doi.org/10.1016/j.jclepro.2015.12.087 doi: 10.1016/j.jclepro.2015.12.087
    [60] A. Ahamed, K. Yin, B. J. H. Ng, F. Ren, V. W. C. Chang, J. Y. Wang, Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives, J. Clean. Prod., 131 (2016), 607–614. https://doi.org/10.1016/j.jclepro.2016.04.127 doi: 10.1016/j.jclepro.2016.04.127
    [61] N. R. Khalili, S. Duecker, Application of multi-criteria decision analysis in design of sustainable environmental management system framework, J. Clean. Prod., 47 (2016), 188–198.
    [62] M. A. Babalola, A multi-criteria decision analysis of waste treatment options for food and biodegradable waste management in Japan, Environments, 2 (2015), 471–488. https://doi.org/10.3390/environments2040471 doi: 10.3390/environments2040471
    [63] M. A. Mir, P. T. Ghazvine, N. M. N. Sulaiman, N. E. A. Basri, S. Saheri, N. Z. Mahmood, et al., Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model, J. Environ. Manag., 166 (2016), 109–115. https://doi.org/10.1016/j.jenvman.2015.09.028 doi: 10.1016/j.jenvman.2015.09.028
    [64] H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [65] H. Zheng, S. Jin, A multi-source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server, Int. J. Math. Comput. Sci., 32 (2022), 125–138. http://dx.doi.org/10.34768/amcs-2022-0010 doi: 10.34768/amcs-2022-0010
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1729) PDF downloads(167) Cited by(6)

Article outline

Figures and Tables

Figures(3)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog