Research article

Common fixed points and convergence results for $ \alpha $-Krasnosel'skii mappings

  • Received: 09 January 2023 Revised: 15 February 2023 Accepted: 16 February 2023 Published: 23 February 2023
  • MSC : 47H09, 47H10

  • We present convergence and common fixed point conclusions of the Krasnosel'skii iteration which is one of the iterative methods associated with $ \alpha $-Krasnosel'skii mappings satisfying condition (E). Our conclusions extend, generalize and improve numerous conclusions existing in the literature. Examples are given to support our results.

    Citation: Amit Gangwar, Anita Tomar, Mohammad Sajid, R.C. Dimri. Common fixed points and convergence results for $ \alpha $-Krasnosel'skii mappings[J]. AIMS Mathematics, 2023, 8(4): 9911-9923. doi: 10.3934/math.2023501

    Related Papers:

  • We present convergence and common fixed point conclusions of the Krasnosel'skii iteration which is one of the iterative methods associated with $ \alpha $-Krasnosel'skii mappings satisfying condition (E). Our conclusions extend, generalize and improve numerous conclusions existing in the literature. Examples are given to support our results.



    加载中


    [1] N. Altwaijry, T. Aldhaban, S. Chebbi, H. Xu, Krasnoselskii-Mann viscosity approximation method for nonexpansive mappings, Mathematics, 8 (2020), 1153. http://dx.doi.org/10.3390/math8071153 doi: 10.3390/math8071153
    [2] S. Atailia, N. Redjel, A. Dehici, Some fixed point results for generalized contractions of Suzuki type in Banach spaces, J. Fixed Point Theory Appl., 21 (2019), 78. http://dx.doi.org/10.1007/s11784-019-0717-8 doi: 10.1007/s11784-019-0717-8
    [3] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), 293–304.
    [4] F. Browder, W. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Am. Math. Soc., 72 (1966), 571–575.
    [5] C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, London: Springer, 2009. http://dx.doi.org/10.1007/978-1-84882-190-3
    [6] A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Berlin: Springer, 2013. http://dx.doi.org/10.1007/978-3-642-30901-4
    [7] G. Emmanuele, Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with Opial's condition, Proc. Am. Math. Soc., 94 (1985), 103–109.
    [8] E. Fuster, E. Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal., 2011 (2011), 435686. http://dx.doi.org/10.1155/2011/435686 doi: 10.1155/2011/435686
    [9] K. Goebel, M. Pineda, A new type of nonexpansiveness, Proceedings of the 8-th International Conference on Fixed Point Theory and Applications, 2007, 16–22.
    [10] K. Goebel, W. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35 (1972), 171–174.
    [11] G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. http://dx.doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [12] S. He, Q. Dong, H. Tian, X. Li, On the optimal relaxation parameters of Krasnosel'ski-Mann iteration, Optimization, 70 (2021), 1959–1986. http://dx.doi.org/10.1080/02331934.2020.1767101 http://dx.doi.org/10.1080/02331934.2020.1767101 doi: 10.1080/02331934.2020.1767101
    [13] R. Kannan, Fixed point theorems in reflexive Banach spaces, Proc. Am. Math. Soc., 38 (1973), 111–118.
    [14] W. Kirk, B. Sims, Handbook of metric fixed point theory, Dordrecht: Springer, 2011. http://dx.doi.org/10.1007/978-94-017-1748-9
    [15] W. Kirk, H. Xu, Asymptotic pointwise contractions, Nonlinear Anal.-Theor., 69 (2008), 4706–4712. http://dx.doi.org/10.1016/j.na.2007.11.023 doi: 10.1016/j.na.2007.11.023
    [16] M. Krasnosel'skii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345–409.
    [17] A. Latif, R. Al Subaie, M. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. http://dx.doi.org/10.23952/jnva.6.2022.1.07 doi: 10.23952/jnva.6.2022.1.07
    [18] A. Moslemipour, M. Roohi, A Krasnoselskii-Mann type iteration for nonexpansive mappings in Hadamard spaces, J. Adv. Math. Stud., 14 (2021), 85–93.
    [19] A. Nicolae, Generalized asymptotic pointwise contractions and nonexpansive mappings involving orbits, Fixed Point Theory Appl., 2010 (2009), 458265. http://dx.doi.org/10.1155/2010/458265 doi: 10.1155/2010/458265
    [20] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591–597.
    [21] R. Pandey, R. Pant, V. Rakocevic, R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math., 74 (2019), 7. http://dx.doi.org/10.1007/s00025-018-0930-6 doi: 10.1007/s00025-018-0930-6
    [22] R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Func. Anal. Opt., 38 (2017), 248–266. http://dx.doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075
    [23] R. Pant, P. Patel, R. Sukla, M. De la Sen, Fixed point theorems for nonexpansive type mappings in Banach spaces, Symmetry, 13 (2021), 585. http://dx.doi.org/10.3390/sym13040585 doi: 10.3390/sym13040585
    [24] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pure. Appl., 6 (1890), 145–210.
    [25] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. http://dx.doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
    [26] K. Ullah, J. Ahmad, M. Arshad, Z. Ma, Approximation of fixed points for enriched Suzuki nonexpansive operators with an application in Hilbert spaces, Axioms, 11 (2022), 14. http://dx.doi.org/10.3390/axioms11010014 doi: 10.3390/axioms11010014
    [27] H. Xu, N. Altwaijry, S. Chebbi, Strong convergence of Mann's iteration process in Banach spaces, Mathematics, 8 (2020), 954.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1119) PDF downloads(53) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog