Research article

Robustness analysis of fuzzy BAM cellular neural network with time-varying delays and stochastic disturbances

  • Received: 10 December 2022 Revised: 29 January 2023 Accepted: 06 February 2023 Published: 15 February 2023
  • MSC : 93B35, 93D23

  • Robustness analysis for the global exponential stability of fuzzy bidirectional associative memory cellular neural network (FBAMCNN) is explored in this paper. By applying Gronwall-Bellman lemma and other inequality techniques, the range limits of both time-varying delays and the intensity of noise that FBAMCNN can withstand to maintain globally exponentially stable is estimated. It means that if the intensities of interference are larger than the bounds we derived, then the perturbed system may lose global exponential stability. Several instances are given to support our main results.

    Citation: Wenxiang Fang, Tao Xie, Biwen Li. Robustness analysis of fuzzy BAM cellular neural network with time-varying delays and stochastic disturbances[J]. AIMS Mathematics, 2023, 8(4): 9365-9384. doi: 10.3934/math.2023471

    Related Papers:

  • Robustness analysis for the global exponential stability of fuzzy bidirectional associative memory cellular neural network (FBAMCNN) is explored in this paper. By applying Gronwall-Bellman lemma and other inequality techniques, the range limits of both time-varying delays and the intensity of noise that FBAMCNN can withstand to maintain globally exponentially stable is estimated. It means that if the intensities of interference are larger than the bounds we derived, then the perturbed system may lose global exponential stability. Several instances are given to support our main results.



    加载中


    [1] S. Hyakin, Neural networks: a comprehensive foundation, 2 Eds., USA: Prentice Hall PTR, 1998.
    [2] L. O. Chua, L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1272. http://dx.doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [3] L. O. Chua, L. Yang, Cellular neural networks: applications, IEEE Trans. Circuits Syst., 35 (1988), 1273–1290. http://dx.doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [4] B. Kosko, Bidirectional associative memories, IEEE Trans. Syst. Man Cybern. Syst., 18 (1988), 49–60. http://doi.org/10.1109/21.87054 doi: 10.1109/21.87054
    [5] G. Nagamani, A. Karnan, G. Soundararajan, Delay-dependent and independent state estimation for bam cellular neural networks with multi-proportional delays, Circuits, Syst. Signal Process., 40 (2021), 3179–3203. http://doi.org/10.1007/s00034-020-01622-4 doi: 10.1007/s00034-020-01622-4
    [6] N. Maglaveras, T. Stamkopoulos, C. Pappas, M. Strintzis, Ecg processing techniques based on neural networks and bidirectional associative memories, J. Med. Eng. Technol., 22 (1998), 106–111. http://doi.org/10.3109/03091909809062475 doi: 10.3109/03091909809062475
    [7] W. Wang, X. Wang, X. Luo, M. Yuan, Finite-time projective synchronization of memristor-based bam neural networks and applications in image encryption, IEEE Access, 6 (2018), 56457–56476. http://doi.org/10.1109/ACCESS.2018.2872745 doi: 10.1109/ACCESS.2018.2872745
    [8] Y. Liu, W. Tang, Exponential stability of fuzzy cellular neural networks with constant and time-varying delays, Phys. Lett. A, 323 (2004), 224–233. http://doi.org/10.1016/j.physleta.2004.01.064 doi: 10.1016/j.physleta.2004.01.064
    [9] W. Yang, Periodic solution for fuzzy cohen–grossberg bam neural networks with both time-varying and distributed delays and variable coefficients, Neural Process. Lett., 40 (2014), 51–73. http://doi.org/10.1007/s11063-013-9310-0 doi: 10.1007/s11063-013-9310-0
    [10] Y. Cao, S. Ramajayam, R. Sriraman, R. Samidurai, Leakage delay on stabilization of finite-time complex-valued BAM neural network: Decomposition approach, Neurocomputing, 463 (2021), 505-513. https://doi.org/10.1016/j.neucom.2021.08.056 doi: 10.1016/j.neucom.2021.08.056
    [11] J. H. Park, S. M. Lee, O. M. Kwon, On exponential stability of bidirectional associative memory neural networks with time-varying delays. Chaos, Solitons Fract., 39 (2009), 1083–1091. http://doi.org/10.1016/j.chaos.2007.05.003
    [12] Y. Wang, J. Cao, Exponential stability of stochastic higher-order bam neural networks with reaction-diffusion terms and mixed time-varying delays, Neurocomputing, 119 (2013), 192–200. http://doi.org/10.1016/j.neucom.2013.03.040 doi: 10.1016/j.neucom.2013.03.040
    [13] Y. Li, Y. Shen, Preserving global exponential stability of hybrid bam neural networks with reaction diffusion terms in the presence of stochastic noise and connection weight matrices uncertainty, Math. Probl. Eng., 2014 (2014), 1–17. http://doi.org/10.1155/2014/486052 doi: 10.1155/2014/486052
    [14] T. Yang, L. Yang, The global stability of fuzzy cellular neural network, IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl., 43 (1996), 880–883. http://dx.doi.org/10.1109/81.538999 doi: 10.1109/81.538999
    [15] T. Yang, L. Yang, C. Wu, L. O. Chua, Fuzzy cellular neural networks: theory, 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96), 1996,181–186. http://dx.doi.org/10.1109/cnna.1996.566545 doi: 10.1109/cnna.1996.566545
    [16] T. Yang, C. Yang, L. Yang, The differences between cellular neural network based and fuzzy cellular nneural network based mathematical morphological operations, Int. J. Circuit Theory Appl., 26 (1998), 13–25.
    [17] T. Yang, L. Yang, C. W Wu, L. O. Chua, Fuzzy cellular neural networks: applications, 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96), 1996,225–230. https://doi.org/10.1109/cnna.1996.566560 doi: 10.1109/cnna.1996.566560
    [18] T. Yang, L. Yang, Application of fuzzy cellular neural networks to euclidean distance transformation, IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl., 44 (1997), 242–246. http://doi.org/10.1109/81.557369 doi: 10.1109/81.557369
    [19] L. Chen, H. Zhao, Stability analysis of stochastic fuzzy cellular neural networks with delays, Neurocomputing, 72 (2008), 436–444. http://doi.org/10.1016/j.neucom.2007.12.005 doi: 10.1016/j.neucom.2007.12.005
    [20] S. Ramajayam, S. Rajavel, R, Samidurai, Y. Cao, Finite-time synchronization for T–S fuzzy complex-valued inertial delayed neural networks via decomposition approach, Neural Process. Lett., 2023. https://doi.org/10.1007/s11063-022-11117-9 doi: 10.1007/s11063-022-11117-9
    [21] R. Saravanakumar, R. Datta, Y. Cao, New insights on fuzzy sampled-data stabilization of delayed nonlinear systems, Chaos, Solitons Fract., 154 (2022), 111654. https://doi.org/10.1016/j.chaos.2021.111654 doi: 10.1016/j.chaos.2021.111654
    [22] R. Sathy, P. Balasubramaniam, Stability analysis of fuzzy markovian jumping cohen-grossberg bam neural networks with mixed time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2054–2064. http://doi.org/10.1016/j.cnsns.2010.08.012 doi: 10.1016/j.cnsns.2010.08.012
    [23] M. S. Ali, P. Balasubramaniam, Q. Zhu, Stability of stochastic fuzzy bam neural networks with discrete and distributed time-varying delays, Int. J. Mach. Learn. Cyber., 8 (2017), 263–273. http://doi.org/10.1007/s13042-014-0320-7 doi: 10.1007/s13042-014-0320-7
    [24] M. S. Ali, P. Balasubramaniam, Robust stability for uncertain stochastic fuzzy bam neural networks with time-varying delays, Phys. Lett. A, 372 (2008), 5159–5166. http://doi.org/10.1016/j.physleta.2008.05.067 doi: 10.1016/j.physleta.2008.05.067
    [25] Y. Shen, J. Wang, Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 87–96. http://doi.org/10.1109/TNNLS.2011.2178326 doi: 10.1109/TNNLS.2011.2178326
    [26] W. Si, T. Xie, B. Li, Further results on exponentially robust stability of uncertain connection weights of neutral-type recurrent neural networks, Complexity, 2021 (2021), 1–15. http://doi.org/10.1155/2021/6941701 doi: 10.1155/2021/6941701
    [27] W. Fang, T. Xie, B. Li, Robustness analysis of fuzzy cellular neural network with deviating argument and stochastic disturbances, IEEE Access, 11 (2023), 3717–3728. https://doi.org/10.1109/ACCESS.2023.3233946 doi: 10.1109/ACCESS.2023.3233946
    [28] Y. Li, C. Wang, Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses, Fuzzy Sets Syst., 217 (2013), 62–79. https://doi.org/10.1016/j.fss.2012.11.009 doi: 10.1016/j.fss.2012.11.009
    [29] X. Mao, Stochastic differential equations and applications, 2 Eds., UK: Woodhead Publishing, 2008.
    [30] J. J. Oliveira, Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks, Chaos, Solitons Fract., 164 (2022), 112676. https://doi.org/10.1016/j.chaos.2022.112676 doi: 10.1016/j.chaos.2022.112676
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1348) PDF downloads(68) Cited by(5)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog