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Abstract: Robustness analysis for the global exponential stability of fuzzy bidirectional associative
memory cellular neural network (FBAMCNN) is explored in this paper. By applying Gronwall-
Bellman lemma and other inequality techniques, the range limits of both time-varying delays and the
intensity of noise that FBAMCNN can withstand to maintain globally exponentially stable is estimated.
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1. Introduction

Artificial neural networks (ANN) mimic biological neurons in design. Numerous extensions of
ANN have been developed based on ANN and are in use today [1], such as cellular neural networks
(CNN). CNN, a subclass of ANN that Chua and Yang initially presented in [2, 3], successfully
addresses ANN’s shortcomings by reducing the number of connections while maintaining the benefits
of parallel processing. Additionally, neurons in a CNN can only communicate with neurons in the same
region. As a result, CNN may simply be extended based on these characteristics without requiring
structural changes.

As one of the most important extensions, the bidirectional associative memory cellular neural
network (BAMCNN) model was first proposed by Kosko [4]. Two-layer neurons make up the pattern-
matched hetero associative BAMCNN, which is a generalization of the single-layer auto-associative
Hebbian network. Neurons in one layer are no interconnection, but they are interconnected with
neurons in another layer fully. Based on these properties, BAMCNN has gained a lot of attentions
since it was proposed [5–7].
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In practical engineering applications, time delay and stochastic disturbances are inevitable due to
the limited conversion speed of amplifier and the noise of signal transmission of electronic equipment,
we can easily observe those two perturbations experimentally and numerically. Different time delays
will lead to different response of the dynamical behaviours of the delayed systems. In our knowledge,
the main types of time delay are constant delay [8], time varying delay [8], distributed delay [9],
proportional delay [5] and so on [10]. Stochastic disturbances, where the structure of random
disturbances is extremely fresh and complex, which is quite different from the traditional process.
For BAMCNN affected by the above two disturbances, the research of dynamical behaviours of it gets
more and more attention in decades [5, 11–13]. In [11], Park et al. estimate the covergence rate of
delayed BAM neural network and criteria of exponential stability is studied. The problem of delay-
dependent and independent state estimation of BAMCNN is explored in [5]. Wang et al. [12] discussed
the stability of a delayed higher-order stochastic BAM neural network. In [13], novel criterion are given
for stability of a type hybrid BAM neural network with stochastic noises by Li and Shen.

It is worth to point out that the literature above is mainly explore the stability of BAM neural
networks disturbed by time delays or stochastic disturbances without fuzzy logic. However, neural
networks with fuzzy logic can model these issues better than general neural network for those physical
events for which mathematical models are hard to obtain, dynamic properties are challenging to master,
or the changes are particularly large. Therefore, in 1996, Yang and Yang combine fuzzy logic with
CNN for the first time and discuss its stability in detail [14,15]. FCNN is a kind of CNN which include
fuzzy logical in its structure, and also maintains the local connectivity of cells. With the use of fuzzy
logic, we can integrate CNNs’ low and high level information processing capabilities. And in [16],
Yang et al. pointed out the differences between FCNN and CNN in mathematical morphological
operations. Furthermore, with the gradual improvement of the theory of FCNN, various properties
and applications of FCNN have been researched broadly [8, 17–21].

In addition, many researchers have extended FCNN to fuzzy BAMCNN (FBAMCNN) in recent
decades. The stability of FBAMCNN with delays and stochastic disturbance has also been extensively
studied by Lyapunov method, Razumikhin-type method etc, see [22–24]. In [22], the stability of
delayed cohen-grossberg FBAMCNN with markovian switching is investigated. In [23, 24], Ali
et al. derived novel criteria of robust stability and stability in mean-square of stochastic FBAMCNN
respectively.

From the above discussions, we can see that all the above results mainly discuss the stability of
FBAMCNN with perturbations, and do not explore the robustness of the stability of FBAMCNN with
perturbations. The problem of the robustness of stability (RoS) was first proposed by Shen in [25],
and has attracted wide attention in recent years [26, 27]. However, as far as we know, there are few
researchers to study the RoS of FBAMCNN with perturbations.

Motivated by the above discussions, we explore the robustness of the exponential stability of
FBAMCNN disturbed by time-varying delays and stochastic disturbances in this paper. In short, our
work and contribution are listed below.

• The RoS of delayed BAMCNN (DFBAMCNN) and stochastic DFBAMCNN (SDBAMCNN) are
investigated by utilizing Gronwall inequality as well as other inequality techniques, the upper
limits of delays and noise intensities to sustain their original stability are estimated.
• Compared to [26], fuzzy logic are included in the systems we considered in this paper, hence,

their complexity are improved to a certain extent. In addition, we extend the single layer neural
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network to BAM neural network which also increases the difficulty of analysis. Furthermore,
the FBAMCNN considered in this paper can handle imprecise or uncertain information better
than BAMCNN. And, the results derived in this paper play an important role in the design and
application of FBAMCNN.

Finally, there is a brief introduction to the main works of each section. We introduce the model of
our system and the primaries we needed in the latter in Section 2. We explore the RoS of DFBAMCNN
in Section 3, and we get the limit of time-varying delays. In Section 4, SDFBAMCNN is considered,
and we get the max intensities of both time delay and stochastic noise. and Section 5 includes various
numerical instances to test the usefulness of the results.

Notations: Denote R = (−∞,+∞), R+ = [0,+∞), Rm = {χ|χ = {χ1, . . . , χm}, χi ∈ R, i =
1, 2, . . . ,m}. N+ = {1, 2, · · · }. | · | represents the absolute value of real numbers and ||U(t)|| =

∑m
i=1 |Ui(t)|,

where U(t) = (U1(t), · · · ,Um(t))T . Complete filtered probability space (Ω,F , {Ft}t≥0, P) embraces all
P-null sets, where {Ft}t≥0 is a right continuous filtration that satisfies the usual conditions. Scalar
Brownian movement ℧(t) is defined at (Ω,F , {Ft}t≥0, P). Operator E is used to calculate mathematical
expectations. Denote L2

F0
([−Ḡ, 0];Rn) as the family of all F0 measurable C([−Ḡ, 0];Rn) valued random

variables ℏ = {ℏ(θ) : −Ḡ ≤ θ ≤ 0} such that sup−Ḡ≤θ≤0 E||ℏ(θ)||2 < ∞. λ(t) and υ(t) are delay functions
which satisfy λ(t)

′

, υ
′

(t) ≤ ℘∗ < 1, and we assume that they have boundaries λ and υ respectively.
∧

and
∨

denote AND and OR operations in fuzzy logic respectively.

2. Primaries

Consider the following FBAMCNN:


ϖ̇k(t) = −ckϖk(t) +

p∧
r=1

αkr fr(ζr(t)) +
p∨

r=1

βkr fr(ζr(t)) +
p∧

r=1

Fkrur(t) +
p∨

r=1

Ekrur(t) + Ik,

ζ̇r(t) = −drζr(t) +
q∧

k=1

ωrkgk(ϖk(t)) +
q∨

k=1

γrkgk(ϖk(t)) +
q∧

k=1

Grkvk(t) +
q∨

k=1

Hrkvk(t) + Jr

(2.1)

with initial value (ϖ0, ζ0)T , where k, r ∈ N+ and ϖ0 = (ϖ1(t0), . . . , ϖq(t0)), ζ0 = (ζ1(t0), . . . , ζp(t0)).
With the networks and external inputs disconnecting, ck and dr are the rates that present as the kth
and rth neuron reset their potential to the isolated resting state. αkr and ωrk are the elements of fuzzy
feedback MIN template; βkr and γrk are elements of fuzzy feedback MAX template; Γr(·) and Ξk(·) are
the activation functions; Fkr and Grk, Ekr and Hrk are elements of fuzzy feed-forward MIN template
and fuzzy feed-forward MAX template respectively;ϖk and ζr are the kth and rth neuron respectively;
ur(t) and vk(t) are the states of DFBAMCNN (2.1); Both of Ik and Jr are constant external inputs.

Assume that (ϖ(t), ζ(t))T is one of solutions of FBAMCNN (2.1), and assume (ϖ∗, ζ∗)T is
the equilibrium point (Ep) of FBAMCNN (2.1), where ϖ(t) = (ϖ1(t), ϖ2(t), . . . , ϖq(t)), ζ(t) =
(ζ1(t), ζ2(t), . . . , ζp(t)), ϖ∗ = (ϖ∗1, ϖ

∗
2, . . . , ϖ

∗
q), ζ∗ = (ζ∗1 , ζ

∗
2 , . . . , ζ

∗
p). Let Λk(t) = ϖk(t) − ϖ∗k,

Υr(t) = ζr(t) − ζ∗r and Γr(Υr(t)) = fr(Υr(t) + ζ∗r ) − fr(ζ∗r ), Ξk(Λk(t)) = gk(Λk(t) + ϖ∗k) − gk(ϖ∗k). Then
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FBAMCNN (2.1) is equivalent with
Λ̇k(t) = −ckΛk(t) +

p∧
r=1

αkrΓr(Υr(t)) +
p∨

r=1

βkrΓr(Υr(t)),

Υ̇r(t) = −drΥr(t) +
q∧

k=1

ωrkΞk(Λk(t)) +
q∨

k=1

γrkΞk(Λk(t)),

(2.2)

where initial value of FBAMCNN (2.2) is (Λ0, Υ0)T = (ϖ0, ζ0)T − (ϖ∗, ζ∗)T . After transform we can
observe that the origin is Ep of FBAMCNN (2.2). Hence, the properties of origin point of FBAMCNN
(2.2) is the same as the properties of the Ep of FBAMCNN (2.1). Then we give an assumption and a
definition we need.

Assumption H(1): There exist lr > 0 and lk > 0 such that

|Γr(ϱ) − Γr(ς)| ≤ lr|ϱ − ς|,

|Ξk(ϱ) − Ξk(ς)| ≤ lk|ϱ − ς|,

and Γr(0) = 0, Ξk(0) = 0.
Next, the definition of globally exponential stability (GES) of FBAMCNN (2.2) is given below.

Definition 1. [28] FBAMCNN (2.2) is GES if

||Φ(t)|| ≤ L||Θ||e−K(t−t0), ∀t ∈ R+

holds, where K and L are two positive constants. Φ(t) = (Λ1(t), · · · , Λq(t), Υ1(t), · · · , Υp(t))T is
the state of FBAMCNN (2.2), and Θ = (ϕ1(0), . . . , ϕq(0), φ1(0), . . . , φp(0))T is the initial value of
FBAMCNN (2.2).

Unless otherwise stated, FBAMCNN (2.1) is GES throughout this article.

Lemma 1. [14] For FBAMCNN (2.2), we have

|

p∧
r=1

αkrΓr(u) −
p∧

r=1

αkrΓr(v)| ≤
p∑

r=1

|αkr||Γr(u) − Γr(v)|,

|

p∨
r=1

βkrΓr(u) −
p∨

r=1

βkrΓr(v)| ≤
p∑

r=1

|βkr||Γr(u) − Γr(v)|,

|

q∧
k=1

ωrkΞk(u) −
q∧

k=1

ωrkΞk(v)| ≤
q∑

k=1

|ωrk||Ξk(u) − Ξk(v)|,

|

q∨
k=1

γrkΞk(u) −
q∨

k=1

γrkΞk(v)| ≤
q∑

k=1

|γrk||Ξk(u) − Ξk(v)|,

where u and v are states of (2.2).
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3. Robustness of stability of DFBAMCNN

The following is the model of DFBAMCNN we considered in this part.
η̇k(t) = −ckηk(t) +

p∧
r=1

αkrΓr(ϑr(t − λ(t))) +
p∨

r=1

βkrΓr(ϑr(t − λ(t))),

ϑ̇r(t) = −drϑr(t) +
q∧

k=1

ωrkΞk(ηk(t − υ(t))) +
q∨

k=1

γrkΞk(ηk(t − υ(t))),

(3.1)

with initial conditions (ηk(t0), ϑr(t0))T = (ϕk(t0), φr(t0))T , k, r ∈ N+ where ϕ ∈ C([−Ḡ, 0];Rq), φ ∈
C([−Ḡ, 0];Rp). If λ(t) = υ(t) = 0, the DFBAMCNN (3.1) degenerate to FBAMCNN (2.2).

Lemma 2. [9] The DFBAMCNN (3.1) can be seen as a special instance of the result in [9], thus, the
solution (Λ(t), Υ(t))T is unique.

Then, we explore the robustness of DFBAMCNN (3.1).

Theorem 1. Let H(1) holds, DFBAMCNN (3.1) is said to be GES if G < min{∆/2, Ḡ}, where Ḡ is the
positive root of the following equation

(D + CL/K) exp(2E∆) +L exp[−K(∆ −G)] = 1, (3.2)

where

∆ > lnL/K ,D = M5[G + 2G(1 − ℘∗)−1 + M5G
2(1 − ℘∗)−1],C = M4G + M2

5G(1 − ℘∗)−1,

E = max{m1 + m4 + C,m2 + m3 + C},m1 = max
1≤k≤q
|ck|, m2 = max

1≤r≤p
lr

q∑
k=1

(|αkr| + |βkr|),

m3 = max
1≤r≤p

|dr|, m4 = max
1≤k≤q

lk

p∑
r=1

(|ωrk| + |γrk|),M4 = max{m1m4,m2m3},M5 = max{m2,m4}.

Proof. By (2.2), (3.1), we have

|Λk(t) − ηk(t)| ≤
∫ t

t0

[
|ck||Λk(s) − ηk(s)| + |

p∧
r=1

αkrΓr(Υr(s)) −
p∧

r=1

αkrΓr(ϑr(s − λ(s)))|

+ |

p∨
r=1

βkrΓr(Υr(s)) −
p∨

r=1

βkrΓr(ϑr(s − λ(s)))|
]
ds

≤

∫ t

t0

[
|ck||Λk(s) − ηk(s)| +

p∑
r=1

|αkr|lr|Υr(s) − ϑr(s − λ(s))|

+

p∑
r=1

|βkr|lr|Υr(s) − ϑr(s − λ(s))|
]
ds. (3.3)
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Similarly,

|Υr(t) − ϑr(t)| ≤
∫ t

t0

[
|dr||Υr(s) − ϑr(s)| +

q∑
k=1

|ωrk|lk|Λk(s) − ηk(s − υ(s))|

+

q∑
k=1

|γrk|lk|Λk(s) − ηk(s − υ(s))|
]
ds. (3.4)

Then from (3.3), (3.4),

|Λk(t) − ηk(t)| + |Υr(t) − ϑr(t)|

≤

∫ t

t0

[
|ck||Λk(s) − ηk(s)| +

p∑
r=1

|αkr|lr|Υr(s) − ϑr(s − λ(s))| +
p∑

r=1

|βkr|lr|Υr(s)

− ϑr(s − λ(s))|
]
ds +

∫ t

t0

[
|dr||Υr(s) − ϑr(s)| +

q∑
k=1

|ωrk|lk|Λk(s) − ηk(s − υ(s))|

+

q∑
k=1

|γrk|lk|Λk(s) − ηk(s − υ(s))|
]
ds. (3.5)

Furthermore,

q∑
k=1

|Λk(t) − ηk(t)| +
p∑

r=1

|Υr(t) − ϑr(t)|

≤

∫ t

t0

[ q∑
k=1

|ck||Λk(s)− ηk(s)|+
q∑

k=1

p∑
r=1

|αkr|lr|Υr(s) − ϑr(s − λ(s))|+
q∑

k=1

p∑
r=1

|βkr|lr|Υr(s) − ϑr(s − λ(s))|
]
ds

+

∫ t

t0

[ p∑
r=1

|dr||Υr(s)− ϑr(s)|+
p∑

r=1

q∑
k=1

|ωrk|lk|Λk(s) − ηk(s − υ(s))|+
p∑

r=1

q∑
k=1

|γrk|lk|Λk(s)−ηk(s − υ(s))|
]
ds

≤

∫ t

t0

[ q∑
k=1

|ck||Λk(s) − ηk(s)|+
p∑

r=1

q∑
k=1

|αkr|lr|Υr(s) − ϑr(s − λ(s))|+
p∑

r=1

q∑
k=1

|βkr|lr|Υr(s) − ϑr(s − λ(s))|
]
ds

+

∫ t

t0

[ p∑
r=1

|dr||Υr(s) −ϑr(s)|+
q∑

k=1

p∑
r=1

|ωrk|lk|Λk(s)−ηk(s −υ(s))|+
q∑

k=1

p∑
r=1

|γrk|lk|Λk(s) −ηk(s − υ(s))|
]
ds.

(3.6)

Let m1 = max
1≤k≤q
|ck|, m2 = max

1≤r≤p
lr

q∑
k=1

(|αkr| + |βkr|), m3 = max
1≤r≤p

|dr|, m4 = max
1≤k≤q

lk

p∑
r=1

(|ωrk| + |γrk|). Then,

||Λ(t) − η(t)|| + ||Υ(t) − ϑ(t)||

≤

∫ t

t0

[
m1||Λ(s) − η(s)|| + m3||Υ(s) − ϑ(s)|| + m2||Υ(s) − ϑ(s − λ(s))|| + m4||Λ(s) − η(s − υ(s))||

]
ds

≤

∫ t

t0

[
(m1 + m4)||Λ(s) − η(s)|| + (m3 + m2)||Υ(s) − ϑ(s)|| + m2||ϑ(s) − ϑ(s − λ(s))||

AIMS Mathematics Volume 8, Issue 4, 9365–9384.



9371

+ m4||η(s) − η(s − υ(s))||
]
ds. (3.7)

Since ∫ t

t0
m2||ϑ(s) − ϑ(s − λ(s))||ds

=

∫ t0+λ

t0
m2||ϑ(s) − ϑ(s − λ(s))||ds +

∫ t

t0+λ
m2||ϑ(s) − ϑ(s − λ(s))||ds,

and ∫ t

t0
m4||η(s) − η(s − υ(s))||ds

=

∫ t0+υ

t0
m4||η(s) − η(s − υ(s))||ds +

∫ t

t0+υ
m4||η(s) − η(s − υ(s))||ds.

Then, when t0 + λ ≤ t,∫ t

t0+λ
m2||ϑ(s) − ϑ(s − λ(s))||ds

≤m2

∫ t

t0+λ

∫ s

s−λ

[
m3||ϑ(r)|| + m4||x(r − υ(r))||

]
drds

≤m2

∫ t

t0
dr
∫ min{r+λ,t}

max{t0+λ,r}

[
m3||ϑ(r)|| + m4||x(r − υ(r))||

]
ds

≤m2m3λ

∫ t

t0
||ϑ(r)||dr + m2m4υ(1 − ℘∗)−1

∫ t

t0
||η(u)||du + m2m4υ

2(1 − ℘∗)−1
(

sup
t0−υ≤s≤t0

||η(s)||
)
. (3.8)

Likewise, when t0 + υ ≤ t,∫ t

t0+υ
m4||η(s) − η(s − υ(s))||ds

≤m4m1υ

∫ t

t0
||η(r)||dr + m4m2λ(1 − ℘∗)−1

∫ t

t0
||ϑ(u)||du + m4m2λ

2(1 − ℘∗)−1
(

sup
t0−λ≤s≤t0

||ϑ(s)||
)
. (3.9)

We denote G = max{υ, λ}. Thus, for all t0 +G ≤ t,∫ t

t0
m2||ϑ(s) − ϑ(s − λ(s))||ds

≤m2[λ + 2λ(1 − ℘∗)−1]
(

sup
t0−λ≤s≤t0+λ

||ϑ(s)||
)
+ m2m3λ

∫ t

t0
||ϑ(r)||dr

+ m2m4υ(1 − ℘∗)−1
∫ t

t0
||η(u)||du + m2m4υ

2(1 − ℘∗)−1
(

sup
t0−υ≤s≤t0

||η(s)||
)
, (3.10)

and ∫ t

t0
m4||η(s) − η(s − υ(s))||ds

AIMS Mathematics Volume 8, Issue 4, 9365–9384.
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≤m4[υ + 2υ(1 − ℘∗)−1]
(

sup
t0−υ≤s≤t0+υ

||η(s)||
)
+ m4m1υ

∫ t

t0
||η(r)||dr

+ m4m2λ(1 − ℘∗)−1
∫ t

t0
||ϑ(u)||du + m4m2λ

2(1 − ℘∗)−1
(

sup
t0−λ≤s≤t0

||ϑ(s)||
)
. (3.11)

Let M1 = max{m1m4υ + m2m4υ(1 − ℘∗)−1,m2m3λ + m2m4λ(1 − ℘∗)−1}, M2 = max{m2[λ + 2λ(1 −
℘∗)−1] + m2m4λ

2(1 − ℘∗)−1,m2m4υ
2(1 − ℘∗)−1 + m4[υ + 2υ(1 − ℘∗)−1]}. Thus, by Definition 1,

||Λ(t) − η(t)|| + ||Υ(t) − ϑ(t)||

≤

∫ t

t0

[
(m1 + m4 + M1)||Λ(s) − η(s)|| + (m3 + m2 + M1)||Υ(s) − ϑ(s)||

]
ds

+ M1

∫ t

t0

[
||Λ(s)|| + ||Υ(s)||

]
ds + M2 sup

t0−G≤s≤t0+G
(||η(s)|| + ||ϑ(s)||)

≤

∫ t

t0

[
(m1 + m4 + M1)||Λ(s) − η(s)|| + (m3 + m2 + M1)||Υ(s) − ϑ(s)||

]
ds

+ (M2 + M1L/K) sup
t0−G≤s≤t0+G

(||η(s)|| + ||ϑ(s)||). (3.12)

For simplicity, we denote M3 = max{m1 +m4 +M1,m2 +m3 +M1}, A = ||Λ(t)− η(t)||+ ||Υ(t)−ϑ(t)||,
B = ||η(s)|| + ||ϑ(s)||, then, when t ≤ t0 + 2∆, by applying Gronwall-Bellman lemma,

A ≤(M2 + M1L/K) exp(M3(t − t0)) sup
t0−G≤s≤t0+G

B

≤(M2 + M1L/K) exp(2M3∆) sup
t0−G≤s≤t0+G

B. (3.13)

Thus, when t0 +G ≤ t ≤ t0 + 2∆,

||η(t)|| + ||ϑ(t)|| ≤||Λ(t) − η(t)|| + ||Υ(t) − ϑ(t)|| + ||Λ(t)|| + ||Υ(t)||
≤(M2 + M1L/K) exp(2M3∆) sup

t0−G≤s≤t0+G
B +L||Θ|| exp{−K(t − t0)}. (3.14)

Noting that G < ∆/2, therefore,

||η(t)|| + ||ϑ(t)|| ≤(M2 + M1L/K) exp(2M3∆) sup
t0−G≤s≤t0−G+∆

B +L||Θ|| exp[−K(∆ −G)]

≤

{
(M2 + M1L/K) exp(2M3∆) +L exp[−K(∆ −G)]

}
sup

t0−G≤s≤t0−G+∆
B (3.15)

for t0 −G + ∆ ≤ t ≤ t0 −G + 2∆ holds.
Since M1 = max{m1m4υ + m2m4υ(1 − ℘∗)−1,m2m3λ + m2m4λ(1 − ℘∗)−1}, M2 = max{m2[λ + 2λ(1 −

℘∗)−1]+m2m4λ
2(1−℘∗)−1,m2m4υ

2(1−℘∗)−1+m4[υ+2υ(1−℘∗)−1]}, we denote M4 = max{m1m4,m2m3},
M5 = max{m2,m4} thus, M1 ≤ M4G + M2

5G(1 − ℘∗)−1 = C, M2 ≤ M5[G + 2G(1 − ℘∗)−1 + M5G
2(1 −

℘∗)−1] = D. Thus, M3 ≤ max{m1 + m4 + C,m2 + m3 + C} = E by (3.13)–(3.15),

||η(t)|| + ||ϑ(t)|| ≤
{
(D + CL/K) exp(2E∆) +L exp[−K(∆ −G)]

}
sup

t0−G≤s≤t0−G+∆
B. (3.16)
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Let F(G) = (D + CL/K) exp(2E∆) + L exp[−K(∆ − G)], therefore, F(G) is strictly increasing for
G. Thus, there must exists Ḡ > 0, such that F(G) < 1, ∀G ∈ (0, Ḡ).

Select F = − lnF/∆, so F > 0, when G ∈ (0, Ḡ), from (3.16), we have

sup
t0−G+∆≤s≤t0−G+2∆

B ≤ exp(−F∆)
(

sup
t0−G≤s≤t0−G+∆

B

)
. (3.17)

Thus, by mathematical induction and the existence and uniqueness of (3.9), an integer Z ∈ N+ exists
such that when t ≥ t0 + (Z − 1)∆,

sup
t0−G+Z∆≤s≤t0+−G+(Z+1)∆

B ≤ sup
t0−G+(Z−1)∆+∆≤s≤t0−G+Z∆+∆

B

≤ exp(−F∆) sup
t0−G+(Z−1)∆≤s≤t0−G+Z∆

B

. . .

≤ exp(−ZF∆) sup
t0−G≤s≤t0−G+∆

B

=Y exp(−ZF∆), (3.18)

where Y = supt0−G≤t≤t0−G+∆B. So, ∀t > t0 + ∆, there is an arbitrary integer Z such that

B ≤ Y exp(F∆) exp(−F (t − t0)), t0 + Z∆ ≤ t ≤ t0 + (Z + 1)∆ (3.19)

holds.
Obviously, this condition also holds for t0−G ≤ t ≤ t0−G+∆. Thus, FBAMCNN (3.1) is GES. □

Remark 1. Since inequality techniques are mainly used in this paper, the results obtained by
Theorem 1 is sufficient condition for DFBAMCNN to maintain its exponential stability. That is to
say, when two different time-varying delays are larger than the derived value, DFBAMCNN will lose
its original stability, but the reverse is not necessarily true.

4. Robustness of stability of SDFBAMCNN

Firstly, we give the model of SDFBAMCNN.
dηk(t) =

[
−ckηk(t) +

p∧
r=1

αkrΓr(ϑr(t − λ(t))) +
p∨

r=1

βkrΓr(ϑr(t − λ(t)))
]
dt + Qkηk(t)d℧(t),

dϑr(t) =
[
−drϑr(t) +

q∧
k=1

ωrkΞk(ηk(t − υ(t))) +
q∨

k=1

γrkΞk(ηk(t − υ(t)))
]
dt + Rrϑr(t)d℧(t),

(4.1)

where ηk(t) = ϕk(t), ϑr(t) = φr(t), t ∈ [−Ḡ, 0]. Qk, Rr are constant noise intensities.
The definitions of mean square exponential stability (MSES) and almost surely globally exponential

stability (ASGES) of SDFBAMCNN (4.1) are as follows.

Definition 2. [13] SDFBAMCNN (4.1) is said to be MSES, if A > 0, B > 0, for any t0 ∈ R
+,

ϕ ∈ L2
F0

([−Ḡ, 0];Rq) and φ ∈ L2
F0

([−Ḡ, 0];Rp) such that

E(U(t))2 ≤ AE(U0)2e−B(t−t0), (4.2)
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or

lim sup
t→∞

(ln(E(U(t; t0, (ϕ, φ)T ))2/t)) < 0. (4.3)

whereU(t) = ||η(t)|| + ||ϑ(t)||,U0 = ||ϕ|| + ||φ||, and ϕ = η(t0), φ = ϑ(t0).

Definition 3. [13] SDFBAMCNN (4.1) is said to be ASGES, if for any t0 ∈ R
+, ϕ ∈ L2

F0
([−Ḡ, 0];Rq)

and φ ∈ L2
F0

([−Ḡ, 0];Rp), such that
U(t) ≤ AU0e−B(t−t0),

or
lim sup

t→∞
(ln(E(U(t; t0, (ϕ, φ)T )))/t) < 0

almost surely.

From the Definitions 2 and 3 above, it means that MSES can not imply ASGES, but the reverse is
not true. If assumption H(1) holds, MSES implies ASGES [29].

Theorem 2. Let H(1) holds, and m1-m4 are defined in Theorem 1, the SDFBAMCNN (4.1) is said to
be MSES if there exist |G| ≤ Ḡ/

√
2, G ≤ min{∆/2, Ḡ}, where Ḡ and Ḡ are the unique roots of the

following two equations respectively.

16G2A/B + 2A exp{−B∆} = 1,

and

2[(2N1 + 4Ḡ2)A/B + N2] exp{16G(Ñ3 + 4Ḡ2)∆} + 2A exp{−B(∆ −G)} = 1,

where

∆ > lnA/B, Ñ3 = max{(m1 + m4)2 + 2N1, (m2 + m3)2 + 2N1}, N̄3 = max{(m1 + m4)2, (m2 + m3)2},

N1 = max{ź, z̀},N2 = max{ẑ, ž}, ź = 2G2m2
1m2

4 + 2G2m2
4m2

2(1 − ℘∗)−1,

z̀ = 2G2m2
3m2

2 + 2G2m2
2m2

4(1 − ℘∗)−1, ẑ = 2G3m2
2m2

4(1 − ℘∗)−1 + 2Gm2
4[1 + 2(1 − ℘∗)−1],

ž = 2G3m2
4m2

2(1 − ℘∗)−1 + 2Gm2
2[1 + 2(1 − ℘∗)−1].

Proof. By (2.2), (4.1), let G = max{Q,R}, from (3.7), similarly,

||Λ(t) − η(t)|| + ||Υ(t) − ϑ(t)||

≤

∫ t

t0

[
(m1 + m4)||Λ(s) − η(s)|| + (m3 + m2)||Υ(s) − ϑ(s)||

+ m2||ϑ(s) − ϑ(s − λ(s))|| + m4||η(s) − η(s − υ(s))||
]
ds + G

∫ t

t0
Bd℧(s). (4.4)

When t0 ≤ t +G, let N = ||Λ(t) − η(t)|| + ||Υ(t) − ϑ(t)||, we have

E(N)2 ≤2(t − t0)
∫ t

t0

{
E
[
(m1 + m4)||Λ(s) − η(s)|| + (m3 + m2)||Υ(s) − ϑ(s)||
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+ m2||ϑ(s) − ϑ(s − λ(s))|| + m4||η(s) − η(s − υ(s))||
]2}

ds + 2G2E
∫ t

t0
B

2ds

≤8(t − t0)
∫ t

t0

[
(m1 + m4)2E||Λ(s) − η(s)||2 + (m3 + m2)2E||Υ(s) − ϑ(s)||2

+ m2
2E||ϑ(s) − ϑ(s − λ(s))||2 + m2

4E||η(s) − η(s − υ(s))||2
]
ds + 2G2

∫ t

t0
E(B)2ds

≤8G
∫ t

t0

{∣∣∣∣∣(m1 + m4)2E||Λ(s) − η(s)||2 + (m3 + m2)2E||Υ(s) − ϑ(s)||2

+ m2
2E||ϑ(s) − ϑ(s − λ(s))||2 + m2

4E||η(s) − η(s − υ(s))||2
∣∣∣∣∣}ds + 2G2

∫ t

t0
E(B)2ds. (4.5)

For t ≤ t0 +G, we can obtain∫ t

t0
E||ϑ(s) − ϑ(s − λ(s))||2ds

=

∫ t0+G

t0
E||ϑ(s) − ϑ(s − λ(s))||2ds +

∫ t

t0+G
E||ϑ(s) − ϑ(s − λ(s))||2ds.

and ∫ t

t0
E||η(s) − η(s − υ(s))||2ds

=

∫ t0+G

t0
E||η(s) − η(s − υ(s))||2ds +

∫ t

t0+G
E||η(s) − η(s − υ(s))||2ds.

Thus, similar to (3.8),∫ t

t0+G
E||ϑ(s) − ϑ(s − λ(s))||2ds ≤2G2m2

3

∫ t

t0
E||ϑ(s)||2ds + 2G2m2

4(1 − ℘∗)−1
∫ t

t0
E||η(s)||2ds

+ 2G3m2
4(1 − ℘∗)−1 sup

t0−G≤s≤t0
E||η(s)||2, (4.6)

and ∫ t

t0+G
E||η(s) − η(s − υ(s))||2ds ≤2G2m2

1

∫ t

t0
E||η(s)||2ds + 2G2m2

2(1 − ℘∗)−1
∫ t

t0
E||ϑ(s)||2ds

+ 2G3m2
2(1 − ℘∗)−1 sup

t0−G≤s≤t0
E||ϑ(s)||2. (4.7)

Thus,
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∫ t

t0
E||η(s) − η(s − υ(s))||2ds

≤2G2m2
1

∫ t

t0
E||η(s)||2ds + 2G2m2

2(1 − ℘∗)−1
∫ t

t0
E||ϑ(s)||2ds

+ 2G3m2
2(1 − ℘∗)−1 sup

t0−G≤s≤t0
E||ϑ(s)||2 + 2G[1 + 2(1 − ℘∗)−1] sup

t0−G≤s≤t0+G
E||η(s)||2, (4.8)

and ∫ t

t0
E||ϑ(s) − ϑ(s − λ(s))||2ds

≤2G2m2
3

∫ t

t0
E||ϑ(s)||2ds + 2G2m2

4(1 − ℘∗)−1
∫ t

t0
E||η(s)||2ds

+ 2G3m2
4(1 − ℘∗)−1 sup

t0−G≤s≤t0
E||η(s)||2 + 2G[1 + 2(1 − ℘∗)−1] sup

t0−G≤s≤t0+G
E||ϑ(s)||2. (4.9)

Let

N1 = max{ź, z̀},

and

N2 = max{ẑ, ž},

where ź = 2G2m2
1m2

4 + 2G2m2
4m2

2(1 − ℘∗)−1, z̀ = 2G2m2
3m2

2 + 2G2m2
2m2

4(1 − ℘∗)−1, ẑ = 2G3m2
2m2

4(1 −
℘∗)−1 + 2Gm2

4[1 + 2(1 − ℘∗)−1], ž = 2G3m2
4m2

2(1 − ℘∗)−1 + 2Gm2
2[1 + 2(1 − ℘∗)−1].

Then from (4.8), (4.9), we can get∫ t

t0

[
m2

2E||ϑ(s) − ϑ(s − λ(s))||2 + m2
4E||η(s) − η(s − υ(s))||2

]
ds

≤N1

∫ t

t0

[
E||η(s)||2 + E||ϑ(s)||2

]
ds + N2 sup

t0−G≤s≤t0+G
(E||η(s)||2 + E||ϑ(s)||2). (4.10)

From (4.5), we obtain

E(N)2 ≤8G
∫ t

t0

{
[(m1 + m4)2 + 2N1]E||Λ(s) − η(s)||2

+ [(m3 + m2)2 + 2N1]E||Υ(s) − ϑ(s)||2
}
ds + 2N1

∫ t

t0

[
||Λ(s)||2 + ||Υ(s)||2

]
ds

+ N2 sup
t0−G≤s≤t0+G

(E||η(s)||2 + E||ϑ(s)||2) + 4G2
∫ t

t0

[
E||η(s)||2 + E||ϑ(s)||2

]
ds

≤8G
∫ t

t0

{
[(m1 + m4)2 + 8G2 + 2N1]E||Λ(s) − η(s)||2

+ [(m3 + m2)2 + 8G2 + 2N1]E||Υ(s) − ϑ(s)||2
}
ds + (2N1 + 8G2)

∫ t

t0

[
||Λ(s)||2 + ||Υ(s)||2

]
ds

AIMS Mathematics Volume 8, Issue 4, 9365–9384.



9377

+ N2 sup
t0−G≤s≤t0+G

(E||η(s)||2 + E||ϑ(s)||2). (4.11)

Let N3 = max{(m1 + m4)2 + 2N1 + 8G2, (m3 + m2)2 + 2N1 + 8G2}, thus,

E(N)2 ≤8GN3

∫ t

t0

[
E||Λ(s) − η(s)||2 + E||Υ(s) − ϑ(s)||2

]
ds

+ (2N1 + 8G2)
∫ t

t0

[
||Λ(s)||2 + ||Υ(s)||2

]
ds + N2 sup

t0−G≤s≤t0+G
(E||η(s)||2 + E||ϑ(s)||2). (4.12)

Then,

E(N)2 ≤8GN3

∫ t

t0
E(N)2ds + (2N1 + 8G2)

∫ t

t0
(||Λ(s)|| + ||Υ(s)||)2ds

+ N2 sup
t0−G≤s≤t0+G

E(||η(s)|| + ||ϑ(s)||)2

≤8GN3

∫ t

t0
E(N)2ds + (2N1 + 8G2)A/BE(N0)2

+ N2 sup
t0−G≤s≤t0+G

E(||η(s)|| + ||ϑ(s)||)2

≤8GN3

∫ t

t0
E(N)2ds + [(2N1 + 8G2)A/B + N2] sup

t0−G≤s≤t0+G
E(B)2. (4.13)

Denote S = supt0−G≤s≤t0+G E(B)2, applying Gronwall-Bellman lemma,

E(N)2 ≤[(2N1 + 8G2)A/B + N2]S exp{8GN3(t − t0)}. (4.14)

Therefore, when t0 +G ≤ t ≤ ∆,

E(N)2 ≤ [(2N1 + 8G2)A/B + N2]S exp{16GN3∆}. (4.15)

Noting that G ≤ min{Ḡ,∆/2}, for t0 −G + ∆ ≤ t ≤ t0 −G + 2∆

E(B)2 ≤2E(N(t))2 + 2E(||Λ(x)|| + ||Υ(x)||)2

≤2[(2N1 + 8G2)A/B + N2]S exp{16GN3∆} + 2AS exp(−B(∆ −G))

≤

{
2[(2N1 + 8G2)A/B + N2] exp{16GN3∆} + 2A exp{−B(∆ −G)}

}
S. (4.16)

Select H(G,G) = [(2N1 + 8G2)A/B + N2] exp{16GN3∆} + 2A exp{−B(∆ − G)}, noting that ∆ >
lnA/B, therefore, H(0, 0) < 1. Since H(G,G) is strictly increasing for G, thus, there must be a Ḡ,
such that H(0,G) < 1, when |G| < Ḡ. Furthermore, for G, H(G,G) is also strictly increases, thus,
∃Ḡ > 0 such that H(G,G) < 1 when |G| ≤ Ḡ/

√
2 and G < min{Ḡ,∆/2}. We skip the second part of

the proof here since it is the same as the discussion in Theorem 1.
Therefore, if |G| ≤ Ḡ/

√
2 and G < min{Ḡ,∆/2} hold, the system (4.1) is MSES, furthermore, the

system is also ASGES. □
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Remark 2. The bounds of disturbances we derived in Theorem 2 is not a simple superposition
of the results of Theorem 1. In the derivation process, we can see that G and G in Theorem 2 are
mutually restricted, and only one parameter satisfies the upper bounds we deduced is not enough to
make SDFBAMCNN keep its original stability.

Remark 3. A brief comparison of our study and some of current literature is provided in Table 1.
The elements of the comparison are BAM, fuzzy logic (F-L), CNN, time delays (TDs), stochastic
disturbances (SDs), asymptotically stable (AS), GES, MSES, ASGES, robustness of stability (RoS).
Furthermore, since there is fuzzy logic in the BAM neural network, its complexity is improved. In
addition, BAMCNN with fuzzy logic can better simulate the human-like derivation style and better deal
with fuzzy problems. By the way, the study of robustness in this paper offers a theoretical foundation
for the construction of FBAMCNN.

Table 1. The differences between our study and current literature.

BAM F-L CNN TDs SDs AS GES MSES ASGES RoS

Nagamani et al. (2021) [5] ✓ - ✓ ✓ - ✓ - - - -
Ali et al. (2017) [23] ✓ ✓ - ✓ ✓ ✓ - - - -
Si et al. (2021) [26] - - - - ✓ - ✓ ✓ ✓ ✓

Fang et al. (2023) [27] - ✓ ✓ - ✓ - ✓ ✓ ✓ ✓

Oliveira (2022) [30] ✓ - - ✓ - ✓ ✓ - - -
This paper ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓

5. Examples

Example 1. Let p = q = 2 and

C =
[
2 0
0 2

]
, D =

[
2 0
0 2

]
, α =

[
−0.01 0.01
0.01 −0.01

]
,

β =

[
−0.03 0.03
0.03 −0.03

]
, ω =

[
−0.04 0.04
0.04 −0.04

]
, γ =

[
−0.02 0.02
0.02 −0.02

]
,

and Γr(x) = 1
2 (|x + 1| − |x − 1|), Ξk(x) = tanh x.

Thus, the following is the form of the DFBAMCNN we considered.

η̇1(t) = −2η1(t) +
2∧

r=1

α1rΓr(ϑr(t − υ(t))) +
2∨

r=1

β1rΓr(ϑr(t − υ(t))),

η̇2(t) = −2η2(t) +
2∧

r=1

α2rΓr(ϑr(t − υ(t))) +
2∨

r=1

β2rΓr(ϑr(t − υ(t))),

ϑ̇1(t) = −2ϑ1(t) +
2∧

k=1

ω1kΞk(ηk(t − λ(t))) +
q∨

k=1

γ1kΞk(ηk(t − λ(t))),

ϑ̇2(t) = −2ϑ2(t) +
2∧

k=1

ω2kΞk(ηk(t − λ(t))) +
2∨

k=1

γ2kΞk(ηk(t − λ(t))).

(5.1)
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Then from the principle of comparison, we know that the system without time delay



η̇1(t) = −2η1(t) +
2∧

r=1

α1rΓr(ϑr(t)) +
2∨

r=1

β1rΓr(ϑr(t)),

η̇2(t) = −2η2(t) +
2∧

r=1

α2rΓr(ϑr(t)) +
2∨

r=1

β2rΓr(ϑr(t)),

ϑ̇1(t) = −2ϑ1(t) +
2∧

k=1

ω1kΞk(ηk(t)) +
2∨

k=1

γ1kΞk(ηk(t)),

ϑ̇2(t) = −2ϑ2(t) +
2∧

k=1

ω2kΞk(ηk(t)) +
2∨

k=1

γ2kΞk(ηk(t))

(5.2)

is GES with L = 1, K = 0.8.

By calculating, we get that m1 = 2, m2 = 0.8, m3 = 2, m4 = 1.2, M4 = 2.4, M5 = 1.2. We select
℘∗ = 0, ∆ = 0.2, therefore we can obtain Ḡ = 0.0047 from the following transcendental equation

[1.2(3Ḡ + 1.2Ḡ2) + 2.4Ḡ + 1.8Ḡ2] exp{0.4(2.8 + 2.4Ḡ + 1.44Ḡ2)} + exp(−0.8(0.2 − Ḡ)) = 1. (5.3)

Therefore, according Theorem 1, when G < min{∆/2, Ḡ}, system (5.1) is GES. In Figure 1 , we
take G = 0.001 < 0.0047, hence, the states in Figure 1 is GES.

Figure 1. The state of DFBAMCNN (5.1) with G = 0.001.
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Example 2. Let p = q = 2, and the SDFBAMCNN model that we taken into account is as follows:

dη1(t) =
[
−2η1(t) +

2∧
r=1

α1rΓr(ϑr(t − λ(t))) +
2∨

r=1

β1rΓr(ϑr(t − λ(t)))
]
dt + Qη1(t)d℧(t),

dη2(t) =
[
−2η2(t) +

2∧
r=1

α2rΓr(ϑr(t − λ(t))) +
2∨

r=1

β2rΓr(ϑr(t − λ(t)))
]
dt + Qη2(t)d℧(t),

dϑ1(t) =
[
−2ϑ1(t) +

2∧
k=1

ω1kΞk(ηk(t − υ(t))) +
2∨

k=1

γ1kΞk(ηk(t − υ(t)))
]
dt + Rϑ1(t)d℧(t),

dϑ2(t) =
[
−2ϑ2(t) +

2∧
k=1

ω2kΞk(ηk(t − υ(t))) +
2∨

k=1

γ2kΞk(ηk(t − υ(t)))
]
dt + Rϑ2(t)d℧(t),

(5.4)

where the parameters of (5.4) are as follows:

C =
[
2 0
0 2

]
, D =

[
2 0
0 2

]
, α =

[
−0.2 0.2
0.2 −0.2

]
,

β =

[
−0.3 0.3
0.3 −0.3

]
, ω =

[
−0.3 0.3
0.3 −0.3

]
, γ =

[
−0.1 0.1
0.1 −0.1

]
,

and select Γr(x) = 1
2 (|x + 1| − |x − 1|), Ξk(x) = tanh x.

By computing the parameters above, we can easily get m1 = 1, m2 = 0.1, m3 = 1, m4 = 0.08,
N̄3 = 1.21. On the other hand, by principle of comparison, we can get the system without time-varying
delays and disturbances is GES with A = 1 and B = 0.9. We select ℘∗ = 0 and ∆ = 0.9. Then, from
Theorem 2, we can get the following two equations:

17.7778G2 + 2 exp(−0.81) = 1, (5.5)

and

2[1.1111(0.04256G2 + 4Ḡ2) + 0.00128G3 + 0.06G] exp{14.4G(1.21 + 4Ḡ2)}
+ 2 exp{−0.9(0.9 −G)} = 1. (5.6)

Thus, we can easily get Ḡ = 0.0788 and Ḡ = 0.0256. From Theorem 2, the perturbed FBAMCNN
(5.4) is said to be MSES if times delays υ(t), λ(t) and noise intensities Q, R are lower than the bounds
we derived above, that is |G| ≤ Ḡ and G ≤ min{Ḡ,∆/2}.

Figure 2 shows the states of SDFBAMCNN (5.4) with different initial value, whereG = 0.0133 and
G = 0.02. Since the max delay and the max intensity of noises are lower than the limits we derived,
thus, SDFBAMCNN is MSES and ASGES.

Figures 3 and 4 depict the impacts of too large time delay and noise intensity. In Figure 3,G = 0.01,
G = 0.08, we can easily observe that G is larger than Ḡ, thus it is unstable. From Figure 4, it is clearly
that G and G are both larger than the bounds of theoretical results, therefore it is also unstable.

AIMS Mathematics Volume 8, Issue 4, 9365–9384.



9381

0 1 2 3 4 5 6 7 8 9 10

Time t

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

S
ta

te
s

1
(t)

2
(t)

1
(t)

2
(t)

Figure 2. States of SDFBAMCNN (5.4) with G = 0.0133 and G = 0.02.
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Figure 3. The state of SDFBAMCNN (5.4) with G = 0.01 and G = 0.08.
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Figure 4. The state of SDFBAMCNN (5.4) with G = 0.04 and G = 0.04.

AIMS Mathematics Volume 8, Issue 4, 9365–9384.



9382

6. Conclusions

This study examines the robustness of FBAMCNN when it is affected by time-varying delays and
stochastic disturbances. Maximum duration of delays and the upper boundaries of noises must be
identified in order for a perturbed FBAMCNN to remain GES. We may calculate these upper bounds
of the interference by using inequality techniques. The results we derived provide a solid foundation
for FBAMCNN applications and designs. Future study may focus on enhancing the upper limits and
considering employing classical approaches to optimize the computation process, such as the LMI
method and the Lyapunov function method. Furthermore, more sophisticated structural disturbances,
such as Markov jump, impulses, state-dependent delays, and so on, can be taken into account.
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