Research article

Local multiset dimension of comb product of tree graphs

  • Received: 02 September 2022 Revised: 05 January 2023 Accepted: 08 January 2023 Published: 03 February 2023
  • MSC : 05C12

  • Resolving set has several applications in the fields of science, engineering, and computer science. One application of the resolving set problem includes navigation robots, chemical structures, and supply chain management. Suppose the set $ W = \left\{{s}_{1}, {s}_{2}, \dots , {s}_{k}\right\}\subset V\left(G\right) $, the vertex representations of $ x\in V\left(G\right) $ is $ {r}_{m}\left(x\right|W) = \{d(x, {s}_{1}), d(x, {s}_{2}), \dots , d(x, {s}_{k})\} $, where $ d(x, {s}_{i}) $ is the length of the shortest path of the vertex $ x $ and the vertex in $ W $ together with their multiplicity. The set $ W $ is called a local $ m $-resolving set of graphs $ G $ if $ {r}_{m}\left(v|W\right)\ne {r}_{m}\left(u\right|W) $ for $ uv\in E\left(G\right) $. The local $ m $-resolving set having minimum cardinality is called the local multiset basis and its cardinality is called the local multiset dimension of $ G $, denoted by $ m{d}_{l}\left(G\right) $. In our paper, we determined the bounds of the local multiset dimension of the comb product of tree graphs.

    Citation: Ridho Alfarisi, Liliek Susilowati, Dafik. Local multiset dimension of comb product of tree graphs[J]. AIMS Mathematics, 2023, 8(4): 8349-8364. doi: 10.3934/math.2023421

    Related Papers:

  • Resolving set has several applications in the fields of science, engineering, and computer science. One application of the resolving set problem includes navigation robots, chemical structures, and supply chain management. Suppose the set $ W = \left\{{s}_{1}, {s}_{2}, \dots , {s}_{k}\right\}\subset V\left(G\right) $, the vertex representations of $ x\in V\left(G\right) $ is $ {r}_{m}\left(x\right|W) = \{d(x, {s}_{1}), d(x, {s}_{2}), \dots , d(x, {s}_{k})\} $, where $ d(x, {s}_{i}) $ is the length of the shortest path of the vertex $ x $ and the vertex in $ W $ together with their multiplicity. The set $ W $ is called a local $ m $-resolving set of graphs $ G $ if $ {r}_{m}\left(v|W\right)\ne {r}_{m}\left(u\right|W) $ for $ uv\in E\left(G\right) $. The local $ m $-resolving set having minimum cardinality is called the local multiset basis and its cardinality is called the local multiset dimension of $ G $, denoted by $ m{d}_{l}\left(G\right) $. In our paper, we determined the bounds of the local multiset dimension of the comb product of tree graphs.



    加载中


    [1] S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, 1994. Available from: http://hdl.handle.net/1903/655.
    [2] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [3] F. Okamoto, B. Phinezy, P. Zhang, The Local metric dimension of a graph, Math. Bohem., 135 (2010), 239–255.
    [4] R. Simanjuntak, P. Siagian, T. Vetrik, The multiset dimension of graphs, 2017. Available from: https://doi.org/10.48550/arXiv.1711.00225.
    [5] R. Alfarisi, Dafik, A. I. Kristiana, I. H. Agustin, The local multiset dimension of graphs, IJET 8 (2019), 120–124.
    [6] R. Alfarisi, Y. Lin, J. Ryan, Dafik, I. H. Agustin, A note on multiset dimension and local multiset dimension of graphs, Stat., Optim. & Inf. Comput., 8 (2020), 890–901. https://doi.org/10.19139/soic-2310-5070-727 doi: 10.19139/soic-2310-5070-727
    [7] R. Adawiyah, Dafik, I. H. Agustin, R. M. Prihandini, R. Alfarisi, E. R. Albirri, On the local multiset dimension of an m-shadow graph, J. Phys.: Conf. Ser., 1211 (2019), 012006. https://doi.org/10.1088/1742-6596/1211/1/012006 doi: 10.1088/1742-6596/1211/1/012006
    [8] R. Alfarisi, M. I. Utoyo, Dafik, Local multiset dimension of related cycle graphs, AIP Conf. Proc., 2391 (2022), 080008. https://doi.org/10.1063/5.0072516 doi: 10.1063/5.0072516
    [9] R. Adawiyah, R. M. Prihandini, E. R. Albirri, Dafik, I. H. Agustin, R. Alfarisi, The local multiset dimension of a unicyclic graph, IOP Conf. Ser.: Earth Environ. Sci., 243 (2019), 012075. https://doi.org/10.1088/1755-1315/243/1/012075 doi: 10.1088/1755-1315/243/1/012075
    [10] H. Iswadi, E. T. Baskoro, A. N. M. Salman, R. Simanjuntak, The resolving graph of amalgamation of cycles, Utilitas Math., 83 (2010), 121–132.
    [11] R. Diestel, Graph theory, Heidelberg: Springer, 2016.
    [12] R. Alfarisi, L. Susilowati, Dafik, The Local multiset resolving of graphs, 2022, In press.
    [13] S. W. Saputro, N. Mardiana, I. A. Purwasih, The metric dimension of comb product graph, Mat. Vestn., 4 (2017), 248–258.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1055) PDF downloads(69) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog