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Abstract: Resolving set has several applications in the fields of science, engineering, and computer 

science. One application of the resolving set problem includes navigation robots, chemical structures, 

and supply chain management. Suppose the set 𝑊 = {𝑠1, 𝑠2, … , 𝑠𝑘 } ⊂ 𝑉(𝐺) , the vertex 

representations of 𝑥 ∈ 𝑉(𝐺)  is 𝑟𝑚(𝑥|𝑊) = {𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑘)} , where 𝑑(𝑥, 𝑠𝑖)  is the 

length of the shortest path of the vertex 𝑥 and the vertex in 𝑊 together with their multiplicity. The 

set 𝑊 is called a local 𝑚-resolving set of graphs 𝐺 if 𝑟𝑚(𝑣|𝑊) ≠  𝑟𝑚(𝑢|𝑊) for 𝑢𝑣 ∈  𝐸(𝐺). The 

local 𝑚-resolving set having minimum cardinality is called the local multiset basis and its cardinality 

is called the local multiset dimension of 𝐺, denoted by 𝑚𝑑𝑙(𝐺). In our paper, we determined the 

bounds of the local multiset dimension of the comb product of tree graphs. 
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1. Introduction  

One of the topics in distances in graphs is the resolving set problem. This topic has many 

applications in science and technology namely the application of resolving set problems can be found 

in network infrastructure, navigation robots, chemistry structures, and computer science. The 

application of metric dimension in networks is one of the described navigation robots. Each place is 

called the vertex and the connections between vertex are called edges. The minimum number of robots 

is required for each location and the vertex of some networks is called resolving set problems, for more 
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detail this application is in [1]. 

All graphs G are simple and connected graphs. We have the vertex set and edge set, respectively 

are 𝑉(𝐺) and 𝐸(𝐺). The distance of 𝑢 and 𝑣 and denoted by 𝑑(𝑢, 𝑣) is the length of the shortest 

path of the vertices 𝑢 to 𝑣. For the set 𝑊 = {𝑠1, 𝑠2, . . . , 𝑠𝑘} ⊂ 𝑉(𝐺). The vertex representations of 

the vertex 𝑥  to the set 𝑊  is an ordered 𝑘 -tuple, 𝑟(𝑥|𝑊) = (𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), . . . , 𝑑(𝑥, 𝑠𝑘)) . The 

set 𝑊 is called the resolving set of 𝐺 if every vertex of 𝐺 has different vertex representations. The 

resolving set having minimum cardinality is called basis and its cardinality is called the metric 

dimension of 𝐺  and denoted by 𝑑𝑖𝑚(𝐺)  by [2]. Okamoto et al [3] introduced a new variant of 

resolving set problems which are called local resolving set problems. In his paper its concept is called 

local multiset dimension of graphs 𝐺 . The set 𝑊  is called a local resolving set if ∀ 𝑥𝑦 ∈

𝐸(𝐺), 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊). The local resolving set having minimum cardinality is called local basis and 

its cardinality is called the local metric dimension of 𝐺 and denoted by 𝑙𝑑𝑖𝑚(𝐺). 

Simanjuntak et al. [4] introduced the multiset dimension of graphs 𝐺 . Suppose the set =

{𝑠1, 𝑠2, … , 𝑠𝑘} ⊂ 𝑉(𝐺), the vertex representations of a vertex 𝑥 ∈ 𝑉(𝐺) to the set 𝑊 is the multiset, 

𝑟𝑚(𝑥|𝑊) = {𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑘)} where 𝑑(𝑥, 𝑠𝑖) is the length of the shortest path of the 

vertex 𝑥 and the vertex in 𝑊 together with their multiplicities. The set 𝑊 is called an 𝑚-resolving 

set if ∀ 𝑥𝑦 ∈ 𝐸(𝐺), 𝑟𝑚(𝑥|𝑊) ≠ 𝑟𝑚(𝑦|𝑊) . If 𝐺  has an 𝑚 -resolving set, then an 𝑚 -resolving set 

having minimum cardinality is called a multiset basis and its cardinality is called the multiset 

dimension of graphs 𝐺  and denoted by 𝑚𝑑(𝐺)  and we say that 𝐺  has an infinite multiset 

dimension and we write 𝑚𝑑(𝐺) = ∞.  

Alfarisi et al. [5] defined a new notion based on the multiset dimension of 𝐺, namely a local 

multiset dimension. Suppose the set = {𝑠1, 𝑠2, … , 𝑠𝑘} ⊂ 𝑉(𝐺), the vertex representations of a vertex 

𝑥 ∈ 𝑉(𝐺) to the set 𝑊 is 𝑟𝑚(𝑥|𝑊) = {𝑑(𝑥, 𝑠1), 𝑑(𝑥, 𝑠2), … , 𝑑(𝑥, 𝑠𝑘)}. The set 𝑊 is called a local 

𝑚 -resolving set of 𝐺  if 𝑟𝑚(𝑣|𝑊) ≠  𝑟𝑚(𝑢|𝑊)  for 𝑢𝑣 ∈ 𝐸(𝐺) . The local 𝑚 -resolving set having 

minimum cardinality is called the local multiset basis and its cardinality is called the local multiset 

dimension and denoted by 𝑚𝑑𝑙(𝐺) and we say that 𝐺 has an infinite local multiset dimension and 

we write 𝑚𝑑𝑙(𝐺) = ∞ . Alfarisi et al. [6] determined multiset dimension problems of almost 

hypercube graphs. 

We have some results on the local multiset dimension of some known graphs namely path, star, 

tree, and cycle and also the local multiset dimension of graph operations namely, cartesian product [6], 

m-shadow graph [7], and some related cycles [8]. Adawiyah et al. [9] also studied the local multiset 

dimension of unicyclic graphs. There are some results used for proving the other results as follows. 

Lemma 1. [10] Let 𝐺 be a connected graph and 𝑊 ⊂  𝑉(𝐺). If 𝑊 contains a resolving set of 𝐺, 

then 𝑊 is a resolving set of 𝐺. 

Proposition 1. [11] A graph is bipartite if and only if it contains no odd cycle.  

Proposition 2. [12] The local multiset dimension of 𝐺 is one if and only if 𝐺 is a bipartite graph. 

Proposition 3. [12] If 𝑇 is a tree graph with order 𝑛, then 𝑚𝑑𝑙 (𝑇) = 1. 

Definition 1. [13] Let 𝐺  and 𝐻  be two connected graphs. Let 𝑜  be a vertex of 𝐻 . The comb 

product of 𝐺  and 𝐻 , denoted by 𝐺 ⊳  𝐻 , is a graph obtained by taking one copy of 𝐺  and 

|𝑉(𝐺)| copies of 𝐻 and identifying the 𝑖 −th copy of 𝐻 at the vertex 𝑜 with the 𝑖 − 𝑡ℎ vertex of 

𝐺.  

Lemma 2. Let 𝐺 and 𝐻 be a connected graph. Graph 𝐺 ⊳  𝐻 is a bipartite graph if and only if 𝐺 

and 𝐻 is a bipartite graph. 
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Figure 1. (a). 𝑃4; (b). 𝐺; (c). 𝑃4 ⊳ 𝐺 with 𝑜 = 𝑣1; (d). 𝑃4 ⊳ 𝐺 with 𝑜 = 𝑣4. 

2. Results 

In this section, we investigated the local multiset dimension of the graph resulting of the comb 

product of tree and cycle. We have determined the bounds and the exact value of the local multiset 

dimension of the comb product of the tree and cycle. 

Lemma 3. Let 𝑇 be a tree graph and 𝐶𝑚 be a cycle graph for 𝑚 ≥ 4. Then 

𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) = 1 , for 𝑚 even,  

𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) ≥ 𝑛 , for 𝑚 odd. 

Proof. The comb product of tree graph 𝑇 with order 𝑛 and cycle 𝐶𝑚 for 𝑚 ≥ 3, denoted by 𝑇 ⊳

𝐶𝑚 . This graph has a backbone and leaves where a backbone is tree graph 𝑇  and leaves are the 

subgraph cycle (cycle leaves) such that we have 𝑛 -cycle leaves. The graph 𝑇 ⊳ 𝐶𝑚  has 𝑉(𝑇 ⊳

𝐶𝑚) = {𝑣𝑖,𝑗  ;  𝑖 ∈ [1, 𝑛]  and 𝑗 ∈ [1, 𝑚]}  and 𝐸(𝑇 ⊳ 𝐶𝑚) = 𝐸(𝑇) ∪ ⋃ (𝐶𝑚)𝑖
𝑖=𝑛
𝑖=1   where (𝐶𝑚)𝑖  is a 

𝑖-th cycle leaves. The vertex in the backbone is called the terminal vertex and the vertex in cycle leaves 

is called a leaves vertex. From Figure 2, that 𝑣𝑖,1 is terminal vertex and 𝑣𝑖,𝑗( 𝑗 ≠ 1) is leaves vertex. 

Case 1. For 𝑚 is even 

A cycle graph 𝐶𝑚  with 𝑚  even is a bipartite graph. Based on Lemma 2 that 𝑇 ⊳ 𝐶𝑚  is a 

bipartite graph. Since 𝑇 ⊳ 𝐶𝑚 is a bipartite graph, based on Proposition 2, 𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) = 1. 

Case 2. For 𝑚 is odd 

Based on Lemma 2 that 𝑇 ⊳ 𝐶𝑚 isn’t a bipartite graph, such that 𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) > 1. We prove 

that 𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) ≥ 𝑛. We will prove that 𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) ≥  𝑛. Taking any 𝑃 ⊂ 𝑉(𝑇 ⊳ 𝐶𝑚) with 

|𝑃| = 𝑛 − 1 . Graph 𝑇 ⊳ 𝐶𝑚  has 𝑛  copies of 𝐶𝑚 , namely (𝐶𝑚)1 , (𝐶𝑚)2 , ,, (𝐶𝑚)𝑛 . Thus, we 

know that there is at least one cycle that hasn’t been resolver. Since (𝐶𝑚)𝑘  for 1 ≤ 𝑘 ≤ 𝑛  isn’t 

contained resolver, such that the two adjacent vertices 𝑣
𝑘,

𝑚+1

2

, 𝑣
𝑘,

𝑚+3

2

  in (𝐶𝑚)𝑘  have the same 
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distance to the terminal vertex, 𝑑 (𝑣
𝑘,

𝑚+1

2

, 𝑣𝑘,1) =
𝑚+1

2
− 1 =

𝑚−1

2
  and 𝑑(𝑣

𝑘,
𝑚+3

2

, 𝑣𝑘,1) = 𝑚 + 1 −

𝑚+3

2
=

𝑚−1

2
. We know that 

𝑑(𝑣
𝑘,

𝑚+1

2

, 𝑣𝑖,𝑚) = 𝑑(𝑣
𝑘,

𝑚+1

2

, 𝑣𝑘,1) + 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) =
𝑚−1

2
+ 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚), (1) 

𝑑(𝑣
𝑘,

𝑚+3

2

, 𝑣𝑖,𝑚) = 𝑑(𝑣
𝑘,

𝑚+3

2

, 𝑣𝑘,1) + 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) =
𝑚−1

2
+ 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚). (2) 

It is clear that 𝑑(𝑣
𝑘,

𝑚+1

2

, 𝑣𝑖,𝑚) = 𝑑(𝑣
𝑘,

𝑚+3

2

, 𝑣𝑖,𝑚)  such that 𝑟𝑚(𝑣
𝑘,

𝑚+1

2

|𝑊) = 𝑟𝑚(𝑣
𝑘,

𝑚+3

2

|𝑊). 

Hence, 𝑚𝑑𝑙(𝑇 ⊳ 𝐶𝑚) ≥  𝑛.                 ∎ 

 

Figure 2. The graph 𝑇 ⊳ 𝐶𝑚 for 𝑚 is even. 

 

Figure 3. The graph 𝑃𝑛 ⊳  𝐶𝑚 for 𝑛 ≥ 2 and 𝑚 ≥ 3. 

Theorem 1. Let 𝑃𝑛 ⊳ 𝐶𝑚 be a comb product of path and cycle for 𝑛 ≥  2 and 𝑚 ≥ 3. Then 

𝑚𝑑𝑙(𝑃𝑛 ⊳  𝐶𝑚) = {

1 , for 𝑚 is even ,

𝑛 ,
for 𝑚 is odd and 𝑚 ≠ 3 or for 𝑚 = 3 and 𝑛 is odd,

𝑛 + 1 , for 𝑚 = 3 and 𝑛 is even.
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Proof. The graphs 𝑃𝑛 ⊳  𝐶𝑚  has 𝑉(𝑃𝑛 ⊳  𝐶𝑚) = {𝑣𝑖,𝑗  ;  𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑚]}  and 𝐸(𝑃𝑛 ⊳

 𝐶𝑚) = {𝑣𝑖,1𝑣𝑖+1,1 ;  𝑖 ∈ [1, 𝑛 − 1]} ∪ {𝑣𝑖,𝑗𝑣𝑖,𝑗+1};  𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑚 − 1]} ∪ {𝑣𝑖,𝑚𝑣𝑖,1 ;  𝑖 ∈ [1, 𝑛]} 

where (𝐶𝑚)𝑖 is a 𝑖-th cycle leaves. The vertex 𝑣𝑖,1 in the backbone is called terminal vertex and 

vertex 𝑣𝑖,𝑗  (𝑗 ≠ 1) in cycle leaves is called a leaves vertex. This proof is divided into four cases as 

follows. 

Case 1. For 𝑚 is even  

A cycle graph 𝐶𝑚  with 𝑚  even is a bipartite graph. Based on Lemma 2 that 𝑃𝑛 ⊳ 𝐶𝑚  is a 

bipartite graph. Since 𝑃𝑛 ⊳ 𝐶𝑚 is a bipartite graph, based on Proposition 2, 𝑚𝑑𝑙(𝑃𝑛 ⊳ 𝐶𝑚) = 1. 

Case 2. For 𝑚 is odd and 𝑚 ≠ 3  

Choose 𝑊 = {𝑣1,𝑚−1, 𝑣𝑖,𝑚;  𝑖 ∈ [2, 𝑛]}, so that |𝑊| = 𝑛. We are going to prove that the vertex 

representations of two adjacent vertices in 𝑃𝑛 ⊳  𝐶𝑚 are distinct. The resolver vertex in (𝐶𝑚)𝑖 , 𝑖 ∈

[1, 𝑛]  exactly one resolver in every cycle leaves. The resolver 𝑣1,𝑚−1  in (𝐶𝑚)1  and 𝑣𝑖,𝑚  in 

(𝐶𝑚)𝑖 for 𝑖 ∈ [2, 𝑛]. In the first step, we show that vertex representations of two adjacent vertices in 

(𝐶𝑚)𝑖 , 𝑖 ∈ [2, 𝑛] respect to 𝑊 are distinct as follows 

(1) The number of leave vertex in every cycle leave is even, such that two adjacent vertices in cycle 

leaves have the same distance to the terminal vertex. The vertex 𝑣
𝑖,

𝑚+1

2
 
, 𝑣

𝑖,,
𝑚+3

2

 in (𝐶𝑚)𝑖 so that, 

𝑑(𝑣
𝑖,

𝑚+1

2
 
, 𝑣𝑖,1) =  𝑑(𝑣

𝑖,,
𝑚+3

2

, 𝑣𝑖,1). 

(2) The number of leave vertex in every cycle leave is even, such that two adjacent vertices in cycle 

leaves have the same distance to the resolver. The vertex  𝑣
𝑖,

𝑚−1

2
 
, 𝑣

𝑖,
𝑚+1

2
 
  in (𝐶𝑚)𝑖  so that, 

𝑑(𝑣
𝑖,

𝑚−1

2
 
, 𝑣𝑖,𝑚) =  𝑑(𝑣

𝑖,
𝑚+1

2
 
, 𝑣𝑖,𝑚). 

(3) We are going to show that two adjacent vertices in cycle leaves have distinct vertex representations 

with respect to 𝑊 . For 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛]  and 𝑘 ≠  𝑖 , we know that 𝑑 (𝑣
𝑖,

𝑚−1

2
 
, 𝑣𝑖,1) ≠

 𝑑(𝑣
𝑖,

𝑚+1

2
 
, 𝑣𝑖,1) such that 

𝑑(𝑣
𝑖,

𝑚−1

2
 
, 𝑣𝑘,𝑚) = 𝑑(𝑣

𝑖,
𝑚−1

2
 
, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (3) 

𝑑(𝑣
𝑖,

𝑚+1

2
 
, 𝑣𝑘,𝑚) = 𝑑(𝑣

𝑖,
𝑚+1

2
 
, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚). (4) 

Therefore, 𝑑 (𝑣
𝑖,

𝑚−1

2
 
, 𝑣𝑘,𝑚) ≠  𝑑 𝑑(𝑣

𝑖,
𝑚+1

2
 
, 𝑣𝑘,𝑚) so that 𝑟𝑚 (𝑣

𝑖,
𝑚−1

2
 
|𝑊) ≠  𝑟𝑚 (𝑣

𝑖,
𝑚+1

2
 
|𝑊) . 

(4) Take two adjacent vertices, 𝑣𝑖,𝑟 , 𝑣𝑖,𝑠 ∈  𝑉((𝐶𝑚)𝑖) − {𝑣
𝑖,

𝑚−1

2
 
, 𝑣

𝑖,
𝑚+1

2
 
} ;  𝑟, 𝑠 ∈ [1, 𝑚], 𝑟 ≠ 𝑠 . The 

resolver 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛] and 𝑘 ≠ 𝑖, we know that 𝑑(𝑣𝑖,𝑟 , 𝑣𝑖,1) ≠  𝑑(𝑣𝑖,𝑠, 𝑣𝑖,1) such that 

 𝑑(𝑣𝑖,𝑟 , 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,𝑟 , 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), 
(5) 
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𝑑(𝑣𝑖,𝑠, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,𝑠, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚). 
(6) 

Therefore, 𝑑(𝑣𝑖,𝑟 , 𝑣𝑘,𝑚) ≠  𝑑(𝑣𝑖,𝑠, 𝑣𝑘,𝑚) so that 𝑟𝑚(𝑣𝑖,𝑟|𝑊) ≠  𝑟𝑚(𝑣𝑖,𝑠|𝑊). 

(5) The backbone indices path 𝑃𝑛, 𝑛 odd have a symmetry vertex namely 𝑣𝑟,1 and 𝑣𝑠,1 with 𝑟 + 𝑠 =

𝑛 + 1 and 𝑣𝑟,1 not adjacent to 𝑣𝑠,1 because there one vertex 𝑣𝑛+1 

2

 as center vertex. 

(6) The terminal vertex indices path graph such that the distance between two adjacent terminal vertex 

to the resolver vertex is distinct, 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) ≠  𝑑(𝑣𝑙,1, 𝑣𝑖,𝑚)  and 𝑑(𝑣𝑘,1, 𝑣1,𝑚−1) ≠

 𝑑(𝑣𝑙,1, 𝑣1,𝑚−1) for 𝑘, 𝑙 ∈ [2, 𝑛], 𝑘 ≠  𝑙 ≠  𝑖. Thus, 𝑟𝑚(𝑣𝑘,1|𝑊) ≠  𝑟𝑚(𝑣𝑙,1|𝑊). 

(7) The vertex 𝑣𝑖,1 adjacent to 𝑣𝑖,2, 𝑑(𝑣𝑖,1, 𝑣𝑖,𝑚) ≠  𝑑(𝑣𝑖,2, 𝑣𝑖,𝑚) and 

𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,1, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (7) 

𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,2, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 1 + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), 𝑘 ≠ 𝑖. (8) 

It is clear that 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) ≠  𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) , we know that 𝑟𝑚(𝑣𝑖,1|𝑊) =

{𝑑(𝑣𝑖,1, 𝑣𝑖,𝑚), 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚)} ≠  {𝑑(𝑣𝑖,2, 𝑣𝑖,𝑚), 𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) = 𝑟𝑚(𝑣𝑖,2|𝑊)}.  

Now, we prove that vertex representation of two adjacent vertices in (𝐶𝑚)1 respect to 𝑊 is 

distinct. For 𝑣1,𝑚−1  and 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛]  and 𝑘 ≠  𝑖 , we know that 𝑑(𝑣
1,

𝑚−3

2

, 𝑣1,𝑚−1) =

 𝑑(𝑣
1,

𝑚−1

2

, 𝑣1,𝑚−1) and 𝑑 (𝑣
1,

𝑚−3

2

, 𝑣1,1) ≠  𝑑(𝑣
1,

𝑚−1

2

, 𝑣1,1) such that 

𝑑(𝑣
1,

𝑚−3

2

, 𝑣𝑘,𝑚) = 𝑑(𝑣
1,

𝑚−3

2

, 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚), (9) 

𝑑 (𝑣
1,

𝑚−1

2

, 𝑣𝑘,𝑚) = 𝑑 (𝑣
1,

𝑚−1

2

, 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚). (10) 

It is clear that 𝑑 (𝑣
1,

𝑚−3

2

, 𝑣𝑘,𝑚) ≠  𝑑 (𝑣
1,

𝑚−1

2

, 𝑣𝑘,𝑚)  so that 𝑟𝑚 (𝑣
1,

𝑚−1

2

|𝑊) ≠  𝑟𝑚 (𝑣
1,

𝑚+1

2

|𝑊). 

Next, taking two adjacent vertices, 𝑣1,𝑟 , 𝑣1,𝑠 ∈  𝑉((𝐶𝑚)1) − {𝑣𝑣
1,

𝑚−3

2

, 𝑣
1,

𝑚−1

2

} ;  𝑟, 𝑠 ∈ [1, 𝑚], 𝑟 ≠ 𝑠 . 

We know that 𝑑(𝑣1,𝑟 , 𝑣1,𝑚−1) =  𝑑(𝑣1,𝑠, 𝑣1,𝑚−1) and 𝑑(𝑣1,𝑟 , 𝑣1,1) ≠  𝑑(𝑣1,𝑠, 𝑣1,1) such that 

𝑑(𝑣1,𝑟 , 𝑣𝑘,𝑚) = 𝑑(𝑣1,𝑟 , 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚), 
(11) 
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𝑑(𝑣1,𝑠, 𝑣𝑘,𝑚) = 𝑑(𝑣1,𝑠, 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚). 
(12) 

Therefore, 𝑑(𝑣1,𝑟 , 𝑣𝑘,𝑚) ≠  𝑑(𝑣1,𝑠, 𝑣𝑘,𝑚)  so that 𝑟𝑚(𝑣1,𝑟|𝑊) ≠  𝑟𝑚(𝑣1,𝑠|𝑊 ). Hence, 

𝑟𝑚(𝑣𝑖,𝑗|𝑊) ≠  𝑟𝑚(𝑣𝑘,𝑙|𝑊) for 𝑣𝑖,𝑗 adjacent to 𝑣𝑘,𝑙 for 𝑖 ∈ [1, 𝑛]. Consequently, 𝑊 is a local 𝑚-

resolving set of 𝑃𝑛 ⊳  𝐶𝑚. Based on Lemma 3 that 𝑚𝑑𝑙(𝑃𝑛 ⊳  𝐶𝑚) ≥  𝑛. Thus, 𝑚𝑑𝑙(𝑃𝑛 ⊳  𝐶𝑚) = 𝑛. 

This completes the proof. 

Case 3. For 𝑚 = 3 and n is even 

We choose 𝑊 = {𝑣𝑖,3;  𝑖 ∈ [1, 𝑛]} ∪ {𝑣𝑛,1},  so that |𝑊| = 𝑛 + 1 . The resolver vertex in 

(𝐶3)𝑖 , 𝑖 ∈ [1, 𝑛] exactly one resolver in every cycle leaves and one resolver in the terminal vertex. We 

are going to prove that the vertex representations of two adjacent vertices in 𝑃𝑛 ⊳  𝐶3 are distinct. We 

show that vertex representations of two adjacent vertices in (𝐶𝑚)𝑖 , 𝑖 ∈ [2, 𝑛] with respect to 𝑊 are 

distinct. 

(1) In the first step, we focus on resolver in cycle leaves (𝑣𝑖,3 ), we have 𝑟𝑚(𝑣𝑛

2
,1|𝑊 − {𝑣𝑛,1}) =

𝑟𝑚(𝑣𝑛+2

2
,1

|𝑊 − {𝑣𝑛,1}) . Because 𝑛 even, there are a symmetry vertex namely 𝑣𝑘,1 and 𝑣𝑙,1 with 

𝑘 + 𝑙 = 𝑛 + 1 and 𝑘 ≠  𝑙. We know that 𝑣𝑛

2
,1, 𝑣

𝑙,
𝑛+2

2

 as two adjacent vertices and symmetry vertex 

in 𝑃𝑛 ⊳  𝐶3 such that 𝑟𝑚(𝑣𝑛

2
,1|𝑊 − {𝑣𝑛,1}) = {1,22, 32, … , (

𝑛

2
)

2
,

𝑛+2

2
} = 𝑟𝑚(𝑣𝑛+2

2
,1

|𝑊 − 𝑣𝑛,1). 

(2) Now, 𝑑 (𝑣𝑛

2
,1, 𝑣𝑛,1) =  𝑛 −

𝑛

2
=

𝑛

2
  and 𝑑(𝑣𝑛+2

2
,1

, 𝑣𝑛,1) =  𝑛 −
𝑛+2

2
=  

𝑛−2

2
  so that 

𝑑 (𝑣𝑛

2
,1, 𝑣𝑛,1) ≠  𝑑(𝑣𝑛+2

2
,1

, 𝑣𝑛,1). 

Based on points (1) and (2) that  

𝑟𝑚(𝑣𝑛

2
,1|𝑊) = {1,22, 32, … , (

𝑛

2
)

2
,

𝑛+2

2
, 𝑑 (𝑣𝑛

2
,1, 𝑣𝑛,1)}, (13) 

𝑟𝑚(𝑣𝑛+2

2
,1

|𝑊) = {1,22, 32, … , (
𝑛

2
)

2
,

𝑛+2

2
, 𝑑 (𝑣𝑛+2

2
,1

, 𝑣𝑛,1)}. (14) 

It is clear that 𝑟𝑚 (𝑣𝑛

2
,1|𝑊) ≠  𝑟𝑚(𝑣𝑛+2

2
,1

|𝑊) for 𝑣𝑛

2
,1 adjacent to 𝑣𝑛+2

2
,1

. Consequently, 𝑊 is 

a local 𝑚-resolving set of 𝑃𝑛 ⊳  𝐶3. 

Furthermore, we prove that W is the local 𝑚-resolving set with minimum cardinality. Taking any 

set 𝑆 ⊂  𝑉(𝑃𝑛 ⊳  𝐶3) with |𝑆| < |𝑊|. Let |𝑆| = 𝑛, 

(1)  𝑢 ∈  𝑊, every vertex 𝑢 in cycle leave. 

Every cycle leave has one vertex as a resolver. There are the two adjacent terminal vertices in the 

backbone indices path 𝑃𝑛. Because n even, then there is a symmetry vertices namely 𝑣𝑘,1 and 𝑣𝑙,1 

with 𝑘 + 𝑙 = 𝑛 + 1  and 𝑘 ≠ 𝑙 . We know that 𝑣𝑛

2
,1, 𝑣

𝑙,
𝑛+2

2

  as two adjacent vertices and symmetry 
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vertices in 𝑃𝑛 ⊳  𝐶3 such that 𝑟𝑚(𝑣𝑛

2
,1|𝑊) = {1,22, 32, … , (

𝑛

2
)

2
,

𝑛+2

2
} = 𝑟𝑚(𝑣𝑛+2

2
,1

|𝑊). 

(2)  𝑢 ∈ 𝑊, there is at least one resolver that isn’t in cycle leaves. 

If there is at least one resolver that isn’t in cycle leaves, then there are the two adjacent vertices 

in cycle leaves that have the same vertex representations. We take (𝐶3)𝑛 without resolver such that 

𝑑(𝑣𝑛,2, 𝑣𝑛,1) = 𝑑(𝑣𝑛,3, 𝑣𝑛,1) = 1, 
(15) 

𝑑(𝑣𝑛,2, 𝑣𝑘,3) = 𝑑(𝑣𝑛,2, 𝑣𝑛,1) + 𝑑(𝑣𝑛,1, 𝑣𝑘,3), (16) 

𝑑(𝑣𝑛,3, 𝑣𝑘,3) = 𝑑(𝑣𝑛,3, 𝑣𝑛,1) + 𝑑(𝑣𝑛,1, 𝑣𝑘,3), 
(17) 

𝑑(𝑣𝑛,2, 𝑦) = 𝑑(𝑣𝑛,2, 𝑣𝑛,1) + 𝑑(𝑣𝑛,1, 𝑦);  𝑦 ∈  𝑊, 𝑦 𝑖𝑛 𝑣𝑖,1 𝑜𝑟 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑎𝑣𝑒𝑠, (18) 

𝑑(𝑣𝑛,3, 𝑦) = 𝑑(𝑣𝑛,3, 𝑣𝑛,1) + 𝑑(𝑣𝑛,1, 𝑦);  𝑦 ∈  𝑊, 𝑦 𝑖𝑛 𝑣𝑖,1 𝑜𝑟 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑎𝑣𝑒𝑠. (19) 

Based on above cases that 𝑟𝑚(𝑣𝑛,2|𝑊) = {𝑑(𝑣𝑛,2, 𝑣𝑘,3), 𝑑(𝑣𝑛,2, 𝑦)}  =

{𝑑(𝑣𝑛,3, 𝑣𝑘,3), 𝑑(𝑣𝑛,3, 𝑦)} = 𝑟𝑚(𝑣𝑛,3|𝑊).  Therefore, 𝑆  is not a local 𝑚 -resolving set of 𝑃𝑛 ⊳  𝐶3 . 

Thus, 𝑚𝑑𝑙(𝑃𝑛 ⊳  𝐶3) = 𝑛 + 1. This completes the proof.         ∎ 

Theorem 2. Let 𝑇1 and 𝑇2 be tree graphs, then 𝑚𝑑𝑙(𝑇1 ⊳  𝑇2) = 1. 

Proof. Based on Lemma 2 that 𝑇1 ⊳  𝑇2 is a bipartite graph. Since 𝑇1 ⊳  𝑇2 is a bipartite graph, based 

on Proposition 2, 𝑚𝑑𝑙(𝑇1 ⊳  𝑇2) = 1.              ∎ 

Theorem 3. Let 𝑇 be a tree graph and 𝐶𝑛 be a cycle graph for 𝑛 ≥ 3. Then  

𝑚𝑑𝑙(𝐶𝑛 ⊳  𝑇) = {
1 , 𝑛 even,
2 , 𝑛 odd.

 

Proof. The graph 𝐶𝑛 ⊳  𝑇  has 𝑉(𝐶𝑛 ⊳  𝑇) = ⋃ 𝑉(𝑇𝑖)𝑖=𝑛
𝑖=1   and 𝐸(𝐶𝑛 ⊳  𝑇) =

{𝑣1,1𝑣𝑛,1, 𝑣𝑖,1𝑣𝑖+1,1 ;  𝑖 ∈ [1, 𝑛 − 1]} ∪ ⋃ 𝐸(𝑇𝑖)𝑖=𝑛
𝑖=1  where 𝑇𝑖 is a 𝑖-th tree leaves. We choose a vertex 

𝑎𝑖 ∈  𝑇𝑖 . The vertex 𝑣𝑖,1  in the backbone is called terminal vertex and vertex 𝑣𝑖,𝑗  (𝑗 ≠ 1)  in tree 

leaves is called a leaves vertex. This proof is divided into four cases as follows. 

Case 1. For 𝑛 is even 

A cycle graph 𝐶𝑛  with 𝑚  even is a bipartite graph. Based on Lemma 2 that 𝐶𝑛 ⊳  𝑇  is a 

bipartite graph. Since 𝐶𝑛 ⊳  𝑇 is a bipartite graph, based on Proposition 2, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝑇) = 1. 

Case 2. For 𝑛 is odd  

Choose 𝑊 = {𝑣1,1, 𝑎2}  with 𝑎2 ∉  𝑉(𝐶𝑛)  or 𝑎2 ∈  𝑉(𝑇2) , so that |𝑊| = 2 . We are going to 

prove that the vertex representations of two adjacent vertices in 𝐶𝑛 ⊳  𝑇 are distinct. We can see that 

𝑟𝑚(𝑣𝑖,1|𝑊) = {𝑖 − 1, 𝑑(𝑣𝑖,1, 𝑣2,1) + 𝑑𝑇2
(𝑣2,1, 𝑎2)}, 𝑖 ∈ [1,

𝑛

2
+ 1] , (20) 
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𝑟𝑚(𝑣𝑖,1|𝑊) = {𝑚 − 𝑖 + 1, 𝑑(𝑣𝑖,1, 𝑣2,1) + 𝑑𝑇2
(𝑣2,1, 𝑎2)}, 𝑖 ∈ [

𝑛

2
+ 2, 𝑛], (21) 

𝑟𝑚(𝑎1|𝑊) = {𝑑𝑇1
(𝑎1, 𝑣𝑖,1), 1 + 𝑑𝑇2

(𝑣2,1, 𝑎2)}, 
(22) 

𝑟𝑚(𝑎2|𝑊) = {𝑑𝑇2
(𝑎2, 𝑣2,1) + 1, 0}, 

(23) 

𝑟𝑚(𝑎2
′ |𝑊) = {𝑑𝑇2

(𝑎2, 𝑣2,1) + 1, 𝑑𝑇2
(𝑎2

′ , 𝑎2)}, 𝑎2
′ ∉  𝑊, (24) 

𝑟𝑚(𝑎𝑖|𝑊) = {𝑑𝑇𝑖
(𝑎𝑖 , 𝑣𝑖,1) + 𝑖 − 1, 𝑑𝑇𝑖

(𝑎𝑖 , 𝑣𝑖,1) + 𝑑𝑇2
(𝑣2,1, 𝑎2) + 𝑖 − 2}, 𝑖 ∈ [3,

𝑛 + 1

2
], (25) 

rm(ai|W) = {dTi
(ai, vi,1) + m − i + 1, dTi

(ai, vi,1) + d(vi,1, v2,1) + dT2
(v2,1, a2)}, i ∈ [

n+1

2
+ 1, n]. (26) 

The vertex representations of the vertices 𝑣𝑖,1  and 𝑎𝑖  are distinct and so 𝑊  is a local m-

resolving set of 𝐶𝑛 ⊳  𝑇. Thus, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝑇) ≤  2. It concluded that 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝑇) = 2. 

Furthermore, we will prove that 𝑊 is the local 𝑚-resolving set with minimum cardinality. Take 

any set 𝑆 ⊂  𝑉(𝐶𝑛 ⊳  𝑇) with |𝑆| < |𝑊|. Let |𝑆| = 1, suppose the local 𝑚 −resolving set 𝑆 = {𝑣} 

so that there are some conditions of this proof as follows 

(1)  If 𝑣 ∈  𝑉(𝐶𝑛) namely 𝑣 = 𝑣𝑖,1, then  

𝑟𝑚(𝑣
(

𝑛+1

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) =  𝑟𝑚(𝑣
(

𝑛+3

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = {
𝑛−1

2
}, (27) 

(2)  If 𝑣 ∈  𝑉(𝑇𝑖), then  

𝑟𝑚 (𝑣
(

𝑛+1
2 +𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = 𝑟𝑚 (𝑣
(

𝑛+3
2 +𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = {
𝑛 − 1

2
+ 𝑑𝑇𝑖

(𝑣𝑖,1, 𝑣)} . (28) 

It is clear that 𝑟𝑚(𝑣
(

𝑛+1

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = 𝑟𝑚(𝑣
(

𝑛+3

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊). Therefore, 𝑆 is not a local 

𝑚-resolving set of 𝐶𝑛 ⊳  𝑇. Thus, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝑇) = 2.           ∎ 

Theorem 4. Let 𝐶𝑛 and 𝐶𝑚 be cycle graphs for 𝑛, 𝑚 ≥ 3. Then 

𝑚𝑑𝑙(𝐶𝑛 ⊳  𝐶𝑚) = {

1 , both 𝑛 and 𝑚 are even,
2 , one of the 𝑛 and 𝑚 is even and the other is odd,

𝑛 ,
both 𝑛 and 𝑚 are odd.

 

Proof. The graph 𝐶𝑛 ⊳  𝐶𝑚  has 𝑉(𝐶𝑛 ⊳  𝐶𝑚) = {𝑣𝑖,𝑗  ;  𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑚]}  and 𝐸(𝐶𝑛 ⊳  𝐶𝑚) =

{𝑣1,1𝑣𝑛,1, 𝑣𝑖,1𝑣𝑖+!,1 ;  𝑖 ∈ [1, 𝑛 − 1]} ∪ {𝑣𝑖,𝑗𝑣𝑖,𝑗+1};  𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑚 − 1]} ∪ {𝑣𝑖,𝑚𝑣𝑖,1 ;  𝑖 ∈ [1, 𝑛]} 

where (𝐶𝑚)𝑖 is an 𝑖-th cycle leaves. The vertex 𝑣𝑖,1 in the backbone is called terminal vertex and 

vertex 𝑣𝑖,𝑗  (𝑗 ≠ 1) in cycle leaves is called a leaves vertex. This proof is divided into four cases as 

follows. 
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Case 1. For 𝑛 and 𝑚 are even 

A cycle graph 𝐶𝑛 and 𝐶𝑚 with 𝑛, 𝑚 even is a bipartite graph. Based on Lemma 2 that 𝐶𝑛 ⊳

 𝐶𝑚  is a bipartite graph. Since 𝐶𝑛 ⊳  𝐶𝑚  is a bipartite graph, based on Proposition 2, 

𝑚𝑑𝑙(𝐶𝑛 ⊳  𝐶𝑚) = 1. 

Case 2. For 𝑛 is odd and 𝑚 is even  

Choose 𝑊 = {𝑣1,1, 𝑣2,𝑚}, so that |𝑊| = 2. We are going to prove that the vertex representations 

of two adjacent vertices in 𝐶𝑛 ⊳  𝐶𝑚 are distinct. We can see that: 

Table 1. Representation of 𝐶𝑛 ⊳  𝐶𝑚. 

Vertices 𝒗 Representation 𝒓𝒎(𝒗|𝑾) Conditions 

𝒗𝟏,𝒋 
{𝑗 − 1, 𝑗 + 1} 

𝑗 ∈ [1,
𝑚

2
+ 1] 

𝒗𝟏,𝒋 
{𝑚 − 𝑗 + 1, 𝑚 − 𝑗 + 3}  

𝑗 ∈ [
𝑚

2
+ 2, 𝑚] 

𝒗𝟐,𝒋 
{𝑗, 𝑗}  

𝑗 ∈ [1,
𝑚

2
] 

𝒗𝟐,𝒋 
{𝑚 − 𝑗, 𝑚 − 𝑗 + 2} 

 𝑗 ∈ [
𝑚

2
+ 1, 𝑚] 

𝒗𝒊,𝒋 
{𝑖 + 𝑗 − 2, 𝑖 + 𝑗 − 2} 

𝑖 ∈ [3,
𝑛 + 1

2
] , 𝑗 ∈ [1,

𝑚

2
+ 1] 

𝒗𝒊,𝒋 
{𝑚 − 𝑗 + 𝑖, 𝑚 − 𝑗 + 𝑖} 

𝑖 ∈ [3,
𝑛 + 1

2
] , 𝑗 ∈ [

𝑚

2
+ 2, 𝑚] 

𝒗𝒊,𝒋 
{𝑛 − 𝑖 + 𝑗, 𝑖 + 𝑗 − 2}  

𝑖 =
𝑛 + 3

2
, 𝑗 ∈ [1,

𝑚

2
+ 1] 

𝒗𝒊,𝒋 
{𝑚 + 𝑛 − 𝑗 − 𝑖 + 2, 𝑚 − 𝑗 + 𝑖}  

𝑖 =
𝑛 + 3

2
, 𝑗 ∈ [

𝑚

2
+ 2, 𝑚] 

𝒗𝒊,𝒋 
{𝑛 − 𝑖 + 𝑗, 𝑛 − 𝑖 + 𝑗 + 2} 

𝑖 ∈ [
𝑛 + 5

2
, 𝑛] , 𝑗 ∈ [1,

𝑚

2
+ 1] 

𝒗𝒊,𝒋 
{𝑚 + 𝑛 − 𝑗 − 𝑖 + 2, 𝑚 + 𝑛 − 𝑗 − 𝑖 + 4} 

𝑖 ∈ [
𝑛 + 5

2
, 𝑛] , 𝑗 ∈ [

𝑚

2
+ 2, 𝑚] 

The vertex representations of the adjacent vertices 𝑣𝑖 are distinct such that 𝑊 is a local 𝑚-

resolving set of 𝐶𝑛 ⊳  𝐶𝑚. Thus, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝐶𝑚) ≤  2. 

Furthermore, we are going to prove that 𝑊 is the local m-resolving set with minimum cardinality. 

Take any set 𝑆 ⊂  𝑉(𝐶𝑛 ⊳  𝐶𝑚)  with |𝑆| < |𝑊| . Let |𝑆| = 1 , suppose the local 𝑚 -resolving 

set 𝑊 = {𝑣} so that there are some conditions of this proof as follows 

(1)  If 𝑣 ∈  𝑉(𝐶𝑛) namely 𝑣 = 𝑣𝑖,1, then we have vertex representation as follows 

𝑟𝑚 (𝑣
(

𝑛+1

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) =  𝑟𝑚 (𝑣
(

𝑛+3

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = {
𝑛−1

2
}. (29) 

(2)  If 𝑣 ∈  𝑉((𝐶𝑚)𝑖), then we have vertex representation as follows 
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𝑟𝑚(𝑣
(

𝑛+1

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = 𝑟𝑚(𝑣
(

𝑛+3

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = {
𝑛−1

2
+ 𝑑(𝑣𝑖,1, 𝑣)}. (30) 

It is clear that 𝑟𝑚(𝑣
(

𝑛+1

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊) = 𝑟𝑚(𝑣
(

𝑛+3

2
+𝑖−1)𝑚𝑜𝑑 𝑛,1

|𝑊). Therefore, 𝑆 is not a local 

𝑚-resolving set of 𝐶𝑛 ⊳  𝐶𝑚. Thus, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝐶𝑚) = 2. 

Case 3. For 𝑛 is even and 𝑚 is odd 

Choose 𝑊 = {𝑣1,𝑚−1, 𝑣𝑖,𝑚;  𝑖 ∈ [2, 𝑛]}, so that |𝑊| = 𝑛. We are going to prove that the vertex 

representations of two adjacent vertices in 𝐶𝑛 ⊳  𝐶𝑚 are distinct. The resolver vertex in (𝐶𝑚)𝑖 , 𝑖 ∈

[1, 𝑛] exactly one resolver in every cycle leaves. The resolver 𝑣1,𝑚−1 in (𝐶𝑚)1 and 𝑣𝑖,𝑚 in (𝐶𝑚)𝑖 

for 𝑖 ∈ [2, 𝑛].  In the first step, we show that vertex representations of two adjacent vertices in 

(𝐶𝑚)𝑖 , 𝑖 ∈ [2, 𝑛] with respect to 𝑊 are distinct as follows 

(1)  The number of leave vertex in every cycle leave is even, such that two adjacent vertices in cycle 

leaves have the same distance to the terminal vertex. The vertex 𝑣
𝑖,

𝑚+1

2

, 𝑣
𝑖,

𝑚+3

2

 in (𝐶𝑚)𝑖 so that, 

𝑑(𝑣
𝑖,

𝑚+1

2

}, 𝑣𝑖,1) =  𝑑(𝑣
𝑖,

𝑚+3

2

, 𝑣𝑖,1). 

(2)  The number of leave vertex in every cycle leave is even, such that two adjacent vertices in cycle 

leaves have the same distance to the resolver. The vertex 𝑣
𝑖,

𝑚−1

2

, 𝑣
𝑖,

𝑚+1

2

  in (𝐶𝑚)𝑖  so that, 

𝑑(𝑣
𝑖,

𝑚−1

2

, 𝑣𝑖,𝑚) =  𝑑(𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,𝑚). 

(3)  We are going to show that two adjacent vertices in cycle leaves have distinct vertex representations 

with respect to 𝑊 . For 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛]  and 𝑘 ≠ 𝑖 , we know that 𝑑 (𝑣
𝑖,

𝑚−1

2

, 𝑣𝑖,1) ≠

 𝑑(𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,1) such that 

𝑑(𝑣
𝑖,

𝑚−1

2

, 𝑣𝑘,𝑚) = 𝑑(𝑣
𝑖,

𝑚−1

2

, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (31) 

𝑑 (𝑣
𝑖,

𝑚+1

2

, 𝑣𝑘,𝑚) = 𝑑 (𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚). (32) 

Therefore, 𝑑 (𝑣
𝑖,

𝑚−1

2

, 𝑣𝑘,𝑚) ≠  𝑑(𝑣
𝑖,

𝑚+1

2

, 𝑣𝑘,𝑚) so that 𝑟𝑚 (𝑣
𝑖,

𝑚−1

2

|𝑊) ≠  𝑟𝑚(𝑣
𝑖,

𝑚+1

2

|𝑊). 

(4)  Take two adjacent vertices, 𝑣𝑖,𝑟 , 𝑣𝑖,𝑠 ∈  𝑉((𝐶𝑚)𝑖) − {𝑣
𝑖,

𝑚−1

2

, 𝑣
𝑖,

𝑚+1

2

} , 𝑟, 𝑠 ∈ [1, 𝑚], 𝑟 ≠  𝑠 . The 

resolver 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛] and 𝑘 ≠ 𝑖, we know that 𝑑(𝑣𝑖,𝑟 , 𝑣𝑖,𝑠) ≠  𝑑(𝑣𝑖,𝑠, 𝑣𝑖,1) such that 

𝑑(𝑣𝑖,𝑟 , 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,𝑟 , 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), 
(33) 

𝑑(𝑣𝑖,𝑠, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,𝑠, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚). 
(34) 
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Therefore, 𝑑(𝑣𝑖,𝑟 , 𝑣𝑘,𝑚) ≠  𝑑(𝑣𝑖,𝑠, 𝑣𝑘,𝑚) so that 𝑟𝑚(𝑣𝑖,𝑟|𝑊) ≠  𝑟𝑚(𝑣𝑖,𝑠|𝑊). 

(5)  The terminal vertex indices cycle graph 𝐶𝑛, 𝑛 is odd such that the distance between two adjacent 

terminal vertex to the resolver vertex is distinct, 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) ≠  𝑑(𝑣𝑙.1, 𝑣𝑖,𝑚)  and 

𝑑(𝑣𝑘,1, 𝑣1,𝑚−1) ≠  𝑑(𝑣𝑙,1, 𝑣1,𝑚−1)  for 𝑘, 𝑙 ∈ [2, 𝑛], 𝑘 ≠  𝑙 ≠  𝑖 . Based on (6) so that 

𝑟𝑚(𝑣𝑘,1|𝑊) ≠  𝑟𝑚(𝑣𝑙,1|𝑊). 

(6) The vertex 𝑣𝑖,1 adjacent to 𝑣𝑖,2, 𝑑(𝑣𝑖,1, 𝑣𝑖,𝑚) ≠  𝑑(𝑣𝑖,2, 𝑣𝑖,𝑚) and  

𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,1, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (35) 

𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,2, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 1 + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), 𝑘 ≠  𝑖. (36) 

It is clear that 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) ≠  𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) , we know that 𝑟𝑚(𝑣𝑖,1|𝑊) =

{𝑑(𝑣𝑖,1, 𝑣𝑖,𝑚), 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚)} ≠  {𝑑(𝑣𝑖,2, 𝑣𝑖,𝑚), 𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚)} = 𝑟𝑚(𝑣𝑖,2|𝑊). 

Now, we prove that vertex representation of two adjacent vertices in (𝐶𝑚)1 respect to 𝑊 is 

distinct. For 𝑣1,𝑚−1  and 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛]  and 𝑘 ≠  𝑖 , we know that 𝑑(𝑣
1,

𝑚−3

2

, 𝑣1,𝑚−1) =

 𝑑(𝑣
1,

𝑚−1

2

, 𝑣1,𝑚−1) and 𝑑 (𝑣
1,

𝑚−3

2

, 𝑣1,1) ≠  𝑑(𝑣
1,

𝑚−1

2

, 𝑣1,1) such that 

𝑑(𝑣
1,

𝑚−3

2

, 𝑣𝑘,𝑚) = 𝑑(𝑣
1,

𝑚−3

2

, 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚), (37) 

𝑑(𝑣
1,

𝑚−1

2

, 𝑣𝑘,𝑚) = 𝑑(𝑣
1,

𝑚−1

2

, 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚). (38) 

It is clear that 𝑑 (𝑣
1,

𝑚−3

2

, 𝑣𝑘,𝑚) ≠  𝑑(𝑣
1,

𝑚−1

2

, 𝑣𝑘,𝑚)  so that 𝑟𝑚 (𝑣
1,

𝑚−1

2

|𝑊) ≠  𝑟𝑚(𝑣
1,

𝑚+1

2

|𝑊) . 

Next, taking two adjacent vertices, 𝑣1,𝑟 , 𝑣1,𝑠 ∈  𝑉((𝐶𝑚)1) − {𝑣
1,

𝑚−3

2

, 𝑣
1,

𝑚−1

2

} , 𝑟, 𝑠 ∈ [1, 𝑚], 𝑟 ≠  𝑠. We 

know that 𝑑(𝑣1,𝑟 , 𝑣1,𝑚−1) =  𝑑(𝑣1,𝑠, 𝑣1,𝑚−1) and 𝑑(𝑣1,𝑟 , 𝑣1,1) ≠  𝑑(𝑣1,𝑠, 𝑣1,1) such that 

𝑑(𝑣1,𝑟 , 𝑣𝑘,𝑚) = 𝑑(𝑣1,𝑟 , 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚), 
(39) 

𝑑(𝑣1,𝑠, 𝑣𝑘,𝑚) = 𝑑(𝑣1,𝑠, 𝑣1,1) + 𝑑(𝑣1,1, 𝑣𝑘,𝑚). 
(40) 

Therefore, 𝑑(𝑣1,𝑟 , 𝑣𝑘,𝑚) ≠  𝑑(𝑣1,𝑠, 𝑣𝑘,𝑚)  so that 𝑟𝑚(𝑣1,𝑟|𝑊) ≠  𝑟𝑚(𝑣1,𝑠|𝑊) . Hence, 
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𝑟𝑚(𝑣𝑖,𝑗|𝑊) ≠  𝑟𝑚(𝑣𝑘,𝑙|𝑊) for 𝑣𝑖,𝑗 adjacent to 𝑣𝑘,𝑙 for 𝑖 ∈ [1, 𝑛]. Consequently, 𝑊 is a local 𝑚-

resolving set of 𝐶𝑛 ⊳  𝐶𝑚. 

Furthermore, we will prove that 𝑊  is the local 𝑚 -resolving set with minimum cardinality. 

Taking any set 𝑆 ⊂  𝑉(𝐶𝑛 ⊳  𝐶𝑚)  with |𝑆| < |𝑊| . Let |𝑆| = 𝑛 − 1 , there are at least one cycle 

leaves which haven't resolver. For m odd, there are even leave vertex such that the two adjacent vertices 

𝑣
𝑘,

𝑚+1

2

, 𝑣
𝑘,

𝑚+3

2

∈  𝑉(𝐶𝑚)𝑘 , 𝑘 ∈ [1, 𝑚]  have the same distance to the terminal vertex, 

𝑑 (𝑣
𝑘,

𝑚+1

2

, 𝑣𝑘,1) =
𝑚+1

2
− 1 =

𝑚−1

2
 and 𝑑(𝑣

𝑘,
𝑚+3

2

, 𝑣𝑘,𝑚) = 𝑚 + 1 −
𝑚+3

2
=

𝑚−1

2
. We know that 

𝑑 (𝑣
𝑘,

𝑚+1

2

, 𝑣𝑖,𝑚) = 𝑑 (𝑣
𝑘,

𝑚+1

2

, 𝑣𝑘,1) + 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) =
𝑚−1

2
+ 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚), (41) 

𝑑 (𝑣
𝑘,

𝑚+3

2

, 𝑣𝑖,𝑚) = 𝑑 (𝑣
𝑘,

𝑚+3

2

𝑣𝑘,1) + 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) =
𝑚−1

2
+ 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚). (42) 

It is clear that 𝑑 (𝑣
𝑘,

𝑚+1

2

, 𝑣𝑖,𝑚) = 𝑑 (𝑣
𝑘,

𝑚+3

2

, 𝑣𝑖,𝑚)  such that 𝑟𝑚(𝑣
𝑘,

𝑚+1

2

|𝑊) = 𝑟𝑚(𝑣
𝑘,

𝑚+3

2

|𝑊) . 

Therefore, 𝑆 is not a local 𝑚-resolving set of 𝐶𝑛 ⊳  𝐶𝑚. Thus, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝐶𝑚) = 𝑛. This completes 

the proof. 

Case 4. For 𝑛 and 𝑚 are odd 

Choose 𝑊 = {𝑣1,𝑚−1, 𝑣3,𝑚−1, 𝑣4,𝑚−1, 𝑣𝑖,𝑚;  𝑖 ∉ {1,3,4}}, so that |𝑊| = 𝑛. We are going to prove 

that the vertex representations of two adjacent vertices in 𝐶𝑛 ⊳  𝐶𝑚 are distinct. The resolver vertex 

in (𝐶𝑚)𝑖 , 𝑖 ∈ [1, 𝑛]  exactly one resolver in every cycle leaves. The resolver 𝑣𝑖,𝑚−1  in (𝐶𝑚)𝑖 , 𝑖 ∈

{1,3,4} and 𝑣𝑖,𝑚 in (𝐶𝑚)𝑖 for 𝑖 ∉ {1,3,4}. In the first step, we show that vertex representations of 

two adjacent vertices in (𝐶𝑚)𝑖 , 𝑖 ∉ {1,3,4} with respect to 𝑊 are distinct as follows 

(1)  The number of leave vertex in every cycle leaves is even, such that two adjacent vertices in cycle 

leaves have the same distance to the terminal vertex. The vertex 𝑣
𝑖,

𝑚+1

2

, 𝑣
𝑖,

𝑚+3

2

 in (𝐶𝑚)𝑖 so that, 

𝑑(𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,1) =  𝑑(𝑣
𝑖,

𝑚+3

2

, 𝑣𝑖,1). 

(2)  The number of leave vertex in every cycle leaves is even, such that two adjacent vertices in cycle 

leaves have the same distance to the resolver. The vertex 𝑣
𝑖,

𝑚−1

2

, 𝑣
𝑖,

𝑚+1

2

  in (𝐶𝑚)𝑖  so that, 

𝑑( 𝑣
𝑖,

𝑚−1

2

, 𝑣𝑖,𝑚) =  𝑑( 𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,𝑚). 

(3)  We are going to show that two adjacent vertices in cycle leaves have distinct vertex representations 

with respect to 𝑊 . For 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛]  and 𝑘 ≠  𝑖 , we know that 𝑑 ( 𝑣
𝑖,

𝑚−1

2

, 𝑣𝑖,1) ≠

 𝑑( 𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,1) such that 

𝑑( 𝑣
𝑖,

𝑚−1

2

, 𝑣𝑘,𝑚) = 𝑑( 𝑣
𝑖,

𝑚−1

2

, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (43) 
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𝑑( 𝑣
𝑖,

𝑚+1

2

, 𝑣𝑘,𝑚) = 𝑑( 𝑣
𝑖,

𝑚+1

2

, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚). (44) 

Therefore,  𝑑( 𝑣
𝑖,

𝑚−1

2

, 𝑣𝑘,𝑚 ≠  𝑑( 𝑣
𝑖,

𝑚+1

2

, 𝑣𝑘,𝑚) so that 𝑟𝑚 (𝑣
𝑖,

𝑚−1

2

|𝑊) ≠  𝑟𝑚(𝑣
𝑖,

𝑚+1

2

|𝑊). 

(4)  Take two adjacent vertices, 𝑣𝑖,𝑟 , 𝑣𝑖,𝑠 ∈  𝑉((𝐶𝑚)𝑖) − {𝑣
𝑖,

𝑚−1

2

, 𝑣
𝑖,

𝑚+1

2

} , 𝑟, 𝑠 ∈ [1, 𝑚], 𝑟 ≠  𝑠 . The 

resolver 𝑣𝑘,𝑚 ∈  𝑊, 𝑘 ∈ [2, 𝑛] and 𝑘 ≠  𝑖, we know that 𝑑(𝑣𝑖,𝑟 , 𝑣𝑖,1) ≠ 𝑑(𝑣𝑖,𝑠, 𝑣𝑖,1) such that 

𝑑(𝑣𝑖,𝑟 , 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,𝑟 , 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (45) 

𝑑(𝑣𝑖,𝑠, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,𝑠, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚). (46) 

Therefore, 𝑑(𝑣𝑖,𝑟 , 𝑣𝑘,𝑚) ≠ 𝑑(𝑣𝑖,𝑠, 𝑣𝑘,𝑚) so that 𝑟𝑚(𝑣𝑖,𝑟|𝑊) ≠  𝑟𝑚(𝑣𝑖,𝑠|𝑊). 

(5)  The terminal vertex indices cycle graph 𝐶𝑛, 𝑛 is odd such that the distance between two adjacent 

terminal vertex to the resolver vertex is distinct, 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) ≠  𝑑(𝑣𝑙,1, 𝑣𝑖,𝑚) for 𝑖 ∉ {1,3,4} and 

𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚−1) ≠  𝑑(𝑣𝑙,1, 𝑣𝑖,𝑚−1)  for 𝑘, 𝑙 ∈ [2, 𝑛]  and 𝑖 ∈ {1,3,4}  so that 𝑟𝑚(𝑣𝑘,1|𝑊) ≠

 𝑟𝑚(𝑣𝑙,1|𝑊). 

(6) The vertex 𝑣𝑖,1 adjacent to 𝑣𝑖,2, 𝑑(𝑣𝑖,1, 𝑣𝑖,𝑚) ≠  𝑑(𝑣𝑖,2, 𝑣𝑖,𝑚) and 

𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,1, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), (47) 

𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) = 𝑑(𝑣𝑖,2, 𝑣𝑖,1) + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) = 1 + 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚), 𝑘 ≠  𝑖. 
(48) 

It is clear that 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚) ≠  𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) , we know that 𝑟𝑚(𝑣𝑖,1|𝑊) =

{𝑑(𝑣𝑖,1, 𝑣𝑖,𝑚), 𝑑(𝑣𝑖,1, 𝑣𝑘,𝑚)} ≠  {𝑑(𝑣𝑖,2, 𝑣𝑖,𝑚), 𝑑(𝑣𝑖,2, 𝑣𝑘,𝑚) = 𝑟𝑚(𝑣𝑖,2|𝑊)}. 

Hence, 𝑟𝑚(𝑣𝑖,𝑗|𝑊) ≠  𝑟𝑚(𝑣𝑘,𝑙|𝑊)  for 𝑣𝑖,𝑗  adjacent to 𝑣𝑘,𝑙  for 𝑖 ∈ [1, 𝑛].  Consequently, 𝑊 

is a local 𝑚-resolving set of 𝐶𝑛 ⊳  𝐶𝑚. 

Furthermore, we will prove that 𝑊 is the local 𝑚-resolving set with minimum cardinality. Take 

any set 𝑆 ⊂  𝑉(𝐶𝑛 ⊳  𝐶𝑚) with |𝑆| < |𝑊|. Let |𝑆| = 𝑛 − 1, there are at least one cycle leaves which 

haven't resolver. For 𝑚 odd, The number of leave vertex in every cycle leaves is even, such that the 

two adjacent vertices 𝑣
𝑘,

𝑚+1

2

, 𝑣
𝑘,

𝑚+3

2

  in (𝐶𝑚)𝑘, 𝑘 ∈ [1, 𝑚]  have the same distance to the terminal 
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vertex, 𝑑 (𝑣
𝑘,

𝑚+1

2

, 𝑣𝑘,1) =
𝑚+1

2
− 1 =

𝑚−1

2
  and 𝑑(𝑣

𝑘,
𝑚+3

2

, 𝑣𝑘,𝑚) = 𝑚 + 1 −
𝑚+3

2
=

𝑚−1

2
.  We know 

that 

𝑑(𝑣
𝑘,

𝑚+1

2

, 𝑣𝑖,𝑚) = 𝑑(𝑣
𝑘,

𝑚+1

2

, 𝑣𝑘,1) + 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) =
𝑚−1

2
+ 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚), (49) 

𝑑(𝑣
𝑘,

𝑚+3

2

, 𝑣𝑖,𝑚) = 𝑑(𝑣
𝑘,

𝑚+3

2

, 𝑣𝑘,1) + 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚) =
𝑚−1

2
+ 𝑑(𝑣𝑘,1, 𝑣𝑖,𝑚). (50) 

It is clear that 𝑑(𝑣
𝑘,

𝑚+1

2

, 𝑣𝑖,𝑚) = 𝑑(𝑣
𝑘,

𝑚+3

2

, 𝑣𝑖,𝑚)  such that 𝑟𝑚(𝑣
𝑘,

𝑚+1

2

|𝑊) = 𝑟𝑚(𝑣
𝑘,

𝑚+3

2

|𝑊) . 

Therefore, 𝑆 is not a local 𝑚-resolving set of 𝐶𝑛 ⊳  𝐶𝑚. Thus, 𝑚𝑑𝑙(𝐶𝑛 ⊳  𝐶𝑚) = 𝑛. This completes 

the proof. 

3. Conclusions 

We have found the sharpest bounds of LMD of the tree comb cycle, and we get the exact value 

of the cycle comb tree, tree comb tree, and cycle comb cycle. There are some open problems with this 

research as follows. 

Open Problem 1. Determine the bounds of local multiset dimension of 𝐺 ⊳ 𝐻 for 𝐺 and 𝐻 are 

any graphs. 

Open Problem 2. Determine the local multiset dimension of 𝐺 with 𝑚𝑑𝑙(𝐺) = 𝑛 − 1, 𝑛 − 2. 

Open Problem 3. Characterized 𝑚𝑑𝑙(𝐺) − 𝑙𝑑𝑖𝑚(𝐺) = 0.  
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