Research article Special Issues

Decay of unique global solution for 3D tropical climate model with partial dissipation

  • Received: 11 July 2023 Revised: 24 October 2023 Accepted: 06 November 2023 Published: 17 November 2023
  • MSC : 35B40, 35Q35

  • In this article, we studied the asymptotic behavior of weak solutions to the three-dimensional tropical climate model with one single diffusion $ \mu\Lambda ^{2\alpha}u $. We established that when $ u_{0}\in L^{1}(\mathbb{R}^{3})\cap L^{2}(\mathbb{R}^{3}) $, $ (w_0, \theta_0)\in (L^{2}(\mathbb{R}^{3}))^2 $ and $ w\in L^\infty(0, \infty; W^{1-\alpha, \infty}(\mathbb{R}^3)) $ with $ \alpha\in(0, 1] $, the energy $ \Vert u(t)\Vert_{L^2(\mathbb{R}^3)} $ vanishes and $ \Vert w(t)\Vert_{L^2(\mathbb{R}^3)}+\Vert \theta(t)\Vert_{L^2(\mathbb{R}^3)} $ converges to a constant as time tends to infinity.

    Citation: Ying Zeng, Wenjing Yang. Decay of unique global solution for 3D tropical climate model with partial dissipation[J]. AIMS Mathematics, 2023, 8(12): 30882-30894. doi: 10.3934/math.20231579

    Related Papers:

  • In this article, we studied the asymptotic behavior of weak solutions to the three-dimensional tropical climate model with one single diffusion $ \mu\Lambda ^{2\alpha}u $. We established that when $ u_{0}\in L^{1}(\mathbb{R}^{3})\cap L^{2}(\mathbb{R}^{3}) $, $ (w_0, \theta_0)\in (L^{2}(\mathbb{R}^{3}))^2 $ and $ w\in L^\infty(0, \infty; W^{1-\alpha, \infty}(\mathbb{R}^3)) $ with $ \alpha\in(0, 1] $, the energy $ \Vert u(t)\Vert_{L^2(\mathbb{R}^3)} $ vanishes and $ \Vert w(t)\Vert_{L^2(\mathbb{R}^3)}+\Vert \theta(t)\Vert_{L^2(\mathbb{R}^3)} $ converges to a constant as time tends to infinity.



    加载中


    [1] C. J. Amick, J. L. Bona, M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differ. Equ., 81 (1989), 1–49. https://doi.org/10.1016/0022-0396(89)90176-9 doi: 10.1016/0022-0396(89)90176-9
    [2] R. Agapito, M. Schonbek, Non-uniform decay of MHD equations with and without magnetic diffusion, Commun. Partial Differ. Equ., 32 (2007), 1791–1812. https://doi.org/10.1080/03605300701318658 doi: 10.1080/03605300701318658
    [3] L. Bisconti, A regularity criterion for a 2D tropical climate model with fractional dissipation, Monatsh. Math., 194 (2021), 719–736.
    [4] C. S. Cao, E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., 166 (2007), 245–267. https://doi.org/10.4007/annals.2007.166.245 doi: 10.4007/annals.2007.166.245
    [5] C. S. Cao, E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Commun. Math. Phys., 310 (2012), 537–568. https://doi.org/10.1007/s00220-011-1409-4 doi: 10.1007/s00220-011-1409-4
    [6] C. S. Cao, J. K. Li, E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Rational Mech. Anal., 214 (2014), 35–76. https://doi.org/10.1007/s00205-014-0752-y doi: 10.1007/s00205-014-0752-y
    [7] C. S. Cao, J. K. Li, E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differ. Equ., 257 (2014), 4108–4132. http://dx.doi.org/10.1016/j.jde.2014.08.003 doi: 10.1016/j.jde.2014.08.003
    [8] B. Q. Dong, W. J. Wang, J. H. Wu, H. Zhang, Global regularity results for the climate model with fractional dissipation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 211–229. https://doi.org/10.3934/dcdsb.2018102 doi: 10.3934/dcdsb.2018102
    [9] B. Q. Dong, J. H. Wu, Z. Ye, Global regularity for a 2D tropical climate model with fractional dissipation, J. Nonlinear Sci., 29 (2019), 511–550. https://doi.org/10.1007/s00332-018-9495-5 doi: 10.1007/s00332-018-9495-5
    [10] B. Q. Dong, J. H. Wu, Z. Ye, 2D tropical climate model with fractional dissipation and without thermal diffusion, Commun. Math. Sci., 18 (2020), 259–292. https://doi.org/10.4310/cms.2020.v18.n1.a11 doi: 10.4310/cms.2020.v18.n1.a11
    [11] M. Dai, H. Liu, Long time behavior of solutions to the 3D Hall-magneto-hydrodynamics system with one diffusion, J. Differ. Equ., 266 (2019), 7658–7677. https://doi.org/10.1016/j.jde.2018.12.008 doi: 10.1016/j.jde.2018.12.008
    [12] D. M. W. Frierson, A. J. Majda, O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Commun. Math. Sci., 2 (2004), 591–626. https://doi.org/10.4310/cms.2004.v2.n4.a3 doi: 10.4310/cms.2004.v2.n4.a3
    [13] R. H. Guterres, J. R. Nunes, C. F. Perusato, On the large time decay of global solutions for the micropolar dynamics in $L^2(\mathbb{R}^n)$, Nonlinear Anal. Real World Appl., 45 (2019), 789–798. https://doi.org/10.1016/j.nonrwa.2018.08.002 doi: 10.1016/j.nonrwa.2018.08.002
    [14] J. G. Heywood, Epochs of regularity for weak solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J., 40 (1988), 293–313. https://doi.org/10.2748/tmj/1178228031 doi: 10.2748/tmj/1178228031
    [15] H. M. Li, Y. L. Xiao, Decay rate of unique global solution for a class of 2D tropical climate model, Math. Methods Appl. Sci., 42 (2019), 2533–2543. https://doi.org/10.1002/mma.5529 doi: 10.1002/mma.5529
    [16] J. K. Li, E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495–4516. https://doi.org/10.3934/dcds.2016.36.4495 doi: 10.3934/dcds.2016.36.4495
    [17] V. Mazya, T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230–238. https://doi.org/10.1006/jfan.2002.3955 doi: 10.1006/jfan.2002.3955
    [18] C. J. Niche, C. F. Perusato, Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids, Z. Angew. Math. Phys., 73 (2022), 48. https://doi.org/10.1007/s00033-022-01683-2 doi: 10.1007/s00033-022-01683-2
    [19] C. J. Niche, M. E. Schonbek, Decay of weak solutions to the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys., 276 (2007), 93–115. https://doi.org/10.1007/s00220-007-0327-y doi: 10.1007/s00220-007-0327-y
    [20] M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209–222. https://doi.org/10.1007/bf00752111 doi: 10.1007/bf00752111
    [21] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Commun. Partial Differ. Equ., 11 (1986), 733–763. https://doi.org/10.1080/03605308608820443 doi: 10.1080/03605308608820443
    [22] H. Y. Xie, Z. Y. Zhang, Time decay rate of solutions to the tropical climate model equations in $\mathbb{R}^n$, Appl. Anal., 100 (2021), 1487–1500. https://doi.org/10.1080/00036811.2019.1646422 doi: 10.1080/00036811.2019.1646422
    [23] B. Q. Yuan, Y. Zhang, Global strong solution of 3D tropical climate model with damping, Front. Math. China, 16 (2021), 889–900. https://doi.org/10.1007/s11464-021-0933-6 doi: 10.1007/s11464-021-0933-6
    [24] Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307–321. https://doi.org/10.1016/j.jmaa.2016.08.053 doi: 10.1016/j.jmaa.2016.08.053
    [25] M. X. Zhu, Global regularity for the tropical climate model with fractional diffusion on barotropic mode, Appl. Math. Lett., 81 (2018), 99–104. https://doi.org/10.1016/j.aml.2018.02.003 doi: 10.1016/j.aml.2018.02.003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(791) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog