Research article

Enhanced evolutionary approach for solving fractional difference recurrent neural network systems: A comprehensive review and state of the art in view of time-scale analysis

  • Received: 03 August 2023 Revised: 17 October 2023 Accepted: 27 October 2023 Published: 14 November 2023
  • MSC : 46S40, 47H10, 54H25

  • The present research deals with a novel three-dimensional fractional difference neural network model within undamped oscillations. Both the frequency and the amplitude of movements in equilibrium are subsequently estimated mathematically for such structures. According to the stability assessment, the thresholds of the fractional order were determined where bifurcations happen, and an assortment of fluctuations bifurcate within an insignificant equilibrium state. For such discrete fractional-order connections, the parameterized spectrum of undamped resonances is also predicted, and the periodicity and strength of variations are calculated computationally and numerically. Several qualitative techniques, including the Lyapunov exponent, phase depictions, bifurcation illustrations, the $ 0-1 $ analysis and the approximate entropy technique, have been presented with the rigorous analysis. These outcomes indicate that the suggested discrete fractional neural network model has crucial as well as complicated dynamic features that have been affected by the model's variability, both in commensurate and incommensurate cases. Furthermore, the approximation entropy verification and $ \mathbb{C}_{0} $ procedure are used to assess variability and confirm the emergence of chaos. Ultimately, irregular controllers for preserving and synchronizing the suggested framework are highlighted.

    Citation: Hanan S. Gafel, Saima Rashid. Enhanced evolutionary approach for solving fractional difference recurrent neural network systems: A comprehensive review and state of the art in view of time-scale analysis[J]. AIMS Mathematics, 2023, 8(12): 30731-30759. doi: 10.3934/math.20231571

    Related Papers:

  • The present research deals with a novel three-dimensional fractional difference neural network model within undamped oscillations. Both the frequency and the amplitude of movements in equilibrium are subsequently estimated mathematically for such structures. According to the stability assessment, the thresholds of the fractional order were determined where bifurcations happen, and an assortment of fluctuations bifurcate within an insignificant equilibrium state. For such discrete fractional-order connections, the parameterized spectrum of undamped resonances is also predicted, and the periodicity and strength of variations are calculated computationally and numerically. Several qualitative techniques, including the Lyapunov exponent, phase depictions, bifurcation illustrations, the $ 0-1 $ analysis and the approximate entropy technique, have been presented with the rigorous analysis. These outcomes indicate that the suggested discrete fractional neural network model has crucial as well as complicated dynamic features that have been affected by the model's variability, both in commensurate and incommensurate cases. Furthermore, the approximation entropy verification and $ \mathbb{C}_{0} $ procedure are used to assess variability and confirm the emergence of chaos. Ultimately, irregular controllers for preserving and synchronizing the suggested framework are highlighted.



    加载中


    [1] A. G. Radwan, On some generalized discrete logistic maps, J. Adv. Res., 4 (2013), 163–171. https://doi.org/10.1016/j.jare.2012.05.003 doi: 10.1016/j.jare.2012.05.003
    [2] H. Nejati, A. Beirami, Y. Massoud, A realizable modified tent map for true random number generation, 2008 51st Midwest Symposium on Circuits and Systems, 2012. https://doi.org/10.1109/MWSCAS.2008.4616876 doi: 10.1109/MWSCAS.2008.4616876
    [3] A. G. H. Rafash, E. M. H. Saeed, Al-S. M. Talib, Development of an enhanced scatter search algorithm using discrete chaotic Arnold's cat map, East.-Eur. J. Enterp. Technol., 6 (2021), 15–20. https://doi.org/10.15587/1729-4061.2021.234915 doi: 10.15587/1729-4061.2021.234915
    [4] M. Kaur, V. Kumar, Beta chaotic map based image encryption using genetic algorithm, Internat. J. Bifur. Chaos, 28 (2018), 1850132. https://doi.org/10.1142/S0218127418501328 doi: 10.1142/S0218127418501328
    [5] N. Wang, D. Jiang, H. Xu, Dynamic characteristics analysis of a dual-rotor system with inter-shaft bearing, Proc. Inst. Mech. Eng. Part G J. Aerospace Eng., 233 (2019), 1147–1158. https://doi.org/10.1177/0954410017748969 doi: 10.1177/0954410017748969
    [6] D. K. Arrowsmith, J. H. E. Cartwright, A. N. Lansbury, C. M. Place, The Bogdanov map: Bifurcation, mode locking and chaos in a dissipative system, Internat. J. Bifur. Chaos, 03 (1993), 803–842. https://doi.org/10.1142/S021812749300074X doi: 10.1142/S021812749300074X
    [7] A. Atangana, J. F. Gómez-Aguilar, Hyperchaotic behavior obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102(2017), 285–94. https://doi.org/10.1016/j.chaos.2017.03.022 doi: 10.1016/j.chaos.2017.03.022
    [8] A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [9] A. Atangana, Application of fractional calculus to epidemiology, In: Fractional dynamics, 2015,174–190. https://doi.org/10.1515/9783110472097-011
    [10] A. Atangana, J. F. Gómez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Phys. A, 476 (2017), 1–14. https://doi.org/10.1016/j.physa.2017.02.016 doi: 10.1016/j.physa.2017.02.016
    [11] J. F. Gómez-Aguilar, A. Atangana, New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 132 (2017), 13. https://doi.org/10.1140/epjp/i2017-11293-3 doi: 10.1140/epjp/i2017-11293-3
    [12] W. Ou, C. Xu, Q. Cui, Z. Liu, Y. Pang, M. Farman, et al., Mathematical study on bifurcation dynamics and control mechanism of trineuron BAM neural networks including delay, Math. Methods Appl. Sci., 2023. https://doi.org/10.1002/mma.9347 doi: 10.1002/mma.9347
    [13] C. Xu, D. Mu, Y. Pan, C. Aouiti, L. Yao, Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Anal. Comput., 13 (2023), 1119–1136. https://doi.org/10.11948/20210313 doi: 10.11948/20210313
    [14] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [15] W. Ahmad, R. El-Khazali, A. El-Wakil, Fractional order Wien-bridge oscillator, Electron. Lett., 37 (2001), 1110–1112. https://doi.org/10.1049/el:20010756 doi: 10.1049/el:20010756
    [16] Y. Wang, C. Li, Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?, Phys. Lett. A, 363 (2007), 414–419. https://doi.org/10.1016/j.physleta.2006.11.038 doi: 10.1016/j.physleta.2006.11.038
    [17] J. Cao, C. Ma, Z. Jiang, S. Liu, Nonlinear dynamic analysis of fractional order rub-impact rotor system, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1443–1463. https://doi.org/10.1016/j.cnsns.2010.07.005 doi: 10.1016/j.cnsns.2010.07.005
    [18] H. A. El-Saka, E. Ahmed, M. I. Shehata, A. M. A El-Sayed, On stability, persistence and Hopf bifurcation in fractioanl order dynamical systems, Nonlinear Dyn., 56 (2009), 121–126. https://doi.org/10.1007/s11071-008-9383-x doi: 10.1007/s11071-008-9383-x
    [19] J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088–3092. https://doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088
    [20] L. P. Shayer, S. A. Campbell, Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays, SIAM J. Appl. Math, 61 (2000), 673–700. https://doi.org/10.1137/S0036139998344015 doi: 10.1137/S0036139998344015
    [21] J. Wei, M. Y. Li, Global existence of periodic solutions in a tri-neuron model with delays, Phys. D, 198 (2004), 106–119. https://doi.org/10.1016/j.physd.2004.08.023 doi: 10.1016/j.physd.2004.08.023
    [22] J. Cao, M. Xiao, Stability and Hopf bifurcation in a simplified BAM neural network with two time delays, IEEE Trans. Neural Networ., 18 (2007), 416–430. https://doi.org/10.1109/TNN.2006.886358 doi: 10.1109/TNN.2006.886358
    [23] K. S. Cole, Electric conductance of biological systems, Cold Spring Harb. Symp. Quant. Biol., 1993,107–116.
    [24] T. J. Anastasio, The fractional-order dynamics of brainstem vestibule-oculumotor neurons, Biol. Cybernet., 72 (1994), 69–79. https://doi.org/10.1007/bf00206239 doi: 10.1007/bf00206239
    [25] F. M. Atici, P. W. Eloe, Discrete fractional calculus with the Nabla operator, Electron. J. Qual. Theo. Differ. Equ., 2009, 1–12.
    [26] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
    [27] T. Abdeljawad, D. Baleanu, F. Jarad, R. P. Agarwal, Fractional sums and differences with binomial coefficients, Discrete Dyn. Nat. Soc., 2013 (2013), 104173. https://doi.org/10.1155/2013/104173 doi: 10.1155/2013/104173
    [28] C. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer Cham, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [29] D. Baleanu, G. Wu, Y. Bai, F. Chen, Stability analysis of Caputo-like discrete fractional systems, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 520–530. https://doi.org/10.1016/j.cnsns.2017.01.002 doi: 10.1016/j.cnsns.2017.01.002
    [30] Y. M. Chu, T. Alzahrani, S. Rashid, W. Rashidah, S. ur Rehman, M. Alkhatib, An advanced approach for the electrical responses of discrete fractional-order biophysical neural network models and their dynamical responses, Sci. Rep., 13 (2023), 18180. https://doi.org/10.1038/s41598-023-45227-8 doi: 10.1038/s41598-023-45227-8
    [31] G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–703. http://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [32] T. Hu, Discrete chaos in fractional Hénon map, Appl. Math., 5 (2014), 2243–2248. http://doi.org/10.4236/am.2014.515218 doi: 10.4236/am.2014.515218
    [33] M. Edelman, On stability of fixed points and chaos in fractional systems, Chaos, 28 (2018), 023112. https://doi.org/10.1063/1.5016437 doi: 10.1063/1.5016437
    [34] A. L. Fradkov, R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Control, 29 (2005), 33–56. https://doi.org/10.1016/j.arcontrol.2005.01.001 doi: 10.1016/j.arcontrol.2005.01.001
    [35] A. L. Fradkov, R. J. Evans, B. R. Andrievsky, Control of chaos: Methods and applications in mechanics, Phil. Trans. R. Soc. A., 364 (2006), 2279–2307. http://doi.org/10.1098/rsta.2006.1826 doi: 10.1098/rsta.2006.1826
    [36] G. Wu, D. Baleanu, H. Xie, F. Chen, Chaos synchronization of fractional chaotic maps based on the stability condition, Phys. A, 460 (2016), 374–283. https://doi.org/10.1016/j.physa.2016.05.045 doi: 10.1016/j.physa.2016.05.045
    [37] Y. Liu, Chaotic synchronization between linearly coupled discrete fractional Hénon maps, Indian J. Phys., 90 (2016), 313–317. https://doi.org/10.1007/s12648-015-0742-4 doi: 10.1007/s12648-015-0742-4
    [38] O. Megherbi, H. Hamiche, S. Djennoune, M. Bettayeb, A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems, Nonlinear Dyn., 90 (2017), 1519–1533. https://doi.org/10.1007/s11071-017-3743-3 doi: 10.1007/s11071-017-3743-3
    [39] H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Comput., 50 (1988), 513–529. https://doi.org/10.1090/S0025-5718-1988-0929549-2 doi: 10.1090/S0025-5718-1988-0929549-2
    [40] A. C. Ruiz, D. H. Owens, S. Townley, Existence, learning, and replication of periodic motions in recurrent neural networks, IEEE Trans. Neural Netw, 9 (1998), 651–661.
    [41] S. Townley, A. Ilchmann, M. G. Weiss, W. Mcclements, A. C. Ruiz, D. H. Owens, et al., Existence and learning of oscillations in recurrent neural networks, IEEE Trans. Neural NetwOR., 11 (2000), 205–214. https://doi.org/10.1109/72.822523 doi: 10.1109/72.822523
    [42] M. Xiao, W. X. Zheng, G. P. Jiang, J. D. Cao, Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative, IEEE Trans. Neura. Net. Lear. Syst., 26 (2015), 3201–3214. https://doi.org/10.1109/TNNLS.2015.2425734 doi: 10.1109/TNNLS.2015.2425734
    [43] J. Cermak, I. Gyori, L. Nechvatal, On explicit stability conditions for a linear fractional difference system, Fract. Cal. Appl. Anal., 18 (2015), 651–672. https://doi.org/10.1515/fca-2015-0040 doi: 10.1515/fca-2015-0040
    [44] M. S. Tavazoei, M. Haeri, M. Attari, S. Bolouki, M. Siami, More details on analysis of fractional-order Van der Pol oscillator, J. Vib. Control, 15 (2009), 803–819. https://doi.org/10.1177/1077546308096101 doi: 10.1177/1077546308096101
    [45] F. R. Gantmakher, The theory of matrices, New York: Chelsea Publishing Company, 1959.
    [46] M. A. Qurashi, Q. U. A. Asif, Y. M. Chu, S. Rashid, S. K. Elagan, Complexity analysis and discrete fractional difference implementation of the Hindmarsh-Rose neuron system, Results Phy., 51 (2023), 106627. https://doi.org/10.1016/j.rinp.2023.106627 doi: 10.1016/j.rinp.2023.106627
    [47] M. A. Qurashi, S. Rashid, F. Jarad, E. Ali, R. H. Egami, Dynamic prediction modeling and equilibrium stability of a fractional discrete biophysical neuron model, Results Phys., 48 (2023), 106405. https://doi.org/10.1016/j.rinp.2023.106405 doi: 10.1016/j.rinp.2023.106405
    [48] M. S. Tavazoei, M. Haeri, N. Nazari, Analysis of undamped oscillations generated by marginally stable fractional order systems, Signal Process., 88 (2008), 2971–2978. https://doi.org/10.1016/j.sigpro.2008.07.002 doi: 10.1016/j.sigpro.2008.07.002
    [49] G. A. Gottwald, I. Melbourne, The 0–1 test for chaos: A review, In: Chaos detection and predictability, Heidelberg: Springer, 915 (2016), 221–247. https://doi.org/10.1007/978-3-662-48410-4_7
    [50] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. USA, 88 (1991), 2297–2301. https://doi.org/10.1073/pnas.88.6.2297 doi: 10.1073/pnas.88.6.2297
    [51] E. H. Shen, Z. J. Cai, F. J. Gu, Mathematical foundation of a new complexity measure, Appl. Math. Mech., 26 (2005), 1188–1196. https://doi.org/10.1007/bf02507729 doi: 10.1007/bf02507729
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(869) PDF downloads(49) Cited by(4)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog