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equilibrium are subsequently estimated mathematically for such structures. According to the stability
assessment, the thresholds of the fractional order were determined where bifurcations happen, and
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fractional-order connections, the parameterized spectrum of undamped resonances is also predicted,
and the periodicity and strength of variations are calculated computationally and numerically. Several
qualitative techniques, including the Lyapunov exponent, phase depictions, bifurcation illustrations,
the 0 − 1 analysis and the approximate entropy technique, have been presented with the rigorous
analysis. These outcomes indicate that the suggested discrete fractional neural network model has
crucial as well as complicated dynamic features that have been affected by the model’s variability, both
in commensurate and incommensurate cases. Furthermore, the approximation entropy verification
and C0 procedure are used to assess variability and confirm the emergence of chaos. Ultimately,
irregular controllers for preserving and synchronizing the suggested framework are highlighted.
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1. Introduction

Numerous scholars in a broad spectrum of scientific and technological disciplines have studied
chaotic, evolving networks. Despite the fact that chaos first became identified and researched in
continuous-time mechanisms, its prevalence and distinctive features in discrete-time applications
additionally piqued the attention of researchers. The logistic map [1], the Tent map [2], Arnold’s
cat map [3], the beta chaotic map [4], the double rotor map [5] and the Bogdanov map [6] have all
been studied throughout several decades.

In recent times, fractional calculus (FC) has been recognized for possessing exceptional features
compared to traditional calculus in modeling the fluctuation of occurrences in nature [7]. The
advancements in FC are limitless. As illustrations, consider technology [8], biological sciences [9]
and epidemics [10]. Despite the fact that continuous-time FC has been around approximately for
generations, novel varieties of fractional operators have been continually established [11–14]. An
understanding of the intricate functioning of fractional-order (FO) mechanisms is gaining prominence
as a major issue in many multidisciplinary areas. The research conducted has noticed that FO
systems, including classical-order frameworks, exhibit limit cycles. In particular, Ahmad et al. [15]
demonstrated that limit periods are capable of being accomplished in the FO Wien-bridge oscillator,
and [16] demonstrated the presence of restricted phases in the fractional Brusselator. Cao et al. [17]
investigated the chaotic behavior of a fractional rub-impact turbine structure, while El-Saka et al. [18]
provided a computer simulation of a Hopf-type splitting in a FO structure.

Hopfield [19] proposed an improved neural network (NN) structure in 1984, whereby all circuitry is
depicted via a straightforward network composed of resistance and a voltage-controlled capacitor and
is linked to the adjacent neural pathways via unpredictable sinusoidal stimulation operations. Since
that time, evolving aspects of many kinds of NN algorithms have emerged as the focus of significant
studies [20–22]. These activities in NN scenarios, nevertheless, lack consideration of FO differences.
Several scientists and practitioners are currently attempting to simulate real-world interpretations
employing FO difference formulations. In biological processes, it was eventually determined that
the cellular filters that constitute biological tissue have FO conductivity [23] and consequently qualify
as FO mechanisms. Furthermore, it was subsequently demonstrated that FO frameworks outperform
classical-order algorithms when demonstrating the activity of cerebral vestibule-oculomotor NNs [24].

Fractional mechanisms are presently identified in the context of chaos to exhibit broadened
interactions in regards to the intensity of chaotic behavior, such as maximum Lyapunov exponents
(MLEs), as well aa a variety of drawbacks [25, 26]. The result has prompted plenty of scientists to
focus on developing a system for discrete FC (DFC), a previously yet-to-be-discovered field. There
are two of the most important investigations in the discipline [27]. At the moment, only a handful
of these above-mentioned typical discrete-time mechanisms have been developed and expanded to the
fractional difference situation [28]. We recognize that while several fractional illustrations have been
floated within the research, they have not yet been put forth in their difference structures [29, 30].

In the present paper, we are particularly interested in persistent NNs. We aim to broaden this
representation to the discrete fractional-order (DFO) scenario and examine the consequent technique’s
interactions. To determine the differences among the asynchronously steady and chaotic categories, we
investigate bifurcation visualizations while offering challenging exploratory restrictions on the DFO.
These suggested fractional methods associated with these illustrations have been determined to exhibit
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potential interactions. In addition to phase diagrams and bifurcation schematics, we verify the presence
of chaos in these representations using a theoretical estimation of the MLE. This is accomplished
through the implementation of a fractional Jacobian approach to expansion.

However, the fundamental inspiration for this investigation is to evaluate the advantages of DFO
recurrent NNs involving undamped oscillations. The limited research on fractional diagrams of
chaos in the scientific community appears to concur that fractional difference includes damping
degrees of freedom in the combination. Apart from being immensely susceptible to slight
modifications in the settings and initial conditions (ICs), the mechanism’s pathways additionally
become responsive to fluctuations in the DFO [31]. As a result, some argue that fractional illustrations
have advantages for processes that include confidential information and signal processing. Other
characteristics of fractional visualizations encompass more straightforward shapes and more evolving
interactions [32]. Edelman [33] presented the stabilization of equilibria and chaos in FO frameworks as
the process whereby convergence arises. The result describes more elaborate patterns of speculation.
Consequently, the investigation of the chaotic dynamics of NN models based on commensurate and
noncommensurate fractional differences as well as their synchronization and control, is an attractive
subject.

Inspired by the consolidation of the cyclic connections of the neurons, the stabilization of unstable
environments is frequently and widely researched in the scientific literature [34,35]. It is the adaptable
management of a chaotic mechanism that forces all levels to diminish as time elapses. To the best of
our comprehension, no research of this kind for DFO diagrams has been found, which inspired our
inquiry. There is no comprehensive bifurcation descriptive hypothesis formulated for the context of
DFO evolving mechanisms, so the bifurcation hypothesis in DFO unpredictable platforms remains a
pending issue. A further crucial component of chaotic mechanisms is synchronization, which is the
procedure of forcing a slave framework to adhere to the same pattern as a master using adaptable
influence factors. There are many research papers in the field on the synchronization of classical
chaotic and hyper-chaotic structures [36, 37], with just a handful on FO mechanisms [38, 39].

Adopting the above proclivity, we intend in this paper to explore and study the dynamic behaviors of
the new (DFNN) model with undamped oscillations using commensurate as well as incommensurate
orders. The basic properties of this fractional model will be studied using certain theoretical and
numerical analyses. Furthermore, we will use the approximate entropy test and C0 algorithm to
measure the complexity and validate the presence of chaos in the proposed system. In addition,
we propose nonlinear controllers that enable stabilizing and synchronizing the suggested model
by forcing the states to converge toward zero asymptotically. Additionally, we suggested an
ensemble synchronization initiative based on the suggested DFO visualizations, in which the master is
concurrently synchronized to an amalgamation of a pair of slave networks. Finally, we will conclude
the study by summarizing the most significant findings obtained in the article.

Since DFC is novel, and the associated terminologies are still evolving, Section 2 will offer
certain essential accompaniments and equilibrium hypotheses. Section 3 addresses the equilibrium,
bifurcations, and undamped fluctuations of DFO recurrent NNs, as well as their bifurcation diagrams
and exploratory limitations on DFO that ensure chaotic behavior. Initially, for the commensurate order
DFNN, the robustness realm of the insignificant state of equilibrium has been entirely characterized.
Taking into consideration the stability analysis, we find the threshold of DFO values at which
discontinuities develop and an assortment of resonances split from the superficial equilibrium state.
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Notably, the incommensurate order DFNN may demonstrate a bifurcation when an association factor
experiences an essential threshold that must be precisely identified. It is important to highlight that
the findings in this work can be used to create neurological fluctuations with a specified regularity
and intensity by modifying the DFO network configurations. In Section 4, we implement the 0 − 1
procedure, the approximate entropy (ApEn) examination, and theC0 technique to assess challenges and
demonstrate the presence of chaos throughout the identified framework. Also, we provide responsive
regulators to regulate and synchronize the chaotic pathways of the proposed discrete fractional neural
network (DFNN) model. Ultimately, Section 6 presents the overall paper’s final analysis.

2. Model configuration of the DFNN

Ruiz et al. [40] implemented a particular category of n-node persistent NNs wherein we can
acquire and simulate self-sufficiently a special group of dynamic recurring indications, as illustrated in
Figure 1. Each neuron receives a multiplied version of inputs and random weights, which is then added
with a static bias value (unique to each neuron layer); this is then passed to an appropriate activation
function, which decides the final value to be given out of the neuron. There are various activation
functions available as per the nature of the input values. Once the output is generated from the final
neural net layer, the loss function (input vs. output) is calculated, and back propagation is performed,
where the weights are adjusted to make the loss minimum. Finding optimal values of weights is what
the overall operation focuses on.

Figure 1. n-points recurrent NN.

In the diagram, v1(t) represents the network’s functioning feedback, and x(t) represents the output
of the network. This persistent structure of NNs can be represented by the following representation
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framework: 

u̇1(t) = −u1(t) + tanh(u2(t)),
...

u̇n−1(t) = −un−1(t) + v(t),

u̇n(t) = −un(t) +
n−1∑
i=1
δi tanh

(
ui(t)

)
,

x(t) = tanh
(
un−1(t)

)
,

(2.1)

where u(t) ∈ Rn is an operational factor, and δi ∈ R, i = 1, ...,n−1 are the system’s criteria or weights.
Further considerations of dynamic behaviors associated with the three-node structure of (2.1) are

presented in [40] and [41], which are easily explained using a closed circuit, that is, replacing v(t) with
x(t) by 

u̇1(t) = −u1(t) + tanh
(
u2(t)

)
,

u̇2(t) = −u2(t) + tanh
(
u3(t)

)
,

u̇3(t) = −u3(t) + δ1 tanh
(
u1(t)

)
+ δ2 tanh

(
u2(t)

)
.

(2.2)

Xiao et al. [42] presented the recurrent NNs model in the Caputo fractional derivative cDφ sense as
follows: 

cDφ1u1(t) = −u1(t) + tanh
(
u2(t)

)
,

cDφ2u2(t) = −u2(t) + tanh
(
u3(t)

)
,

cDφ3u3(t) = −u3(t) + δ1 tanh
(
u1(t)

)
+ δ2 tanh

(
u2(t)

)
,

(2.3)

where φi ∈ (0, 1], i = 1, 2, 3. The framework (2.3) has Z-symmetry, which means it is indistinguishable
with regards to the modification T : (u1,u2,u3) 7→ (−u1,−u2,−u3). As a result, the IC O(0, 0, 0) is
perpetually present a state of equilibrium ∀ δi ∈ R, i = 1, 2.

We create an innovative DFNN system via undamped resonances by replacing the Caputo derivative
cDφ with the difference operator c∆

φ
b in (2.3). The graphical representation of the fractional recurrent

NN simulation is written in the format that follows:
c∆

φ
bu1(`) = −u1(` − 1 + φ) + tanh

(
u2(` − 1 + φ)

)
,

c∆
φ
bu2(`) = −u2(` − 1 + φ) + tanh

(
u3(` − 1 + φ)

)
,

c∆
φ
bu3(t) = −u3(` − 1 + φ) + δ1 tanh

(
u1(` − 1 + φ)

)
+ δ2 tanh

(
u2(` − 1 + φ)

)
.

(2.4)

We focus φ ∈ (0, 1], ` ∈ Nb+1−φ, Nb = {b,b + 1,b + 2, ...} such that b ∈ R. c∆
φ
b is the Caputo-like

difference operator, which can be described by [26] as

c∆
φ
bz(`) = ∆

−( −φ)
b ∆ z(`) =

1
Γ(  − φ)

`−( −φ)∑
`= 

(` − τ − 1)( −1φ)∆ z(τ), (2.5)

where ` ∈ (N)b+ −φ and  = dφe + 1. ∆
−φ
b represents the φth fractional sum, which can be described

by [25] as

∆
φ
bz(`) =

1
Γ(φ)

`−φ∑
τ=0

(` − τ − 1)(φ−1)z(τ), ` ∈ (N) −φ, φ > 0. (2.6)
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To look into the intricate structure of the DFNN model (2.4), we will deliver the following lemma,
which will allow us to obtain the computation procedure for the DFNN system (2.4):

Lemma 2.1. [31] The solution of the initial value problem c∆
φ
bz(`) = g1

(
` − 1 + φ, z(` − 1 + φ)

)
,

∆ z(b) = zk, n = [φ] + 1, k = 0, 1, ...,n − 1,
(2.7)

is expressed as

z(`) = z0(b) +
1

Γ(φ)

`−φ∑
τ=b+n−φ

(` − 1 − τ)(φ−1)g1
(
τ − 1 + φ, z(τ − 1 + φ)

)
, τ ∈ Nb+n,

where

z0(b) =

n−1∑
k=0

(` − b)k

Γ(  + 1)
∆kz(b).

Remark 2.1. Choose b = 0, since (` − 1 − τ)(φ−1) =
Γ(`−τ)

Γ(`+1−τ−φ) and for  = τ + φ − 1 and n = 1. For
0 < φ ≤ 1, the corresponding numerical Eq (2.7) can be constructed as outlined below:

z(`) = z(0) +
1

Γ(φ)

`−1∑
=0

Γ(` − 1 −  + φ)
Γ(` − )

g1( , z( )).

Recall the result of the stability of the FO map.

Lemma 2.2. [43] Assume that u1(`) =
(
u11(`), ...,u1n(`)

)T and Q ∈ Wn(R). The zero fixed point of
the dynamical DFO system:

c∆
φ
bu1(`) = Q u1(` − 1 + φ), ∀ ` ∈ Nb+1−φ

is asymptotically stable if ϕi ∈
{
θ ∈ C : |φ| <

(
2 cos | arg θ|−π

2−φ

)φ
| arg φ| > φπ/2

}
, where ϕi indicates the

eigenvalues of Q.

The stability region is presented in the following.

Lemma 2.3. [44] Assume that the FO values φi ∈ (0, 1], i = 1, ...,n. Consider W to be the
least common multiple of the denominators. the vi’s of φi’s, where φi = τi/vi, (vi, τi) = 1, vi, τi ∈

Z+, ∀ i = 1, ...,n. Then, the fixed point is locally asymptotically stable (LAS) if all the solutions of the
equation:

det



ϕWφ1 0

. . .

0 ϕWφn

 − J
 = 0,

fulfill | arg(ϕ)| > π/2W, where J is the Jacobian matrix corresponding to at the fixed point.
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3. Qualitative analysis of the DFNNs

The evolution of the DFNN designs (2.4) with undamped oscillations will be investigated in two
scenarios in this section: commensurate order and incommensurate order. These tests will be carried
out employing a variety of numerical modeling approaches, including phase illustrations, bifurcation
schematics and MLEs predictions. The Jacobian matrix technique [31] can be used for determining
the MLEs of the attractors of the DFNN model (2.4).

3.1. Commensurate order for DFNNs

We will examine the behavior of the commensurate DFNN system (2.4) in the following
subsections. We are going to look over the features of the suggested commensurate DFNN
framework (2.4). It needs to be mentioned that a collection of formulae in commensurate order is
an ensemble of computations using similar directives. Given this, we shall subsequently present the
computation technique generated by Lemma 2.1 outlined below:

u1(` + 1) = u1(0) +
n∑
=0

Γ(`−1− +φ)
Γ(φ)Γ(`− )

(
− u1( ) + tanh(u2( )

)
,

u2(` + 1) = u2(0) +
n∑
=0

Γ(`−1− +φ)
Γ(φ)Γ(`− )

(
− u2( ) + tanh(u3( )

)
,

u3(` + 1) = u2(0) +
n∑
=0

Γ(`−1− +φ)
Γ(φ)Γ(`− )

(
− u3( ) + δ1 tanh(u1( )) + δ2 tanh(u2( )),

(3.1)

where u1(0),u2(0), u3(0) are the ICs. For adjusting the system’s specification, we write the Jacobian
matrix of system (3.1) at u1 = 0 as

J =


−1 1 0
0 −1 1
δ1 δ2 −1

 (3.2)

with the characteristic polynomial

℘(ϕ) = ϕ3 + 3ϕ2 + (3 − δ2)ϕ + (1 − δ1 − δ2). (3.3)

Consider the nature of the roots of cubic polynomial ℘(ϕ) based on D̃ = 4δ3
2 − 27δ2

1. According to [40],
Eq (3.3) has three real zeros when D̃ > 0, but it has, a real zero and a couple of imaginary zeros when
D̃ < 0.

In this particular instance, we provide an accurate solution and provide more comprehensive
evidence. For (3.3), we have the subsequent outcomes.

(i) Observe that δ1 ∈ (−2, 2) and D̃ > 0. It is simple to comprehend that 2δ2 − δ1 < 8. According
to the widely recognized Routh-Hurwitz specifications [45], alongside δ2 < 1 − δ1, (3.3) has three
branches with negative real components. Furthermore, (3.3) possesses three valid roots when D̃ > 0.
As a result, we have

(ii) when D̃ > 0, (3.3) possesses three real zeros ϕ1, ϕ2 and ϕ3. Because lim
ϕ 7→∞

℘(ϕ) = ∞ and ℘(0) =

1 − (δ1 + δ2), we determine that ℘(ϕ) possesses not less than one non-negative zero ϕ1. Furthermore,
remember that ϕ1 +ϕ2 +ϕ3 + 3 = 0 and ϕ1ϕ2ϕ3 = δ1 + δ2 − 1 > 0. It is simple to notice that ϕ2 +ϕ3 < 0
and ϕ2ϕ3 > 0, indicating that ϕ2 < 0 and ϕ3 < 0.
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(iii) When D̃ > 0, ℘(ϕ) possesses three real zeros ϕ1, ϕ2 and ϕ3. Observing that lim
ϕ 7→−∞

℘(ϕ) = −∞

and ℘(0) = 1 − (δ1 + δ2) > 0, we can conclude that (3.3) contains not less than a single negative zero
ϕ1. It is worth noting that ϕ1ϕ2 + ϕ3ϕ2 + ϕ1ϕ3 = 3 − δ2 < 0 and ϕ1ϕ2ϕ3 = δ1 + δ2 − 1 < 0. Afterwards
we find that ϕ2 + ϕ3 > 0 and ϕ2ϕ3 > 0, which implies that ϕ2 > 0 and ϕ3 > 0.

(iv) When D̃ < 0, (3.3) includes an real zero and a pair of conjugate imaginary zeros. According
to the Routh-Hurwitz threshold [45], (3.3) includes three roots via non-positive real components when
δ1 < 1 − δ2 and 2δ2 < 8 + δ1. As a result, an assertion (iv) implies immediately.

(v) When D̃ < 0, (3.3) includes a non-positive real root and a pair of conjugate imaginary
zeros. According to the Routh-Hurwitz threshold [45], (3.3) includes the root via non-positive real
components when 2δ2 > 8 + δ1.

(vi) When D̃(ϕ < 0), (3.3) includes an real zero ϕ1 and an additional set of conjugate complex zeros
ϕ2,3. Given that lim

ϕ 7→∞
℘(ϕ) = ∞ and ℘(0) = 1 − (δ1 + δ2) < 0, we determine that ϕ1 > 0. Notice that

+ϕ1 + ϕ2 + ϕ3 + 3 < 0. As we observe, ϕ2 + ϕ3 < 0. As a consequence, ϕ2 and ϕ3 are imaginary roots
with no real components.

Remark 3.1. According to the above assertions, we are able to observe that (δ1, δ2)-space can be split
into six segments for the curve D̃ > 0 and the lines δ2 = 1 − δ1, δ2 = (δ1/2) + 4 and δ2 < 3 with the
specifications of roots ϕ1, ϕ2 and ϕ3 as follows:

Υ1 :=
{
(δ1, δ2)

∣∣∣D̃ < 0, δ2 > δ1/2 + 4, ϕ1 < 0, ϕ2,3 = % ± k (% > 0)
}
,

Υ2 :=
{
(δ1, δ2)

∣∣∣D̃ < 0, δ2 < 1 − δ1, δ2 < δ1/2 + 4, ϕ1 < 0, ϕ2,3 = % ± k (% < 0)
}
,

Υ3 :=
{
(δ1, δ2)

∣∣∣D̃ > 0, δ2 < 1 − δ1, δ2 < 3, ϕ1,2,3 < 0
}
,

Υ4 :=
{
(δ1, δ2)

∣∣∣D̃ < 0, δ2 > 1 − δ1, ϕ1 > 0, ϕ2,3 = % ± k (% < 0)
}
,

Υ5 :=
{
(δ1, δ2)

∣∣∣D̃ > 0, δ2 > 1 − δ1, ϕ1 > 0, ϕ2,3 < 0
}
,

Υ6 :=
{
(δ1, δ2)

∣∣∣D̃ < 0, δ2 < 1 − δ1, δ2 > 3, ϕ1 < 0, ϕ2,3 > 0
}
.

Proposition 3.1. Assume that settings Ωi = 108δ1 ±

√
11664δ2

1 − 1728δ3
2, f or i = 1, 2 have been

supplied by the model (3.1) and then the subsequent results hold:
(a1) When (δ1, δ2) ∈ Υ2 ∪ δ3, fixed point u1 = 0 of framework (3.1) is LAS for all 0 < φ ≤ 1.
(a2) When (δ1, δ2) ∈ Υ4 ∪ δ5 ∪ Υ6, fixed point u1 = 0 of framework (3.1) is unstable for all 0 < φ ≤ 1.
(a3) When (δ1, δ2) ∈ Υ1 and arctan

( √
3( 3√

Ω2−
3√

Ω1)
3√

Ω1+
3√

Ω2+12

)
> φπ/2, fixed point u1 = 0 of framework (3.1) is LAS.

(a4) When (δ1, δ2) ∈ Υ1 and arctan
( √

3( 3√
Ω2−

3√
Ω1)

3√
Ω1+

3√
Ω2+12

)
< φπ/2, then the fixed point u1 = 0 of framework (3.1)

is unsteady.

Proof. In view of Remark 3.1, it is easy to see the allocation of roots of the characteristic
polynomial (3.3) in (δ1, δ2)-space.
(a1) When (δ1, δ2) ∈ Υ2∪Υ3, each of the real eigenvalues and real components of the complex conjugate
eigenvalues of (3.3) are non-positive. This means that all of the eigenvalues of (3.3) are in the left-
half-plane and in the steady domain (see Figure 2). As a result, the framework (3.1) possesses fixed
point u1 = 0 which is LAS.
(a2) When (δ1, δ2) ∈ Υ4∪Υ5∪Υ6, then (3.3) must have not less than one positive real root. As a result,
framework (3.1) has fixed point u1 = 0 which is unsteady.
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(a3) When (δ1, δ2) ∈ Υ1, (3.3) must have a couple of imaginary eigenvalues ϕ2,3 having non-negative
real components and ϕ1 < 0. Then, ϕ1 =

3√
Ω1+

3√
Ω2−6

6 and ϕ2,3 =
−( 3√

Ω1+
3√

Ω2)−12±i
√

3( 3√
Ω1−

3√
Ω2)

12 . Therefore,

simple computations yield
∣∣∣ arg(ϕ1)

∣∣∣ = π > φπ/2 and
∣∣∣ arg(ϕ2,3)

∣∣∣ = arctan
( √

3( 3√
Ω2−

3√
Ω1)

3√
Ω1+

3√
Ω2+12

)
. As a result, if

assertion (a3) has its fulfilled, the fixed point u1 = 0 of the structure (3.1) is LAS.
(a4) This finding is immediately connected to arctan

( √
3( 3√

Ω2−
3√

Ω1)
3√

Ω1+
3√

Ω2+12

)
< φπ/2. �

Figure 2. Stability domain for FO system when φ ∈ (0, 1).

Figure 3(a-c) demonstrates the fact that the configurations u1i. i = 1, 2, 3, of framework (3.1) are
simultaneously non-increasing towards u1 = 0, where (δ1, δ2) = (−1.0, 1.0) ∈ Υ2, φ = 0.7, and
(δ1, δ2) = (0, 0.5) ∈ Υ3, φ = 0.8, respectively. Furthermore, Figure 3(d-i) illustrates how the fixed
point O(0, 0, 0) is unsteady, where (δ1, δ2) = (2.0, 1.0) ∈ Υ4 with φ = 0.85, (δ1, δ2) = (1.0, 4.0) ∈ Υ5

with φ = 0.45, and (δ1, δ2) = (−5.6, 6) ∈ Υ6 with φ = 0.25, respectively.
In fact, the imaginary axis is generally considered to be the stability collateral of a classical

mechanism. The bifurcation happens when a pair of complex conjugate eigenvalues of (3.2) assessed
at the fixed point connect the imaginary axis as the bifurcation setting approaches a critical threshold,
and a collection of regular methods emerge within the stable state. As stated in Remark 3.1, the
equilibrium domain of DFO platforms with commensurate order is a three-dimensional surface with
the apex at the origin and extending into the right half of the imaginary axis, enclosing an angle
of ±φπ/2. In the simplest terms, | arg(ϕ)| = φπ/2 describes the equilibrium boundaries for such
structures [46]. As a result, whenever a set of complex conjugate eigenvalues of (3.2) connect the
stable limit | arg(ϕ)| = φπ/2, a bifurcation develops in framework (3.1), resulting in the appearance
of an outgrowth of constant fluctuations derived from a stable state. It ought to be pointed out that
just a handful of complex conjugate eigenvalues that have positive real components will traverse
the equilibrium boundary | arg(ϕ)| = φπ/2, which is located in the in the complex plane’s precisely
split. Initially, we present the bifurcation principle over the broader DFNNs (3.1) by considering the
sequence as the bifurcation setting.
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(b) (δ1, δ2) = (−1.0, 1.0) and φ = 0.7
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(c) (δ1, δ2) = (−1.0, 1.0) and φ = 0.7

0 10 20 30 40 50 60 70 80 90 100

-15

-10

-5

0

5

10

15

(d) (δ1, δ2) = (2.0, 1.0) and φ = 0.85

0 10 20 30 40 50 60 70 80 90 100

-20

-15

-10

-5

0

5

10

15

(e) (δ1, δ2) = (2.0, 1.0) and φ = 0.85
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(f) (δ1, δ2) = (2.0, 1.0) and φ = 0.85
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(g) (δ1, δ2) = (1.0, 4.0) and φ = 0.45
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(h) (δ1, δ2) = (1.0, 4.0) and φ = 0.45
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(i) (δ1, δ2) = (−5.6, 6.0) and φ =

0.25

Figure 3. Stable-state u = 0 for commensurate order of FDNN system (3.1) is LAS with
various FOs.

According to the DFO equilibrium hypothesis in [46], assuming φ∗ = 2
π
| arg(ϕ2,3)|, and φ = φ∗ is

the stable boundary region for the commensurate-order framework (3.1) via dimension 3. When φ ∈
(0, φ∗), the couple of eigenvalues ϕ2,3 comply with the variant | arg(ϕ)| > φπ

2 . The variant | arg(ϕ)| > φπ

2
is additionally satisfied by the non-positive real eigenvalue ϕ1. We comprehend via the robustness
outcomes in [47] that the state of balance point ũ1 is equally stable. When φ ∈ (φ∗, 1], two pairs of
eigenvalues ϕ2,3 fail to comply with the variant | arg(ϕ)| > φπ

2 . As a result, the fixed point x̃ is unsteady.

Considering the results reported in [47], | arg(ϕ2,3)| = φ∗π/2 is equivalent to a bifurcation in
structure (3.1). Consequently, mechanism (3.1) has a bifurcation point φ = φ∗. As it increases
and passes the threshold of significance, the fixed point ũ1 turns unsteady, and irregular fluctuations
develop in the vicinity of ũ1 resulting from the bifurcation trend. It is pertinent to recognize that
transformation was successfully accomplished for the fixed eigenvalues ϕ2,3 as the bifurcation setting
fluctuates. Meanwhile, the structure (3.1) is considered minimally stable iff each eigenvalue of (3.2)
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examined at the fixed point fulfills | arg(ϕ)| ≥ φπ/2 and all eigenvalues fulfilling | arg(ϕ)| = φπ/2,
possess geometric multiplicity of one [48]. As a result, with respect to the aforesaid computations,
framework (3.1) alongside inner dimension three is slightly unstable. The bifurcation theory and ηmax

for the commensurate-order framework (3.1) via internal measurement three are illustrated in Figure 4
when φ ∈ (0, 1].

(a) φ = 0.75

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) φ = 0.75

(c) φ = 0.80

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) φ = 0.80

Figure 4. Bifurcation and MLEs plots of DFNN model (3.1) for various values of φ.

Using Remark 3.1, (3.3) has a couple of eigenvalues ϕ2,3 containing non-negative real components,
and ϕ1 < 0, when the order φ∗ = (2/π) arctan

( √
3( 3√

Ω2−
3√

Ω1)
3√

Ω1+
3√

Ω2+12

)
. A bifurcation occurs in conjunction with

the axis (3.1) in the classical NN [18]. Yet, the appropriate DFO framework (3.1) fails to generate a
bifurcating system according to the identical conditions, as computational analyses will reveal later.

Proposition 3.1 proposes an approach for creating DFO neural oscillations by varying the DFO. In
particular, framework (3.1) converges to the fixed point ũ1 when φ is less than φ∗, implying that no
regular fluctuations develop; meanwhile the bifurcation might happen as φ traverses a critical point φ∗,
in which an assortment of repeated waves bifurcates from the fixed point ũ1.

In mechanism (3.1), there are undamped resonances attributed to bifurcations when (δ1, δ2, φ) ∈ Π,

where Π =
{
(δ1, δ2, φ)|(δ1, δ2) ∈ Υ1, φ ∈ (φ∗, 1]

}
. According to Proposition 3.1, regular fluctuations

resulting from the bifurcation in framework (3.1) occur when (δ1, δ2) ∈ Υ1, where φ ∈ (φ∗, φ∗ + ε)
demonstrates that the structure (3.1) has an uninterrupted limit process when (δ1, δ2) ∈ Υ1 and φ = 1.
This shows that the flexibility in selecting δ1, δ2 and φ in mechanism (3.1) enables one to figure out the
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precise location and sequence of the eigenvalues, and that contributes to the resulting fluctuation. For
a constant δ1, the value φ(δ2) = (2/π) arctan

( √
3( 3√

Ω2−
3√

Ω1)
3√

Ω1+
3√

Ω2+12

)
demonstrates the periodic and non-periodic

domains for the DFNN model (3.1).
We vary the DFO to investigate the dynamic behaviors of the DFNNs (3.1) with the structure’s

settings (δ1, δ2) set to (δ1, δ2) = (−5.0, 3.0) ∈ Υ1. As a result of Remark 3.1 and φ∗ = 0.9912,
in accordance with Proposition 3.1, when φ∗ > φ, the directions merge to the ICs, as illustrated in
Figure 5(a-c) and Figure 5(d-f). Meanwhile, when φ is increased to pass φ∗, the ICs are not stable and
a bifurcation develops, as demonstrated in Figure 6(a-c). Additionally, considering the fluctuations in
Figure 6(d-f), the dimension of framework (3.3) is 2.79. It needs to be emphasized that according to our
DFO approach, the state of balance at u1 = 0, which is deemed unstable in the classical model (2.2),
is capable of becoming extremely steady (see Figure 3). The variability of the structure’s elements δ1

and δ2 in the DFNNs (3.1), which ensures its behavior has recurring fluctuations, is nonetheless less
extensive than in the analogous classical NN (2.2).

(a) φ = 0.46 (b) φ = 0.66 (c) φ = 0.96
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Figure 5. Bifurcation and MLEs for parametric values (δ1, δ2) of the DFNN system (3.1) for
various DFOs.

In the following modeling, the amplitude of the supreme fluctuations is identified and contrasted
to the potential value obtained in (3.2). This technique is employed for (δ1, δ2) = (−8.0, 2.12) and
φ = 0.94, which is quite roughly equivalent to φ∗ = 0.943. The repetition rate is suggested to be 1.4799
rad/s, or the time frame of the oscillation needs to be 4.3456 s. Figure 3 demonstrates this aspect.

Currently, we examine computationally certain characteristics of amplitudes of oscillations in the
DFNN (3.1). The process representations for the settings (δ1, δ2) = (8.0, 2.1) as the DFO fluctuates
from 0.56, 0.65, 0.76, 0.81, 0.90 and 0.99 are shown in Figure 6. The data demonstrates that the
intensity of the fluctuations increases with greater precision [48]. Figure 3 demonstrates that the
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frequency of the oscillations improves almost precisely via FO. It is apparent that the suggested
commensurate DFO system displays erratic movement when the DFO drops and recurring circulation
when the FO increases. These simulations using numerical methods show that the commensurate
DFNN structure (3.1) has a number of captivating flexible attributes.
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Figure 6. Phase depictions of DFNN system (3.1) for various DFOs φ ∈ (0, 1].

3.2. Incommensurate order DFNN system

The behavior of the NN system with incommensurate DFO measurements is investigated in this
subsection. The notion of employing distinguished DFOs for every formula of the structure is referred
to as the incommensurate order mechanism. The representation of the incommensurate DFNN is
expressed as

c∆
φ1
b u1(`) = −u1(` − 1 + φ1) + tanh

(
u2(` − 1 + φ1)

)
, ∀ ` ∈ Nb−φ1+1,

c∆
φ2
b u2(`) = −u2(` − 1 + φ2) + tanh

(
u3(` − 1 + φ2)

)
, ∀ ` ∈ Nb−φ2+1,

c∆
φ3
b u3(`) = −u3(` − 1 + φ3) + δ1 tanh

(
u1(` − 1 + φ3)

)
+ δ2 tanh

(
u2(` − 1 + φ3)

)
, ∀ ` ∈ Nb−φ3+1,

(3.4)

According to Lemma 2.1, the mathematical representation of the incommensurate DFNN model (3.4)
can be written as

u1(` + 1) = u1(0) +
n∑
=0

Γ(`−1− +φ1)
Γ(φ1)Γ(`− )

(
− u1( ) + tanh(u2( )

)
,

u2(` + 1) = u2(0) +
n∑
=0

Γ(`−1− +φ2)
Γ(φ2)Γ(`− )

(
− u2( ) + tanh(u3( )

)
,

u3(` + 1) = u2(0) +
n∑
=0

Γ(`−1− +φ3)
Γ(φ3)Γ(`− )

(
− u3( ) + δ1 tanh(u1( )) + δ2 tanh(u2( )), ` = 1, 2, ... .

(3.5)
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The dynamic matrix of the incommensurate DFNN model (3.5) with logical internal directives can be
demonstrated to have the indicative equation (3.4). The robustness range for the incommensurate-order
model (3.5) is given by | arg(ϕ)| = π/2M1, where M1 is the lowest common multiple of the inner order
denominators.

Take into account the incommensurate DFNN (3.5) using DFOs as a particular case. For this, DFOs
are assumed to be φ1 = φ2 = =/(2= + 1) and φ3 = 2=/(2= + 1), where = ∈ N. In this scenario, the
characteristic polynomial of the expression (3.3) is:

ϕ4= + 2ϕ3= + 2ϕ2= + (2 − δ2)ϕ= + (1 − δ1 − δ2) = 0. (3.6)

Plugging w1 = ϕ= into (3.6), it reduces to

w4
1 + 2w3

1 + 2w2
1 + (2 − δ2)w1 + (1 − δ1 − δ2) = 0. (3.7)

If δ1 and δ2 are determined to ensure that (3.7) possesses a pair of solutions  exp(±k=π/2(2= + 1)),
where  is non-negative, then two roots of (3.6), i.e.,  exp(±kπ/2(2= + 1)) will be on the boundary of
stability | arg(ϕ)| = π/2(2=+ 1) and its additional bases can be decided in the steady domain | arg(ϕ)| >
π/2(2= + 1). As a result, framework (3.5) will remain relatively steady in the present instance.
Whenever the set of eigenvalues  exp(±kπ/2(2= + 1)), traverse the steady-state region | arg(ϕ)| =

π/2(2=+ 1) as the settings δ1 and δ2 evolve, a bifurcation occurs, and a group of recurring fluctuations
emerges via the initial state u1 = 0. We examine framework (3.5) considering the simple scenario
= = 1, that is, (φ1, φ2, φ3) = (0.5, 0.5, 0.65). By restricting δ1 and δ2, the intention is to set up
a set of eigenvalues in the steady domain to traverse the boundary of stability | arg(ϕ)| = π/6 and
penetrate the area of unpredictability. When (δ1, δ2) = (−70, 29), the corresponding formula (3.6) has
two distinct sets of imaginary roots: ϕ1,2 = 1.5 ± 0.867k on the equilibrium region | arg(ϕ)| = π/6
and ϕ3,4 = 2.5 ± 2.78388k in the steady domain | arg(ϕ)| = π/6. The eigenvalue pattern (3.6) for
(φ1, φ2, φ3) = (0.5, 0.5, 0.65) and δ1 = −70 to be δ2 fluctuates from 30 to 37 and is shown in Figure 7(a).
When δ2 changes, ϕ3,4 stays within the steady region, whereas ϕ1,2 traverses the zone of the stability
limit.

We alter the setting δ2 to examine the dynamic practices of the incommensurate-order
framework (3.5), considering the selected directives (φ1, φ2, φ3) = (1, 1, 0.85), and the setting δ2.
According to the preceding debate, δ∗2 = 29 is the crucial number for mechanism (3.5). As illustrated
by Figure 7(b), the configurations u1i (i = 1, 2, 3) of framework (3.5) decrease asynchronously towards
the ICs when δ2 < δ

∗
2. As δ2 increases as it proceeds within δ∗2, its starting point becomes unstable and

a bifurcation develops, as illustrated in Figure 7(b). To identify the waveform shown in Figure 7(b),
the efficient measurement of the framework (3.5) is 4/3.

The authors of [47] demonstrated that for DFO linear frameworks, every combination of complex
eigenvalues ϕ1,2 agreed on a stable margin | arg(ϕ)| = π/2M1 is equivalent to recurring fluctuations via
regularity |ϕ1,2|

M1 . When (φ1, φ2, φ3) = (0.5, 0.8, 0.65), and δ1 = −70, the periodicity is equivalent to
|ϕ1,2|

M1 = 3
√

3 rad/s, or the duration of the fluctuation is 2.0012 s when δ2 is approximately equal to
δ∗2. The result is supported by Figure 7(c).
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(a) (φ1, φ2, φ3) = (0.5, 0.5, 0.65) (b) (φ1, φ2, φ3) = (1, 1, 0.85) (c) (φ1, φ2, φ3) = (0.5, 0.8, 0.65)

Figure 7. Bifurcation plots for DFNN model (3.4) via the system parametric representations
(δ1, δ2) and (φ1, φ2, φ3).

The phase depictions of the framework (3.5) about (φ1, φ2, φ3) and δ1 = −70 as the mechanism
attribute δ2 fluctuates from 35.1, 33.5, 33.4, 33.3, 33.2 and 32.0, respectively, are shown in Figure 8.
This graph shows how the intensity of the fluctuations increases as δ2 increases. The influence of δ2 on
the strength of the chaos is depicted in Figure 8.

(a) (b) (c)

(d) (e) (f)

Figure 8. Phase depictions for DFNN (3.5) for various parametric values (δ1, δ2)
and (a) (φ1, φ2, φ3) = (0.7, 1, 1),(b) (φ1, φ2, φ3) = (0.1, 0.7, 1),(c) (φ1, φ2, φ3) =

(0.9, 0.4, 0.6),(d) (φ1, φ2, φ3) = (0.6, 0.9, 1),(e) (φ1, φ2, φ3) = (0.9, 1, 0.9),(f) (φ1, φ2, φ3) =

(1, 0.7, 1).

The several bifurcation and MLEs schematics in Figure 9 indicate the patterns of the
incommensurate simulation by ranging (δ1, δ2) = (−70, 30) and the ICs (u1(0),u2(0),u2(0)) =

(0.01,−0.01, 0.01). The aforementioned graphs are clearly distinct, demonstrating that changes in
DFOs φ1, φ2 and φ3 have an effect on the stages of the incommensurate DFNN system (3.5).
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For example, for (φ1, φ2, φ3) = (0.9, 1, 1), we recognize that the structure develops from erratic to
irregular as the parameter setting improves. The chaos is apparent during the range of values for
(φ1, φ2, φ3) = (0.9, 0.4, 1), excluding a restricted area when δ2 addresses 30.1, whereas for (φ1, φ2, φ3) =

(0.7, 1, 0.9), while the value of δ2 improves and within 30.3, the incommensurate DFNN system (3.5)
demonstrates recurring zones with five-period orbital positions. In addition, we examine a number of
additional scenarios to provide an improved representation of the impact of incommensurate orders on
the DFNN model’s (3.5) practices.

Here, we alter the DFO φ1 from 0 to 1 using an incremental size of ∆φ1 = 0.005. Figure 9(a)
and (b) demonstrate the bifurcation and their associated MLEs for φ2 = φ3 = 1, the other specified
values (δ1, δ2) = (−8, 2.1) and the ICs (u1(0),u2(0),u3(0)) = (0.2,−0.2, 0.3). According to Figure 9,
the configuration of the incommensurate DFNN (3.5) exhibits chaotic behavior for a DFO φ1, as
evidenced by non-negative MLEs, which are illustrated in Figure 9. For the DFO φ1 close to 1, the
ηmax demonstrated in Figure 9(a) and (b) alternates within the two extremes. As an outcome of the
emergence of certain recurring patterns, a chaotic scene is observed.

The bifurcation and its ηmax are depicted in Figure 9(c) and (d) to investigate the fluctuating
behaviors of the incommensurate DFNN system (3.5) when φ2 is a configurable factor. These
outcomes are achieved by ranging φ2 in the range (0, 1] and with incommensurate DFOs φ1 = 0.9 and
φ3 = 1, respectively. The other specified values (δ1, δ2) = (−8, 2.1) and the ICs (u1(0),u2(0),u3(0)) =

(0.2,−0.2, 0.3) have stayed unaffected. We understand that when the DFO φ2 is inadequate, pathways
remain steady. When φ2 rises, chaotic behaviors tend to be observed at which the real values of ηmax

are non-negative, and inadequate recurring zones can be observed in which the measures of ηmax are
positive. Furthermore, as φ2 grows bigger and eventually reaches 1, the MLE’s measurements vary
from non-negative to negative, implying that the pathways of the incommensurate DFNN system (3.5)
transition from erratic to periodic.

We generate the bifurcation visualization and ηmax of the offered novel incommensurate DFNN
system (3.5) rather than φ3 ∈ (0, 1] and choose the incommensurate DFOs as φ1 = 0.4 and φ2 = 1.
As compared to the preceding instances, the pathways of the incommensurate designs are chaotic in
Figure 9(e) and (f) when the DFO φ3 necessitates higher numbers closer to 1 while ηmax requires its
greatest magnitude. The routes stabilize. Furthermore, as φ3 reduces, the steady region and recurring
views become apparent. Whenever the incommensurate FO φ3 decreases more dramatically, chaotic
practices reappear in φ3 ∈ (0.3010, 0.6010). When the DFO decreases near zero, insurrection vanishes,
and recurring views along with four-period revolves develop in which the outcomes of ηmax are
negative. Improvements in the incommensurate DFOs, corresponding to the aforementioned outcomes,
possess an influence on the fluctuating characteristics of a DFNN system (3.5) with undamped
oscillations. Additionally, it indicates that incommensurate DFOs might appropriately symbolizes the
structure’s patterns, as evidenced through the sequential depictions of the configuration factors of the
incommensurate DFNN system (3.5) shown in Figure 9(g) and (h).
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(a) (φ1, φ2, φ3) = (0.7, 1, 1)
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(f) (φ1, φ2, φ3) = (0.4, 1, 0.65)

(g) (φ1, φ2, φ3) = (0.4, 1, 0.30)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

-15

-10

-5

0

5
10

-3

(h) (φ1, φ2, φ3) = (0.4, 1, 0.30)

Figure 9. Bifurcation and MLEs plots for DFNN model (3.4) via the system parametric
representations (δ1, δ2) and changing the values of DFOs (φ1, φ2, φ3).
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4. The 0 − 1 test and complexity analysis for the proposed model

In this part, we examine the variety of chaotic behaviors in order to evaluate the exciting features of
chaotic mechanisms, where the more extensive the intricacy is the more chaotic the structure becomes.
This suggested DFNN model’s (3.1) challenges are currently assessed using the approximate entropy
(ApEn) examination and the C0 complexity technique. In addition, the 0 − 1 approach will be used for
verifying the occurrence of unpredictability in the DFNN framework (3.1).

4.1. The 0 − 1 test

In this subsection, our goal is to apply the 0 − 1 evaluation, a position developed by Gottwald and
Melbourne [49] to distinguish within chaos and consistently practices complex mechanisms. We focus
on the pattern of statistics as feedback, and when the framework’s structure is chaotic, the resulting
value is expected to be approximately one; alternatively, the outcome will be near zero. In addition,
we represent the procedure in this manner: To begin, we determine the transformation factors outlined
below employing the time analysis (y(r))r=1,...,N:

pψ( ) =

∑
r=1

y(r) cos(iψ), qψ( ) =

∑
r=1

y(r) sin(iψ),  = 1, 2, ...,N. (4.1)

The (pψ − qψ) plot is applied to determine the extent to which the suggested DFNN structure exhibits
chaotic practices. If the path vectors of pψ and qψ are restricted, the simulation’s structure is periodic;
whenever it shows Brownian-like performance, the framework’s interactions are chaotic. In addition,
we present the mean square displaced formulation as follows:

Θψ( ) =
1
N

N∑
r=1

{(
pψ(r + ) − pψ(r)

)2
+

(
qψ(r + ) − qψ(r)

)2
}
, N ≥ 10 . (4.2)

Furthermore, we indicate asynchronous improvement as follows:

Kψ = lim
7→∞

log Θψ

log 
. (4.3)

In the context of the provided commensurate DFNN system (3.1), the development rate “K =

median(Kψ)” permits to us differentiate between non-chaotic and erratic movement. When K
corresponds to 0, the framework remains non-chaotic, while whenK is adjacent to 1, the simulation is
chaotic.

Figure 10 depicts the asynchronous rate of advancement K of the commensurate DFNN
system (3.1) for φ ∈ [0.4, 1] where δ1 = −8 and δ2 = 2.1, respectively. Everyone recognizes that while
the parameter δ1 reduces, the development rate K reaches one, demonstrating that the commensurate
DFNN model (3.1) exhibits erratic effects, which certainly demonstrates the earlier findings of
bifurcations and their respective positions ηmax presented in Figure 5. The outcomes of the pq diagrams
involving varied incommensurate information and parameters are illustrated in Figure 11, respectively,
confirming the presence of chaos within the incommensurate DFNN system (3.5). Figure 12(a-c)
exhibits clearly confined pathways, indicating the fact that the mechanism is oscillatory. Figures 10
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and 11, on the other hand, demonstrate Brownian-like pathways, confirming the presence of chaotic
behaviors in the incommensurate DFNN system (3.5).
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Figure 10. Pψ − qψ plots of the DFNN model (3.1) for parametric values (δ1, δ2) and varied
DFO φ(0, 1].
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Figure 11. The ApEn plots of the DFNN model (3.1) and (3.5) via the parametric values
(δ1, δ2) and DFO φ = 0.95 and (φ1, φ2, φ3) = (0.67, 1, 0.89).
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Figure 12. Pψ − qψ illustrations of the DFNN model (3.5) for parametric values (δ1, δ2) and
varying DFO (φ1, φ2, φ3).

4.2. The ApEn of the proposed model

Currently, we employ the approximate entropy (ApEn) technique [50] for describing the intricate
structure of the recurrent NN system (2.2). The ApEn is an indicator of the intricate nature of time-
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based series-generated mechanisms. It should be noted that data sets containing greater ApEn numbers
are more multifaceted. To compute ApEn, we identify the initial n − r + 1 transmissible forms below:

Q(i) =
[
y(i), ..., y(i + r − 1)

]
, ∀ i ∈ [i + r − 1], (4.4)

where y(1), y(2), ..., y(n) is an assortment of separated points. Furthermore, we describe the
components by using the formula Cr

i (m) = K/(n − r + 1), where K is the dimension of Q(i) with
d(Q(i),Q(k)) ≤ m. It should be noted that the ApEn is affected by two essential factors: the
corresponding appreciation m as well as the embedded measurements r. In this case, we put r = 2 and
m = 0.3

√
var(Q), where

√
var(Q) is the positive square root of the variance of the data point Q. In

conceptual terms, the ApEn can be determined as:

ApEn = φr(m) − φr+1(`), (4.5)

where

φr(m) =
1

n − r − 1

n−r+1∑
i=0

logCr
i (m). (4.6)

Choosing the system’s specifications δ1 = −8 and δ2 = 2.12 and ICs (u1(0),u2(0),u3(0)) =

(0.01,−0.01, 0.01), Figures 11 show the ApEn leads to commensurate DFNN system (3.1) as well
as the incommensurate DFNN system (3.5). It becomes apparent that, in order to obtain greater ApEn,
the period sequence must be more complex. As a consequence, these insights are consistent with
whatever MLE outcomes have previously been demonstrated, validating the reality of chaos in the
suggested fractional mechanism.

4.3. The C0 complexity of the suggested system

In what follows, we calculate the computational difficulty of the proposed recurrent NN system
using the C0 complexity procedure employing the inverse Fourier transform. The technique is
described in detail below [51].

The procedure for the computation of the C0 complexity during an order of φ(0), ..., φ(Θ − 1) is as
outlined below:
Step 1: Calculate the Fourier transform of the term u1(r) as:

QN(t) =
1
N

N−1∑
==0

u1(=) exp
(
− 2πi(

k

n
)
)
, = = 0, 1, ...,N − 1. (4.7)

Step 2: The mean square is calculated as follows:

WN =
1
N

N−1∑
==0

|QN(=)|2, (4.8)

where

Q̃N(=) =

QN(=) i f ‖QN(=)‖2 > mWN,

0 i f ‖QN(=)‖2 ≤ mWN.
(4.9)
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Step 3: The inverse Fourier transform is calculated by employing the subsequent procedure:

ζ(t) =
1
N

N−1∑
==0

Q̃N(=) exp
(
− 2πi(

k

n
)
)
, = = 0, 1, ...,N − 1. (4.10)

Step 4: The procedure that follows is used to calculate C0’s degree of complexity:

C0 =
1

N∑
i=0
‖u1(i)‖2

N∑
i=0

‖ζ(i) − u1(i)‖. (4.11)

Figure 13 depicts the C0 complexity of the commensurate DFNN system (3.1) as well as demonstrating
the outcomes of figuring out the C0 issues of the incommensurate DFNN model (3.5). We achieve these
outcomes by modifying the structure’s settings (δ1, δ2) = (−70, 29) with ICs (y1(0), y2(0), y3(0)) =

(0, .01,−0.01, 0.01). As shown in Figure 13, the C0 measures of the commensurate system (3.1)
improve just like the value of δ2 declines. Additionally, when (φ1, φ2, φ3) = (0.1, 0.9, 0.5), the
incommensurate system (3.5) expresses less complexity as δ2 rises and approaches 29.9, which is
consistent regarding the splitting and the ApEn results. Moreover, the more substantial difficulties
of the incommensurate framework (3.5) are visible in the range in which the setting δ2 boosts (see
Figure 13). As a result, we can conclude that the C0 complexity analysis is an effective way of
efficiently assessing intricacy.
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Figure 13. The C0 plots of the DFNN model (3.1) and (3.5) via the parametric values (δ1, δ2)
and DFO φ = 0.95 and (φ1, φ2, φ3) = (0.67, 1, 0.89).

5. Controlling mechanism for the DFNN system

In this section, we provide a consolidation regulator for the suggested DFNN’s chaotic pathways.
The ultimate objective of the consolidation influence challenge is to create an effective responsive
control that causes the entire system to diminish asynchronously to zero. To accomplish the above, we
initially reminisce about the Lemma 2.3.

The regulated DFNN structure has now been provided by:
c∆

φ
bu1(`) = −u1(` − 1 + φ) + tanh

(
u2(` − 1 + φ)

)
+ vu1(` − 1 + φ),

c∆
φ
bu2(`) = −u2(` − 1 + φ) + tanh

(
u3(` − 1 + φ)

)
+ vu2(` − 1 + φ),

c∆
φ
bu3(t) = −u3(` − 1 + φ) + δ1 tanh

(
u1(` − 1 + φ)

)
+ δ2 tanh

(
u2(` − 1 + φ)

)
+vu3(` − 1 + φ),

(5.1)
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where vu1(`), vu2(`) and vu3(`) are adaptation elements. The proposed regulation principle is illustrated
by the hypothesis below:

Theorem 5.1. The DFNN system (3.1) is kept stable by the governing law shown below:
vu1(`) = −u1(`) + tanh

(
u2(`)

)
,

vu2(`) = −u2(`) + tanh
(
u3(`)

)
,

vu3(`) = −u3(`) + δ1 tanh
(
u1(`)

)
+ δ2 tanh

(
u2(`)

)
.

(5.2)

Proof. By replacing (5.1) with (5.2), we obtain the subsequent framework:
c∆

φ
bu1(`) = −u1(` − 1 + φ),

c∆
φ
bu2(`) = −u2(` − 1 + φ),

c∆
φ
bu3(t) = −u3(` − 1 + φ).

(5.3)

Above expression can be written in the following form

c∆
φ
b
(
u1(`),u2(`),u3(`)

)T
= Q

(
u1(`),u2(`),u3(`)

)T
, (5.4)

where

Q =


−1 0 0
0 −1 0
0 0 −1

 . (5.5)

Since ϕ1 = ϕ2 = ϕ3 = 1 indicate the eigenvalues of Q, it is obvious that the eigenvalues ϕk. k =

1, 2, 3 meets the requirements of Lemma 2.3, proving that the regulated technique’s (5.3) zero neutral
state is asynchronously robust, and thus all phases of the regulated framework (5.3) are systematically
controlled. �

The outcomes of Theorem 5.1 are displayed in Figure 14(a-c) and 15(a-c) for δ1 = −8 and δ2 = 30.1
with ICs (0.01,−0.01, 0.01). Evidently, the regulated mechanism’s tends to zero, as well as the chaotic
aspect of the framework, which is removed.

(a) φ = 0.97 (b) φ = 0.77 (c) φ = 0.54

Figure 14. Chaos controlling of DFNN (5.3) with model parameters and various DFOs.
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Figure 15. The stabilized illustrations of regulated DFNN system (5.3) for parametric
variations (δ1, δ2) and ICs (0.01,−0.01, 0.01).

5.1. Synchronization of the proposed system

The following portion introduces a dynamic operator for synchronizing the proposed DFNN
framework (2.4) using undamped oscillations. The goal of synchrony is to compel any deviation within
the slave and master mechanisms to come closer to zero.

Assume that the commensurate fractional system (2.4) is the governing framework:


c∆

φ
bu1r(`) = −u1r(` − 1 + φ) + tanh

(
u2r(` − 1 + φ)

)
+ vu1r(` − 1 + φ),

c∆
φ
bu2r(`) = −u2r(` − 1 + φ) + tanh

(
u3r(` − 1 + φ)

)
+ vu2r(` − 1 + φ),

c∆
φ
bu3r(`) = −u3r(` − 1 + φ) + δ1 tanh

(
u1r(` − 1 + φ)

)
+ δ2 tanh

(
u2r(` − 1 + φ)

)
+vu3r(` − 1 + φ).

(5.6)

Introduce the slave system as:


c∆

φ
bu1~(`) = −u1~(` − 1 + φ) + tanh

(
u2~(` − 1 + φ)

)
+ C1(` − 1 + φ),

c∆
φ
bu2~(`) = −u2~(` − 1 + φ) + tanh

(
u3~(` − 1 + φ)

)
+ C2(` − 1 + φ),

c∆
φ
bu3~(`) = −u3~(` − 1 + φ) + δ1 tanh

(
u1~(` − 1 + φ)

)
+ δ2 tanh

(
u2~(` − 1 + φ)

)
+C3(` − 1 + φ),

(5.7)

where the synchronization regulators perform C1,C2 and C3, respectively. The synchronization
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oversight for ` ∈ Nb−1+φ is described below:
ε1(`) = u1~(`) − u1r(`),
ε2(`) = u2~(`) − u2r(`),
ε3(`) = u3~(`) − u3r(`).

(5.8)

Considering that systems (5.6) and (5.7) are considered to be synchronized if lim
` 7→∞
|εk(`)| =

0, f or k = 1, 2, 3. The upcoming result clarifies the proposed regulatory law for achieving mechanism
synchronization.

Theorem 5.2. Consider the system

C1(` − 1 + φ) = −
(
u1~(` − 1 + φ) − u1r(` − 1 + φ)

)
+

(
tanh

(
u2~(` − 1 + φ)

)
− tanh

(
u2r(` − 1 + φ)

))
− =1ε1(`),

C2(` − 1 + φ) = −
(
u2~(` − 1 + φ) − u2r(` − 1 + φ)

)
+

(
tanh

(
u3~(` − 1 + φ)

)
− tanh

(
u3r(` − 1 + φ)

))
− =2ε2(`),

C3(` − 1 + φ) = −
(
u3~(` − 1 + φ) − u3r(` − 1 + φ)

)
+ δ1

(
tanh

(
u1~(` − 1 + φ)

)
− tanh

(
u1r(` − 1 + φ)

))
+ δ2

(
tanh

(
u2~(` − 1 + φ)

)
− tanh

(
u2r(` − 1 + φ)

))
− =3ε3(`),

(5.9)

where =k ∈ (−1, 2b − 1), ‘k = 1, ..., 3 and 0 < =3 − d2 < 2b. Then the systems defined in (5.6) and (5.7)
are synchronized.

Proof. By means of (2.5) and using the error approach stated in (5.8), we have

c∆
φ
bε1(`) = −u1~(` − 1 + φ) + tanh

(
u2~(` − 1 + φ)

)
+ C1(` − 1 + φ) + u1r(` − 1 + φ)

− tanh
(
u2r(` − 1 + φ)

)
,

c∆
φ
bε2(`) = −u2~(` − 1 + φ) + tanh

(
u3~(` − 1 + φ)

)
+ C2(` − 1 + φ) + u2r(` − 1 + φ)

− tanh
(
u3r(` − 1 + φ)

)
,

c∆
φ
bε3(t) = −u3~(` − 1 + φ) + δ1 tanh

(
u1~(` − 1 + φ)

)
+ δ2 tanh

(
u2~(` − 1 + φ)

)
+C3(` − 1 + φ) + u3~(` − 1 + φ) − δ1 tanh

(
u1~(` − 1 + φ)

)
−δ2 tanh

(
u2~(` − 1 + φ)

)
.

(5.10)

Plugging the control mechanism (5.9) into (5.10), we have

c∆υ
b
(
ε1(`), ε2(`), ε3(`)

)T
= Q

(
ε1(` − 1 + φ), ε2(` − 1 + φ), ε3(` − 1 + φ)

)T
,

where

Q =


−1 − =1 0 0

0 −1 − =2 0
0 0 −1 − =3

 .
Since ϕ1 = ϕ2 = ϕ3 = −1 − =k, k = 1, 2, 3 indicate the eigenvalues of Q, it is obvious that the
eigenvalues ϕk. k = 1, 2, 3 meets the requirements of Lemma 2.3, the DFNN master framework (5.6)
and slave model (5.7) are synchronously robust. �
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Mathematical modeling employing MATLAB is used to validate this outcome. We select
(δ1, δ2) = (−8, 30.1), (=1,=2,=3) = (−0.1,−0.2,−0.3) and the initial values (ε1(0), ε2(0), ε3(0)) =

(−0.01.0.01, 0.01). The temporal progression of parts of the fractional oversight mechanism (5.8)
dependent on manipulation rules (5.9) is depicted in Figure 16. It is unambiguous that the deviations
are approaching zero, indicating that the synchronization addressed previously is productive.
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Figure 16. Time dependent plots of the fractional error dynamics of (5.10).

6. Conclusions

In this paper, the undamped oscillations of the DFNN frameworks were studied using DFC.
Obviously, FC has advantages over classical calculus, especially the limitless memory impact that
contributes to greater abstraction of interactions. Meanwhile, we have supplied innovative features
of the DFNN system that for investigating the potential of a discrete fractional three-node NN
regarding commensurate or incommensurate orders to demonstrate distinctive dynamical patterns, such
as equilibrium, bifurcations and fluctuations. We considered how these are influenced by the aforesaid
procedure. The research indicated that the framework has convoluted and broad dynamic properties.
Phase illustrations, generating bifurcation graphs, figuring out the MLE and performing the 0 − 1
evaluation are all used to investigate the commensurate and incommensurate DFO scenarios. The ApEn
procedure and the C0 examination have been employed to assess complexities, which demonstrated
the framework’s disorder. The findings reveal that the suggested framework yields chaotic patterns
with a greater intricate extent and a wider spectrum of chaotic zones with varying DFO values.
The states’ convergence process is determined using the DFO discrete-time equilibrium concept.
Finally, successful control laws were suggested that enable stabilizing and synchronizing the suggested
model by compelling the states to converge toward zero asymptotically. Numerical simulations using
MATLAB-21 were accomplished to validate our results. The linear growth procedure is used once
more to determine oversight unification. Also, computational approaches are offered for verifying
the results and demonstrating the viability of the suggested rules. Consequently, our results are
comprehensive and more general in nature and capture all findings of [40] when fractional exponent
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is assumed to be 1. The ultimate objective is to investigate the use of the fractional chaotic maps
suggested in this article in digital encryption and signal processing. We will compare the outcomes of
several encryption machine learning cases with prominent NNs, including the standard map.
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