Research article Special Issues

Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators

  • Received: 25 July 2023 Revised: 07 September 2023 Accepted: 10 September 2023 Published: 08 November 2023
  • MSC : 34A08, 47H10, 60H10, 93B05

  • The main aim of this work is to conduct an analysis of the approximate controllability of Hilfer fractional (HF) neutral stochastic differential systems under the condition of an almost sectorial operator with delay. The theoretical ideas linked to stochastic analysis, fractional calculus and semigroup theory, along with the fixed-point technique, are utilized to establish the key results of this article. More precisely, the main theorem of this study is devoted to proving the fact that the relevant linear system is approximately controllable. Finally, to help this research be as comprehensive as possible, we provide a theoretical application and filter system.

    Citation: Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad. Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators[J]. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551

    Related Papers:

  • The main aim of this work is to conduct an analysis of the approximate controllability of Hilfer fractional (HF) neutral stochastic differential systems under the condition of an almost sectorial operator with delay. The theoretical ideas linked to stochastic analysis, fractional calculus and semigroup theory, along with the fixed-point technique, are utilized to establish the key results of this article. More precisely, the main theorem of this study is devoted to proving the fact that the relevant linear system is approximately controllable. Finally, to help this research be as comprehensive as possible, we provide a theoretical application and filter system.



    加载中


    [1] X. L. Ding, B. Ahmad, Analytical solutions to fractional evolution equations with almost sectorial operators, Adv. Differential Equ., 2016 (2016), 203. https://doi.org/10.1186/s13662-016-0927-y doi: 10.1186/s13662-016-0927-y
    [2] M. M. Raja, V. Vijayakumar, R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order $1 < r < 2$ via measure of noncompactness, Chaos Soliton. Fract., 139 (2020), 110299. https://doi.org/10.1016/j.chaos.2020.110299 doi: 10.1016/j.chaos.2020.110299
    [3] M. Rasheed, E. T. Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral, AIMS Math., 8 (2023), 12422–12455. https://doi.org/10.3934/math.2023624 doi: 10.3934/math.2023624
    [4] F. Hadi, R. Amin, I. Khan, J. Alzahrani, K. S. Nisar, A. S. Al-Johani, et al., Numerical solutions of nonlinear delay integro-differential equations using Haar wavelet collocation method, Fractals, 31 (2023), 2340039. https://doi.org/10.1142/S0218348X2340039X doi: 10.1142/S0218348X2340039X
    [5] J. Din, M. Shabir, N. A. Alreshidi, E. T. Eldin, Optimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and its application, AIMS Math., 8 (2023), 10303–10328. https://doi.org/10.3934/math.2023522 doi: 10.3934/math.2023522
    [6] Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [8] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal.-Theor., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
    [9] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: Wiley, 1993.
    [10] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [11] M. Adel, M. E. Ramadan, H. Ahmad, T. Botmart, Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive, AIMS Math., 7 (2022), 20105–20125. https://doi.org/10.3934/math.20221100 doi: 10.3934/math.20221100
    [12] F. Li, Mild solutions for abstract differential equations with almost sectorial operators and infinite delay, Adv. Differential Equ., 2013 (2013), 327. https://doi.org/10.1186/1687-1847-2013-327 doi: 10.1186/1687-1847-2013-327
    [13] M. Martelli, A Rothe's type theorem for noncompact acyclic-valued map, Boll. Un. Math. Ital., 2 (1975), 70–76.
    [14] N. I. Mahmudov, A. Denker, On controllability of linear stochastic systems, Int. J. Control, 73 (2000), 144–151. https://doi.org/10.1080/002071700219849 doi: 10.1080/002071700219849
    [15] R. Sakthivel, Y. Ren, A. Debbouche, N. I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361–2382. https://doi.org/10.1080/00036811.2015.1090562 doi: 10.1080/00036811.2015.1090562
    [16] A. Boutiara, M. M. Matar, M. K. A. Kaabar, F. Martinez, S. Etemad, S. Rezapour, Some qualitative analyses of neutral functional delay differential equation with generalized Caputo operator, J. Funct. Space., 2021 (2021), 9993177. https://doi.org/10.1155/2021/9993177 doi: 10.1155/2021/9993177
    [17] S. Etemad, M. S. Souid, B. Telli, M. K. A. Kaabar, S. Rezapour, Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique, Adv. Differential Equ., 2021 (2021), 214. https://doi.org/10.1186/s13662-021-03377-x doi: 10.1186/s13662-021-03377-x
    [18] R. Hilfer, Application of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [19] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [20] K. M. Furati, M. D. Kassim, N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
    [21] K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Method. Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
    [22] S. Sivasankar, R. Udhayakumar, M. H. Kishor, S. E. Alhazmi, S. Al-Omari, A new result concerning nonlocal controllability of Hilfer fractional stochastic differential equations via almost sectorial operators, Mathematics, 11 (2023), 159. https://doi.org/10.3390/math11010159 doi: 10.3390/math11010159
    [23] C. B. S. V. Bose, R. Udhayakumar, Existence of mild solutions for Hilfer fractional neutral integro-differential inclusions via almost sectorial operators, Fractal Fract., 6 (2022), 532. https://doi.org/10.3390/fractalfract6090532 doi: 10.3390/fractalfract6090532
    [24] A. Jaiswal, D. Bahuguna, Hilfer fractional differential equations with almost sectorial operators, Differ. Equat. Dyn. Sys., 31 (2023), 301–317. https://doi.org/10.1007/s12591-020-00514-y doi: 10.1007/s12591-020-00514-y
    [25] K. Karthikeyan, A. Debbouche, D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal Fract., 5 (2021), 22. https://doi.org/10.3390/fractalfract5010022 doi: 10.3390/fractalfract5010022
    [26] S. Sivasankar, R. Udhayakumar, A note on approximate controllability of second-order neutral stochastic delay integro-differential evolution inclusions with impulses, Math. Method. Appl. Sci., 45 (2022), 6650–6676. https://doi.org/10.1002/mma.8198 doi: 10.1002/mma.8198
    [27] V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Meth. Part. D. E., 37 (2021), 1200–1221. https://doi.org/10.1002/num.22573 doi: 10.1002/num.22573
    [28] M. Yang, Q. Wang, Approximate controllability of Caputo fractional neutral stochastic differential inclusions with state-dependent delay, IMA J. Math. Control I., 35 (2018), 1061–1085. https://doi.org/10.1093/imamci/dnx014 doi: 10.1093/imamci/dnx014
    [29] C. S. V. Bose, R. Udhayakumar, A. M. Elshenhab, M. S. Kumar, J. S. Ro, Discussion on the approximate controllability of Hilfer fractional neutral integro-differential inclusions via almost sectorial operators, Fractal Fract., 6 (2022), 607. https://doi.org/10.3390/fractalfract6100607 doi: 10.3390/fractalfract6100607
    [30] Y. K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. S. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integro-differential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 101882. https://doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882
    [31] R. Pandey, C. Shukla, A. Shukla, A. K. Upadhyay, A. K. Singh, A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations, Int. J. Optim. Control Theor. Appl., 13 (2023), 130–138. https://doi.org/10.11121/ijocta.2023.1256 doi: 10.11121/ijocta.2023.1256
    [32] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions, Asian J. Control, 24 (2022), 2378–2394. https://doi.org/10.1002/asjc.2650 doi: 10.1002/asjc.2650
    [33] X. Mao, Stochastic differential equations and their applications, Chichester: Horwood Publishing, 1997.
    [34] S. Sivasankar, R. Udhayakumar, Discussion on existence of mild solutions for Hilfer fractional neutral stochastic evolution equations via almost sectorial operators with delay, Qual. Theor. Dyn. Syst., 22 (2023), 67. https://doi.org/10.1007/s12346-023-00773-4 doi: 10.1007/s12346-023-00773-4
    [35] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [36] J. H. Lightbourne, S. M. Rankin, A partial functional differential equation of Sobolev type, J. Math. Anal. Appl., 93 (1983) 328–337. https://doi.org/10.1016/0022-247X(83)90178-6 doi: 10.1016/0022-247X(83)90178-6
    [37] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [38] F. Periago, B. Straub, A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ., 2 (2002), 41–68. https://doi.org/10.1007/s00028-002-8079-9 doi: 10.1007/s00028-002-8079-9
    [39] M. Zhou, C. Li, Y. Zhou, Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators, Axioms, 11 (2022), 144. https://doi.org/10.3390/axioms11040144 doi: 10.3390/axioms11040144
    [40] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [41] K. Deimling, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer, 2010.
    [42] C. S. V. Bose, R. Udhayakumar, S. Velmurugan, M. Saradha, B. Almarri, Approximate controllability of $\Psi$-Hilfer fractional neutral differential equation with infinite delay, Fractal Fract., 7 (2023), 537. https://doi.org/10.3390/fractalfract7070537 doi: 10.3390/fractalfract7070537
    [43] S. Zahoor, S. Naseem, Design and implementation of an efficient FIR digital filter, Cogent Eng., 4 (2017), 1323373. https://doi.org/10.1080/23311916.2017.1323373 doi: 10.1080/23311916.2017.1323373
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1026) PDF downloads(68) Cited by(1)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog