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sectorial operator with delay. The theoretical ideas linked to stochastic analysis, fractional calculus
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1. Introduction

Fractional calculus was introduced as a significant area of advanced calculus in 1695. The
idea of fractional calculus has been effectively applied to a number of fields. Researchers in the
fields of physics and mathematics have demonstrated that this calculus may accurately reflect a
variety of non-local dynamics. The most common domains in which fractional calculus is used
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include elasticity, kinetic oscillations in identical and homogeneous constructions, aqueous waterways,
imaging, viscoelasticity and other areas. The success of fractional structures has caused several
researchers to re-evaluate their mathematical estimation techniques, because diagnostic configurations
may not be available in many domains. The readers can discover some interesting findings on fractional
dynamical systems in many research works about the theory and applications of fractional differential
systems [1-6]. Particularly, partial neutral constructions with or without delays act as an overview
of several partial neutral systems that appear in problems concerning heat transfer in components,
viscoelasticity and a variety of natural events. Additionally, interested readers are able to review various
books [7-10] and research articles [11-17] that focus on the most popular neutral structures.

Hilfer [18] pioneered fractional derivatives, including the Riemann-Liouville (RL) and Caputo
derivatives. Additionally, some theoretical discussions on thermoelasticity in solid compounds,
pharmaceutical manufacturing, rheological adaptive computing, mechanics and related areas have
revealed the applicability of Hilfer fractional derivatives (HFDs). Gu and Trujillo [19], in 2015, used
a measure of noncompactness method, along with the fixed-point criterion, to prove that the HFD
evolution problem has an integral solution. They considered a new variable r € [0, 1], together with a
fractional variable s, to indicate the derivative’s order. As a result, r = 0 gives the RL derivative, while
r = 1 gives the Caputo derivative. Numerous papers have been written in the context of Hilfer fractional
calculus [20-23]. Jaiswal and Bahuguna [24] and Karthikeyan et al. [25] turned to the existence of a
mild solution in relation to the Hilfer differential systems by using almost sectorial operators.

Due to the numerous applications of neutral differential equations in fields including electronics,
chemical kinetics, biological modelling and fluid dynamics, this form of equation has attracted a lot
of interest recently. We cite the publications [26-28] and the references therein for the theory and
applications of neutral partial differential equations with non-local and classical circumstances. Due to
the fact that neutral structures are prevalent in several areas of applied mathematics, recent years have
seen an increase in interest in them.

According to what we already know, the condition of controllability is an essential qualitative and
quantitative property of the control construction, and its characteristics are important in a range of
control challenges for both restricted and limitless networks. Recently, this notion has sparked a lot of
interest from researchers in the area of controllability of a wave equation of fractional order. See [29]
for significant new findings on the exact and approximate controllability of nonlinear delay or non-
delay dynamical systems. The approximate controllability of Atangana-Baleanu fractional neutral
delay integro-differential stochastic systems with non-local conditions was established by Ma et al. [30]
by using the fixed-point approach. A novel approach for such controllability of Sobolev-type Hilfer
fractional (HF) differential equations was recently unveiled by Pandey et al. [31] in 2023.

In contrast to deterministic models, stochastic ones should be investigated since both natural
and artificial systems are prone to noise and uncontrolled perturbations. Differential equations with
stochastic components contain unpredictability in their mathematical depiction of a specific event.
Recently, much attention has been paid to the application of stochastic differential equations (SDEs)
to describe a variety of occurrences in population motion, science, technological engineering,
environment, neuroscience, biological science and several other domains of science and technology.
Infinite and finite dimensions can both be employed with SDEs. An overview of SDEs and their
applications may be found in [32,33].

Numerous physical phenomena, like fluid movement through fractured rocks and thermodynamics,
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have mathematical structures that often reveal the Sobolev differential system. The debate about
the approximate controllability of Hilfer neutral fractional stochastic differential inclusions of the
Sobolev type was presented and developed by Dineshkumar et al. [32] in 2022. Also, a study on the
existence of mild solutions has been carried out for the Hilfer neutral fractional SDE by Sivasankar and
Udhayakumar [34] with the help of almost sectorial operators with a delay. Nevertheless, as far as we
are aware, the literature does not describe any research on the topic of the approximate controllability
of Hilfer neutral fractional stochastic differential systems of the Sobolev type under the condition of
an almost sectorial operator with delay.

By taking inspiration from previous research, this study intends to address this gap. In other words,
the aim of this manuscript is to establish the approximate controllability of Hilfer neutral fractional
stochastic differential systems of the Sobolev type by using an almost sectorial operator with the delay
in the following form:

|
Dy [Fu) — X1, u)l € Au() + Yx(D) + G(L, up) + f H(e,u.)dW(e), 1€ T, (L1
0 .

I57770u(l) o= € € By, 1€ (=0, 0],

where Df)’f represents the HF derivative of order r € (0, 1) and of type s € [0, 1]. The state parameter u(-)
takes values in a real separable Hilbert space Z. Moreover, x(-) € L%(S, U) is the control parameter (U
is a real Hilbert space) and Y € L(U,Z) is bounded. Let J := [0,c] and I’ := (0,c]. Let A : D(A) C
Z. — 7 be the almost sectorial operator that denotes a strongly continuous semigroup {7'(I)};>o on Z
that is uniformly bounded in Z. The function u; : (—o0,0] — Z is given by u; = u(I + 6), 6 € (—o0,0].
Note that u; € B, and it is defined axiomatically. The functions 8, G and multi-function H will be
subject to satisfying some suitable criteria to be defined in the sequel.

The following describes the manuscript’s structure: We give the theoretical principles in relation
to fractional calculus that are relevant to our investigation in Section 2. We focus on the approximate
controllability of the Hilfer neutral fractional stochastic differential system (1.1) in Section 3. To help
our discussion be as applicable as possible, we offer the theoretical application in Section 4.1.

2. Preliminaries

The complete probability space (A, &, P) is introduced by a complete family of right-continuous,
non-decreasing sub-o-algebras {§}5 fulfilling the condition that & € §. We denote a collection of
all strongly measurable, mean square-integrable Z-valued random parameters by

Ly(A, &, P, Z) = L,(A\,Z),

which is a Banach space associated with the norm |[u(-)|lz,a.z) = (EllU(, W)II%)%, where E denotes the
expectation satisfying that E(u) = f u(W)dp.

A
Take a real-valued sequence {W,(I), [ > 0, n € N} of one-dimensional standard Wiener processes,
which are mutually independent in A. Let K be a real distinct Hilbert space, and define

(9]

WO = > B W05, 120,

n=1
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so that {5, > 0, n € N} and {6,, n € N} is a complete orthonormal basis of K. Moreover, take
Q € L(K,K) as an operator formulated by Q6, = £,0,, (n € N), along with the finite trace Tr(Q) =
Yy Bu(< ). Let ¢ € L(K, Z) and set

WGy = > I Bws I
j=1

If ||yl 19 < oo, in this case, y will be called the Q-Hilbert-Schmidt operator. Here, Lg(K, Z) is the space
of all Hilbert-Schmidt operators endowed with the norm ||¢p||io = (Y, ). Clearly, Lg(K, 7) is a real
2

separable Hilbert space. Furthermore, D(A?) is dense in Z.
Some important properties of A” are listed below.

Theorem 2.1. [35]

(1) Let0 <y < 1. Z, = D(A?) is a Banach space with ||ull, = |[A"u||, (u € Z,).
(2) Let 0 < k <y < 1. D(AY) — D(A¥) is compact whenever A is compact.
(3) Yy € (0,11 and 4 C, > 0 such that

CY
IA” MOl < 5 0<l=c

The linear operators A, ¥ : D(A) C Z — Z are identified now based on the following criteria [36]:

(A1) F is bijective and D(F) C D(A).
(A2) A and ¥ are closed.
(A3) F7!':Z — D(¥) is continuous.

Additionally, for (A1) and (A2), ¥ ' is closed. Also, by (A3), along with the closed graph theorem,
AF ' :Z — Zisbounded. Set [|F || = F; and ||F]|| =

Definition 2.2. [37] The RL-fractional integral of order t for h : [c, 00) — R is defined as

h(e)lr .
h()_l“()fl—e de, I>c;r>0.

Definition 2.3. [37] The RL-fractional derivative of orderx € [m —1,m), m € Z for h : [c,00) — R is

1 dm [ h(e) t+1-m
RLD h(1) = —f— de, I>c;m—1<r<m.
IO = i Toam ). 1o & o m fem
Definition 2.4. [37] The Caputo derivative of order x € [m — 1,m), m € Z for h : [c,0) — R is
defined as
1 Lo
CDZJz(I) = © de=I"7""0"(D), I>c; m—1<rt<m.

I'm-1) J, (I—e¢)y+l-m

Definition 2.5. [37] The HF derivative of order 0 <t < 1 and0 < s < 1 forh : [c,00) — R is given by

DEn() = (VDAL )(0),
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Remark 2.6. (1) Ifs =0, 0 <t < 1 and ¢ = 0, then the HF derivative corresponds to the classical
RL-fractional derivative:

T Ci -1 T
DA = EI(L A =" Dy a(D).

(2)If s =1, 0 < v < 1and ¢ = 0, then the HF derivative is equal to the classical Caputo
fractional derivative:

T, - d T
D51 = Ij; ah(l) =€ D (D).

The abstract phase space B, is now described. Consider p : (—c0,0] — (0, +0c0) to be continuous,
0

along with ¢ = f p()dl < +oco. Now, for every n > 0, we have

—00

By ={i: (-0,01 > Z | V> 0, (E@)I)* is bounded and
0
measurable on [-n,0] & f p({) sup (E|[)(||[2(’0Jd§ < +oo}.
—00 0<¢<1 l
For B, we consider
0 1
Iels, = [ B sup (Bl de for allx € 5,

£<6<0

Therefore, (Bp, || - ||) is a Banach space.
We assume that the space of all continuous Z-valued stochastic processes {3(I), | € (—oo,c]} is
C((—o0,c],Z) and

B, = {u : ubelongs to C((-o0,c],Z), Ug = & € By}.

Moreover, set the seminorm || - || in B;, as

lulls, = liglls, + sup (EIUQIP)?, u € B).

0<¢<c

Lemma 2.7. [2]] Letu € B;). Then, V1€ 3, u; € B, and

1 1
LEIUOIP)? < lluills, < 1€lls, + £ Sl[lop]EIIU(é)llz)z,
£€[0,1

0
so that € = f p(Ddl < +oo.

[ee)

Definition 2.8. [24,38] Let0 < 9 < 1and 0 < w < g We denote E2-%(Z) as a family of the closed
linear operators A : D(A) C Z — Z such that

(1) 0(A) C S, ={v e C\{0} : |argv| < w} U {0}, and
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(2) ¥ u € (w,n), 4 C, such that
IR(v; Mllzzy < Cy|V|_l9, Y veC\S,,

where R(v;A) = (vA — I)7!, v € o(A) is the resolvent operator of A. If the linear operator A is in the
range Z7(Z), it will be referred to as an almost sectorial operator on Z.

Definition 2.9. [39] The Wright function ‘W,(B) is specified by the formula

B!
WB) = : C, 2.1
® kZ ra-wx-nr F*¢ 1
eN
with the following characteristic:
® I'(1+0)
‘W, (k)dk = , > 0.
fo‘ K (k)dk T+ fort
Proposition 2.10. [38] Let O(1) be the compact semigroup and A € Z°, where 0 < @ < 5 and

0 < ¥ < 1. Then,

d
(1) O() is analytic and %T(I) = (-A)"0(), 1€ Sz_4;
(2) O+ ¢) = O(MO(e) for all e,1 € Sz_;
(3) IOz < SolP™%, 1> 0, where Sy > 0 is a constant;
(4) Lo = {u € Z : lim_,o+ O(Du = u} gives D(AY) C Xp whenevery > 1 + 1,
(5) (u—A)"'= f e 0(e)de, u € C, and Re(u) > 0.

0
Lemma 2.11. [39] For any fixed 1 > 0, O,(1), N,(1) and M, () are linear operators and ¥ u € Z,

10.(Oull < AT Plull, INOUll < LUl and |Me (DUl < L0 ul],

where
_ SI(9) _ SI®)
T T T TG =) + 1)

Proposition 2.12. [34] Lett € (0,1), y € (0, 1] and u € D(A); then, some S, > 0 exists such that
AO,(Du = A'"'O,(DA"u, 0<I<c,

tS,I'(2 -y)
BT + (1 =)
Definition 2.13. An §-adopted and measurable stochastic process {U() e is named as a mild solution
of the system (1.1) if u(0) = € € Lg(A, Z) and x() € L%_(?S,‘L{); also ¥ ¢ € [0,c), the function AN, (1 —
e)N(e, U,) is integrable and

IAYO:(Dul| <

lul, 0<I<ec.

[
u(l) = F M (DIFE0) — R(0,6)] + F IR up) + f FIN( = )AN(e, u,)de
0
1 [ ¢
+ f FIN( = OG(e. u)de + f FIN( = e)( f (o, uw)dW(w))de
0 0 0

[
+ f FIN(1 = )Yx(e)de, [ey. (2.2)
0
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Since N;() = '"!O,(1), then (2.2) is equivalent to

[
u(l) = F M (DIFEO) — R(0,8)] + F IR uy) + f F 11— )10, — )AN(e, u,)de
0
[
+ f F11 - )10, - )G(e, u)de
0
1 ¢
+ f gf-l(l—e)f-lo,a—e)( f h(w,uw)dW(a)))de
0 0

1
+ f F = )10, - e)Yx(e)de, e, (2.3)
0
where M, (1) = Ig(f_t)Nr(I), and accordingly,
N.(D) =110, O.() = f kW, (k)O(I'k)dk.
0

We introduce the state value of (1.1) at the end time c related to the control % and the actual value &
by u.(Ug; ). Set
R(c, &) = {Uc(&2)(0) : %(-) € LS, U)},

which is the admissible set of system (1.1) at the end time c. Note that R(c, &) stands for the closure of
R(c, &) in Z.

Definition 2.14. [30] The Hilfer neutral fractional stochastic differential system of the Sobolev
type (1.1) is approximately controllable on 3 if R(c, &) = Z.

To conduct an analysis of the approximate controllability of the supposed nonlinear Sobolev-type
Hilfer control system (1.1), in the first step, we should establish the property of the approximate
controllability in the linear case, that is,

D [Fu) — R, up] € Au(D) + Yx(D), €3 =[0,c], ¢ >0,
2.4)
u(l) = € € L*(A, B,), 1 € (—00,0].

To do this, we first need to introduce the pertinent operator
C
= f F 1= PO(1- )YY O (1 - e)de,
0

and the set
R(a,T{) = (al +T§)! fora > 0.

In the aforementioned notions, O;(I) and Y* represent the adjoints of O,(I) and Y, respectively. It is
notable that the linear operator I is easily proven to be bounded. Consider the following hypothesis:

(H,) aR(a,Ij) — 0as @ — 0" w.r.t. the strong operator topology.
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Based on (Theorem 2 [14]), the linear Sobolev-type Hilfer control system (2.4) is approximately
controllable on [0, c], which is close to the hypothesis (H,).

Lemma 2.15. [40,41] Let P, 4(Z) be the collection of nonempty bounded closed and convex sets
in Z and I be a compact real interval. Consider the L*-Caratheodory multi-valued function

heSuu=1{he L*(L(K,Z)) : A1, u) € H(, up) for a.e. 1 € 3},
which is nonempty. Moreover, let X be a linear continuous function that maps L*(3,Z) to C. Then,
2085:C = Pacpa(C), U= (ZoSp)(U) = Z(Spuu)

is a closed graph operator in C x C.
3. Approximate controllability

Here, the property of approximate controllability is studied in relation to the given nonlinear
Sobolev type Hilfer stochastic control system (1.1).
The following hypotheses are required to prove the main theorems.

(Hp) O(1) is compact for every [ > 0.

(Hy) The function X : 3 X B, — Z is continuous and 30 < y < 1 such that N € D(A?). For any u € Z
and [ € 3, AYN(-,u) is strongly measurable. Moreover, 3 Sx, S > 0 such that Yuy,u, € Z and
AYK(], -) satisfies

EJAYN(, ui (D) = AR u)liz < S ui (1) = ux (Dl ,

EJAYR(, w)llz < Sx(1 + PI "Dl ).

Take ||A7”|| = S.
(Hg) For the function G : I X B, — Z:

(1) T = G(1,u) is measurable for any u € B,,,
(2) u = G(L,u) is continuous for almost every [ € 3,
(3) For almost every [ € 3 and any u € B,

ElGLWIP < ai(HSg(P " lullz, ),

where q; € L'(3,R*) and we have the continuous increasing function Sg : R* — (0, o).

(Hy) For each (I, ¢) € 3, an L*>-Caratheodory function H(I, -) mapping from By into P pg (K, 1)
is continuous, and for any u € B, the function H(-,u) : 3 = Py L(H ,Z) is strongly
measurable. An integrable function q, : 3 — [0, o0) and q > 0 exist such that

[ [
f E||H<e,u)||iode:sup{ f E||h(e,u>||2de:heH(I,u)}
0 2 0

< §2(OSu (P Tl ).

Note that Sy : [0, 00) — [0, c0) is continuous and increasing.
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(H;) The following inequality holds:

C 00 1
T de.
fo (©) egfk Se(B©) + Snp ™"

where

T(1) = ay max{q;(¢), q2(e)}, 1€ 3T,

36
ar = (6 N ;ﬁﬂs‘;{), Y] = Sy
and

K= 6[2(1—s+r5—r19){27:120%2212(—1+5—r5+r19) [}@225(0) + fcIZSN(l + ||§(O)||§;p)]

+ 7:12828&(1 + I2(1—5+rs—1‘19)||u1”28p)

(1 +y)

2 Q2
tFS (F(1+r)

I-y

2 [
) f(l _ e)Z(r—ry—l)Sx(l + IZ(—1+S—T5+I19)”ue”%p)de
0

[
+§¢f‘iﬁ“8§‘( f (I—e)“<“’-‘>[2[E||u||2+ f Ellg(o),de]
0 0

+ 297 Ly HTITIFRE0) + F SN+ IEO)IR,)]
+ TIZSZSN(l + C2(1—5+r5—r19)||u0||%p)

(1 +y)
ra+r)
Remark 3.1. [30] The following implications hold:

(@ VueZ Syy=0ifdimZ < co.
(b) Suy is nonempty < forn:3 — R, we have

L F2S? (

1-y

2 e
) f (e = DS+ P Ve e,
0

[
n(l) = inf{ fo Ellace, u)lP : 7 € H(L, uI)} € I’(3,R).

Note that the Hilfer stochastic control system of the Sobolev type (1.1) is approximately controllable
if a continuous function u exists such that ¥V a > 0:

[
u( = F' M (DIFE0) - R(©0,8)] + F 'R up) + f FH (1= &0l = )AN(e, u)de
0
[
+ f T_l(l — Q)T_IOI(I —¢)G(e, U )de
0

[ 13
+ f T‘l(l—e)r‘lOr(I—e)( f h(w,uw)dW(w))de
0 0
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[
+ f F 1= o101 = )Yy (e)de, ey, (3.1)
0

and
() = F (1= )Y O;(c - R(e, [Hg(u()),

where

qu()) = Uc = F M (O)IF E0) — R0, 6)] = F'N(c, uc)

_ f " (e — 0 10(c — OAN(e, ude
0

- f C Flc - e)'Oc - )Gle, uo)de
0

_ fc Fl(c—e)'Ouc - e)( fc I(w, Uw)dW(w))dQ-
o 0

We first state an auxiliary lemma (it will be used later).

Lemma 3.2. [30] For any G, € L*(T,Z), some ¢(-) € L%_(A; L*(3; Lg)) exists such that

U. = EU, +f d(e)dW(e).
0
Define the operator ¥ mapping from 8} into 2%, denoted by WPu, as the sety € B, so that

&), Te(=00,0],

FIM(DIFEO) — R0, )] + F I8, uy)
[
+ f F1 (1= )01 - )AN(e, Uy)de
0
y(D = ! -1 -1
. f F1(1 = 10,1 = OG(e, u)de
0

1 3
+ f ?_I(I—e)r‘]Or(I—e)( f h(w,uw)dW(w))de
0 0

[
+ f F =)0, - e)Yxy(e)de, 1€]0,c],
0

where i € Sy,. We shall show that A admits a fixed point that is the mild solution of the Hilfer
stochastic control system of the Sobolev type (1.1). Obviously, u. = u(c) € (Au)(c), which means that
#y(u, 1) gives (1.1) as uy — U, in the finite time c.

Since ¢ € B, we introduce ¢ as follows:

_ @), 1€ (=00,0],
o) =
FIM(DFEOD), 1el.
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Thus, ¢ € B, Let u(l) = (=== [y(1) + @(1)], —o0 < [ < c. We consider v to satisfy (3.1) if and only
if v satisfies vop = 0 and

v(D) = F M (D[-R0,8)] + F IR [v + @)

[
+ f F 1= )01 = )AN(e, ey, + 7 ]de
0
I
+ f F (1= ) 'Ol = )G(e, [Ve + Pe])de
0

1 ¢
+ f T‘I(I—e)HOr(I—e)( f (w, el-m-“?[vw+¢w])dW(w))de
0

0

n fo = 0.~ 9YF (1= YOl — ool + FS)‘I[EUC

+ fo C $()dW(e) — F ' Mo o(O)[F E(0) — R(O0,8)] — F'N(c, ' [v, + ¢.])
- fo ) Flc - ¢) ' Olc — )AR(e, ¢! v, + @, ])de

_ fo e~ 0 0Me — (e v, + Flde

- f Fl(c— ) ' Olc - e)( f (W, ' [y, + ZEw])dW(w))de]de, e,
0

0

Consider B;,’ ={ve B;, :vo =0 € B,}. Forany v € B/, we have

1 1
IVlle = IIvolls, + sup (Elv(e)I’)? = sup (Ellv(e)l)>.

0<e<c 0<e<c

Hence, (B;,’, || - ) is a Banach space. Set D, = {v € B;,’ : ||v||§ < r} for some r > 0. Accordingly,
D, € B] has the uniform boundedness property. If v € D,, from Lemma 2.7, we obtain

Elvi+ Gl < 2lvil, + 2G5,
< 4(52 sup Elv(OI? + Ivolly, + € sup EIGO)I? + ||§50||§gp)

e€[0,1] e€[0,1]

<400+ P LTI DB, ) + 4, = 1
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Define A : B;,’ — 2% denoted by Av, as the sety € B;)’ such that
0, [€(=,0],
Il—s+rs—rﬂ[7:—lMr’s(l)[_x((), f)] + 7:—18(1, Il—s+rs—rz9[v[ + ZE]])
|
+ f FH1 = o) O(1 = )AN(e, !y, + @ ])de
- 0
y(D = ! . . .
+ f F (1= )70l = )G(e, e[, + @, ])de
0

[ ¢
+ f T‘I(I—e)t‘lOt(I—e)( f h(w,wl-m-fﬁ[vw+§5w])dW(w))de
0 0

[
+ f T_I(I—e)*‘lOr(I—e)Y%$+¢(e)de], L€ [0,c].
0

We begin the proofs by stating some theorems that will allow us to prove the main theorem on the
approximate controllability.

Theorem 3.3. If the hypotheses (Hp), (Hy), (Hg), (Hu) and (Hj) are to be held, then the multi-valued
map A : B — 25 has the complete continuity and upper semi-continuity properties with the closed
and convex values.

Proof. We know that a fixed point of A exists if and only if a fixed point of II exists. We break the
proof into several steps for the sake of simplicity.
Step 1: Av is convex, YV v € B;,: Indeed, when ¢y, ¢, € Av, then 37y, 71, € Sy such that

oi(l) = 11‘-‘*f“ﬁ{flMt,sa)[—Mo, Ol + F IR [v + @)
+ fo [ FH 1= )01 - )AR(e, e [y, + G, ])de
+ fo | F (1= 701 - 0G(e, ¢! v, + @ ])de
v [Fa-omoa-of [ nwo = s g
+ fo | FH1- )7 O(l- OYF ' (1- ) 'Y O} (c — e)(al + Fsrl[Euc

+ f P(dW(e) = F ' M, (OIF £(0) = N(0,6)] = F'N(e, ¢! v + &)
0

- f F e —¢)'0c — )AN(e, e v, + . ])de
0
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- f F e — o) Olc — G(e, ¢ v, + @, ])de
0

- f C ?'_l(c—e)HOr(c—e)( f o, wl‘g“-"‘“?[vw+¢w])dW(w))de](e>de}
0

0

forle 3, i=1,2. Let u € [0, 1]. In this case, VY [ € J, we have
per (D) + (1 = wea(D)

- 11-5“5-“9{?-‘Mr,sa)[—x(o, O+ F NG v, + @)
N fo [ F1(1 = o) OL(1 = )AR(e, 5[y, + Gu])de
+ fo | F (- 701 - G(e, ¢ v, + @ ])de
; fo = ooy - o fo (@, v, + F))
+ (1= o, 015y, + G, DIAW (@) de
+ fo | FI- ) 0= YF (1= &)Y O;(c — e)(ed + )| EC
. fo B(OAW(E) — T M OIFEO) — RO.6)] — F~'Rie, [y, +Zul)
_ fo "l — o) 104(c — OAN(e, o[y, + Gl)de
_ fo ) F e —e)'0c - )G(e, e [v, + @ ])de
_ fo (e o Oue o fo (0w, + B,

+ (1 = )o@, ™[y, + Z,Ew])]dW(w))de](e)de}.

Since Sy is convex, pup; + (1 — w)s € Syy. Thus, (ue; + (1 — wWe,) € Av.
Step 2: Boundedness of Av on the bounded sets of By

It is enough to prove that some 7 > 0 exists such that V ¢ € Av, v € D,, we have ||¢||. < 7.

Subject to ¢ € Av, there exists i € Sy, such that, for any [ € J, and from (Hy), (Hg), (Hua) and
(Hj), we obtain
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2

Ellp(D)|* <E|| sup '™ (y(1))

Ie[0,c]

<E

sup I“S”S“ﬂ[?"]M,,S(I)[—N(O, O+ F IR v + @)

le[0,c]
[
+ f F =o)L O(1 = )AN(e, !y, + 3, ])de
0
[
+ f F =)' 0(1= G(e, ¢ [v, + @ ])de
0
[ ¢
+ f F (1= )OI e)( f H(w, "™y, + I,Ew])dW(w))de
0 0

2

[
+ f T_l(l—e)t_lOr(I—e)Y%ara(e)de]
0

2

2
<6+ |7 M-8, 1| + Bl Na 1+ 7

[ 2
+E f F (1= 'O - OAR(e, ' [v + G ])de
0

2

[
+E f F 1= )01 - G(e, ' v, + G ])de
0

2

[ ¢
v [ 7071000 [ ol v, B e
0 0
]

S6Il—5+rs—rﬂ{Tl2cg2212(—1+5—r5+r19)sx(1 + ||§(O)||(23p) + 7:12828}{(1 + 12(1—5+rs—r19)r/2

[
+E f FH 1= )T Ol = ) Yoy, (e)de
0

(1 +y)\? tsretr : e
+ F28.S? ( ) (1 4 PC1+s rs+119)r/2)f(1_ )21 e
1OR (1 +1) o

l-y
[
+ 7_:25%1286(12(1—%&—119)’_/2) f (I _ e)2(rﬂ—1)ql(e)de
0
[
+ 7_~IZ$ZGSH(IZ(I—Hrs—rﬁ)rrZ) f ([ _ e)Z(rﬁ—l)qz(e)de
0

1 [
+ TS, f (1— e)4<“9-1>M*(e)de}
0
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where
m =6{21ENulF + f Ellg(o)I.de] + 292 L2 =D [F24(0)
0 0

+ FSx( + €O, )] + FLS Sy(1 + 2770172

(1 + )

FFISS ( T(l+1)

I-y

2 c
) (1 + 2 IFstssad) 12 f (c = 2D ge
0
C
+ TIZD%Q,SQ(CZ(I—5+1‘S—r19)r/2)f (C _ e)Z(rﬁ—l)ql(e)de
0

L PP (PN 2 f(c B e)Z(rﬂ—l)qz(e)de}'
0

Thus, for all ¢ € A(D,), we have that ||¢||. < 7.
Step 3: A maps the bounded sets into equicontinuous sets of Bp:

Assume that 0 < [; < I, < c¢. For every ¢ € Av in which v belongs to D, = {v € B;,’ : IIVIIE <r},
there exists i € Sy, such that for any [ € J, we obtain

Ellp(l2) - @(W)I?

<E

I;‘““‘”[T—lMr,s(b)[—r«o, O+ F IG5 vy, +8,])
b
+ f F (1 — 'Ol — AN(e, ¢! v, + . ])de
0

1b)
+ | Flh - o700 — oG(e, o v, + @ ])de
0

12 ¢
| F G- oo, - e)( f A(w, 0= [v,, + ’@,])dW(w))de
0

0

16}
+ [ FL = o0, — YR A(e)de]
0

V+e

M) -RO.61 + 5N T, + B )

[

+ FH — o710 — )AN(e, ! [y, + @ ])de
0

[
+ 7:_1(11 - e)r_lC)r(Il - e)g(e’ el_SHS_rﬁ[Ve + "P\e])de
0
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I ¢
+ [ Fa - oo, —e)( f h(w,wl‘s”s‘“’[vw+§Ew])dW(w))de

0

2

0
[
+ f Fl1, - oo, - e)Y%§+¢(e)de]
0

2

< 6EH7—‘-1[I;-S“S-“"Mt,saz)[—N(o, O — 17 A _(1)[=R(0, &)]]

2
+ 6E“7:—1 [I;_Sﬁs_rﬁx(lz, [é—5+rs—r19[vlz + ’9512]) _ Ii—s+rs—n98(11’ I}—5+r5—r19[vIl + al ])]

163
+ 6E“¢—1[1;-5+“-w (L = )01 — )AN(e, ¢ ™ [v, + @, ])de
0

[y 2
— I}_5+t5—rﬂ (Il - e)r_lOr(Il - e)AN(e, el_SHS_rﬂ[Ve + @])de]
0

10}
+ 6E“7_~—1[Ié—5+rs—l‘l9 (IZ _ e)r—IOr(Iz _ e)g(e’ el—£a+):5—r’l9[ve + ac])de
0

2

[
-G f (1 = 'Ol — )G (e, ¢! v, + G ])de]
0

]2 ¢
+ 6E“T—1[I;-s+”-“9 (L -0, - e)( f hw, ' v, + c’ﬁw])dW(w))de
0 0

[y ¢ 2
R O O - o lou, - e)( L f(w, w' ™y, +§5w])dW(w))de]

1))

+ 615?“7—‘—1[1;—”“—1‘19 (L — 'O, — )Yx%_(e)de

v+
0

2

i}
_ I}—s+rs—rﬂf (1, — e)r—lOr([l — e)Y%g+¢(€)de]
0

When [, — 1;, the right-hand side of the above inequality tends to 0, because O,(1) is an operator with
the strong continuity, and because the compactness of O,(1) requires uniform continuity. As a result,
the set {Av : v € D,} is equicontinuous. The Arzela-Ascoli theorem and Steps 2 and 3 allow us to
conclude that A is compact.
Step 4: A has a closed graph:

Suppose that {v"} C B is a sequence such that v* — v*, and assume that {¢"} is a sequence
belonging to Av” for any n € N such that ¢" — ¢*. We shall demonstrate that ¢* € Av*. Since
¢" € AV", then there exists " € Sy such that
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0, [€(—00,0],
(5| M O-N(O0, €)1 + TN 1= + i)

[
+ f FHI— )01 = )AN(e, ' [V 1 5, ])de
0

¢"(l) = ! )
+ f F -0 - G(e, e V" + 5 ])de
0

+ fo | Fla-eo 01— e)Y%ﬁnJra(e)de], 1€ [0,c].
We must show that 3 7" € Sy - such that

0, le(-00,0],

11‘9“5‘“9[7’ M (D=0, )] + FIRA [y +5])

[
+ f FH1- )01 - )AN(e, o' [V + @, ])de
0

() = !
+ f F -0 = G(e, e v + 5 ])de
0

1
+ f F -7 10,(0- ) Yx® A(e)de], [€[0,c].
0

v+
Now, ¥ [ € 3, since G is continuous, we have

E

((pn(I) _ Il‘f‘“s‘rﬁ[?“lMr,s(l)[—N(O, é:)] + 77‘12*4(1, Il—s+ts—rﬁ[v;1 + ZP\I])
[
+ f FH 1= )01 - )AR(e, e [V + 5, ])de
0
[
+ f F 1= )01 - )G(e, e[V + 5, ])de
0
[
+ f F(1- )01 - e)Y%gW(e)de])
0
_ (90*(1) _ II_S-HS_H?[T_er’s(I)[_N(O, éj)] + 7:“—18([’ Il—s+t5—rﬂ[vik + EEI])

[
+ f F - )01 = )AN(e, ! [v! + 3, ])de
0

[ e
+ f T‘l(l—e)r_lOr(I—e)( f h”(w,wl‘s“s‘w[vz)+ZEw])dW(a)))de
0 0

1 ¢
+ f ¢—1(I—e)f-10r(1—e)( f h*(w,wl—m—fﬂ[v;;+§5w])dW(w))de
0 0
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[
+ f F =701 = G(e, e[y + G ])de
0

2
— 0asn — .

[
+ f ?_I(I _ e)T_IOr(I - Q)Y%g*+¢(e)de:|)
0

Consider the linear continuous operator U : L*(3;Z) — C(3;Z) by

[ ¢
B — (BR)(D) = f T‘I(I—e)r‘lOr(I—e)( f hw, wl-“”’-“’[vw+§5w])dW(w))de
0

0

[
- f Fl(1- )01 - )YY*Ol(c — e)(al +T5)!
0

X

[ e
f F1 (1= o) 0N - e)( f h(w, 0"y, + ?ﬁw])dW(w))de](e)de.
0 0
Accordingly, by referring to Lemma 2.15, U o S is a closed graph. Moreover,

(90"(1) - I“S““‘“’[T M (D-R0,8)] + F IR T [vi + G1])
1
+ f FHI— )01 = )AN(e, ' V" + 3, ]de
0
1
+ f F 1= )01 - ©)G(e, e[V + 3, ])de
0

|
N f F1(1 - 10,1 - e)Y%;’,,@(e)de]) € B(Spa)-
0
Since v — v*, because of Lemma 2.15, we may write

(QD*(I) _ 11—5+r5—r19|:?_~—1Mr’s(l)[_x(o’ é‘;)] + 7_'—1&(1’ Il—s+r5—rﬂ[vik + ZEI])
[
+ f F 1= )01 = )AR(e, e [v* + 3. ])de
0
[
+ f FH1- )01 - G(e, e [V + @, ]de
0

[
+ f Fla-eo 01— e)Y%$*+¢(e)de]) € U(Suu).
0
Thus, A has a closed graph.
In view of the four previous steps, A is a completely continuous multi-valued map with upper semi-

continuity and closed values that are convex. O
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Now, in order to use the Martelli fixed-point theorem, we choose a parameter > 1 and establish
the following auxiliary problem:

I
Dy [Fu(l) - %N(I, up] € Au(l) + %Y%(I) + %Q(I, up) + % f H(e,u.)dW(e), 1€ ¥,
0

(3.2)
1770790 o= € € By, 1€ (=0,0].
Thus, by Definition 2.13, the mild solution of (3.2) can be defined in the following form:
@), 1€ (=00,0],
FI Mo (DIFE0) = RO, H)1 + F 'R up + 5 JF 1= o O~ AN(e, U de
up=1 * % fo | F (1= )0l - )G (e, U)de (3.3)

[ ¢
+% f F1 = ) O - o) f 7w, U, )dW (@))de
0 0

[
+ % f FH1 = )01 = ) Yx(e)de, [€][0,c],
0
where 7i € Sy, = {(h € LA(L(K, Z)) : 5(1) € H(e,u,) for [ € J).

Now, in this lemma, we can be sure of the above structure in relation to the mild solution of (3.2).

Lemma 3.4. Assume that (Hp), (Hx), (Hg), (Hu) and (H;) are satisfied. Then, u is a mild solution
of (3.2). Moreover, the priori bound € > 0 exists such that ||ullg, < € VY1 € 3, where € is only
dependent on c, q;(-), a2(-), Sg and Sy.

Proof. From the structure (3.3), we may write

2

2
EU(D|P < 621-) [EHT‘IMI,S(I)[TS(O) “xo.0| + EH?‘IN(I, W

2

[
+E f F 11— )10, - ©)AN(e, u,)de
0

2

[
+E f F 1= )10, - ©)G(e, u)de
0

2

1 ¢

+E f (f_l(l—e)HOr(I—e)( f h(w,uw)dW(w))de
0 0

|

< 612(l—s+rs—1‘19){27:129%2212(—1+5—r5+r19) [7:22§(0) + ?1282*((1 + ”é\;(o)”ép)]

[
+E f FH =)' 01— ) YxC(e)de
0
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+ ?’128288(1 + [2(1—S+rs—tﬁ)||ulllép)

+ ?:1282

I-y

(rF(l +7)

2l
F(l " r) ) f(l _ e)Z(t—r)/—l)SN(l + IZ(—I+5—I5+Y19)||uellép)de
0

[
+ 7:129%2 f (I _ e)Z(rﬁ—l)ql(e)Sg([2(1—5+rs—r19)”ue”%p)de
0
[
+ ?'120%12 f (I _ e)l(tﬁ—l)aqz(e)SH([2(1—5+tS—lﬁ)“ue”%p)de
0

l c
+§ﬁ4%“8¢ f (I—e)“<ff'-‘>[2[E||u||2+ f Ellg(o)ll;,de]
0 0

+ 27 L P IFIE0) + FESK(1 + EO)I,)]

+ TiZSZSN(l + C2(1_5+rs_rﬂ)”uc”%p)

+ 9:1282

I-y

(rF(l +7)

2 C
R ) f (c = 2 DS (1 + C2(—1+s—t5+r19)”uellép)de
0

+ ﬁZDg/p]Q f(c _ e)z(rﬁ—l)ql(e)Sg(C2(1—9+‘r5—r19)”uc”%Bp)de
0

+ 7:120%12 f(c 3 e)z(rﬂ_])EIQZ(Q)SH(CQ(]_SHS_rﬁ)||Ue||%p)de](e)de}.
0
Therefore, by Lemma 2.7, we get

1
lullg, << Sup (ENu@)IP)? + €lls,
e€[0,1]

< 6512(1—s+r5—n9){2ﬁ29g2212(—1+5—r5+r19) [?225(0) + 7:128?{(1 + ||§;(0)”ép)]

+ ?12828&(1 + 12(1—5+t5—r19)||u1||%p)

+ 7:1282

I-y

(rF(l +9)

) Al
m) f([_e)Z(t—ty—l)SN(l+12(—1+s—rs+r19)”ue”%p)de
0

[
+ 7:129%2 f (I _ e)Z(rﬂ—l)ql(e)Sg(IZ(l—5+rs—rl9)”ue”%Bp)de
0
[
+ /@129%2 f (I _ e)Z(l‘ﬁ—l)aqz(e)SH(12(1—9+l’5—rﬂ)”uc”%p)de
0

[ C
+§9’f‘$“8§‘{ f (I—e)‘*“ﬁ‘”[z[E||u||2+ f Ell¢(e)|%de]
0 0 0
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+ 277 L CCTEIFTE0) + FSs(1 + O]

+ ‘7——12828}{(1 + C2(l—s+r5—rﬂ)||ucll28p)

+ 7:1282

I-y

(rF(l +7)

2 C
Ry ) f (c = 2 DS (1 + C2(—1+s—rs+r19)||ue”%p)de
0

C
+ /@129%2 f (C _ e)Z(tﬁ—l)ql(e)Sg(C2(1—5+r5—t19)”ue”%p)de
0

+ ?—lziplzf (c— e)Z(rﬂ—l)aqz(e)SH(CZ(l—s+rs—rl9)”Ue”%p)de](e)de} + ||§||gp.
0

Assume that v(l) = sup{Iz(l"“’*“‘“”llucllggp : 0 < ¢ < 1}. Furthermore, the function v(I) € J is non-
decreasing, and we have

u(l) < ¢ s?op]@nu(e)nzﬁ +1i€lls,
e€[0,1

< 5(612(1—s+t5—r19){27:120%212(—1%—%%0) [7:226(0) + 7:1288(1 + ”6(0)"%]))]

+ ?]28283(1 + 12(1—9+‘r5—tl9)||u1”28p)

ror (YT +7) 2 2(r—ry—1) 2(=1+s—15+10) 2
+¢lsl_y(m) REEARENEY lucli, de

1
+FLL? f (1= &) D1 (e)Sg(u(e))de
0
[
+7~12.$12f(1— ¢)* D52 (e)Su(v(e))de
0

[ C
+%ﬁ“$“8§‘{ f (I—e)“<““>[2[E||u||2+ f Ellg(o)ll7;de]
0 0

0

+ 277 L CCTEIFTE0) + FSw (1 + O]

+ ﬁZSZSx(l + C2(l—5+r5—rﬁ)”uc||ggp)

+ ?'1282

I-y

(rF(l +7)

2 C
_ 2(r—ry—1)8 1+ 2(=1+s—rs+11) U, 2 d
s fo (=9 W(1+c ludli3, )de

+ FLL? f C(c — )2 Vg1 ()Sg(v(e))de
0

1

LR fo c - e)z(rﬁ—1>qqz(e)SH(v(e))de](e)de})2 + s,
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[
< f[K(6 n §ﬁ2$148§‘{){?‘—’12.,2ﬂ2 f (1= 2D, (S (w(e))de
0

| %
+ 7:12312 f (I _ e)Z(rﬁ—l)aqz(e)SH(‘U(e))de}] + ”f”gp.
0

We can conclude from the right-hand side of the above inequality that

36 ! ‘
w(@) =k + (6 + 3714,%43;‘{){?12,% j; (1= ¢)*™ D1 (e)Sg(u(e))de

[
+F L7 f (1- e)z(rﬁ_l)EICIZ(Q)SH(U(Q))CZQ}’
0

w0 = a, v() < CED)? +|élls,, 1€,
and
# D < ar[a1(©Sglu)? + Illz,) + G0Su(CuD)? + i€ls,)]

< TO[Se(E@D)? + I€llz,)? + Su(C(u®)? + €ls,)],

where
T(D) = a; max{q;(e), g2(¢)}.

These inequalities imply, for each [ € J, that

. de < fC‘I’(e)de < fw de e
w0 Sg(B(e)) + Su(B(e) — Jo « Sg(B(&)) + Su(B(e))’ ’

where £1(0) = k and A(¢) = (£(D)? + [iElls,)*

Hence, u(l) < oo and there exists a constant d such that u(l) < d for all [ € [0, c]. Thus, we have that
IIUIII,ZBp <u(l) <u(l) <d,V1 e, where d is only dependent on ¢ and the functions q;(-), q2(-), Sg(-)
and Sy(+). This ends the proof. O

Theorem 3.5. If (Hp), (Hx), (Hg), (Hu) and (H;) hold, then the Hilfer stochastic control system of
the Sobolev type (1.1) admits at least one mild solution on (—oo,c].

Proof. Let® = {v € B;,’ : nv € Av, for some 1 > 1}. Then, for all v € ®, we have

[
v(D) = F M (O[-R0,8)] + F N up) + %f F (1= 7 O = OAR(e, u)de
0
[
+ % f 77_1(1 — e)“‘lOr(I —e)G(e, uo)de
0

[ ¢
+% f F-1(( = 101 — o) f (@, U)W (@))de
0 0
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1
+ % f F - )01 - &) Yx(e)de.
0

Then, the function u = v + ¢ will be a mild solution of the system (3.3); thus, by Lemmas 3.4 and 2.7,
we estimate the following:

1
IVDlle = [Ivollg, + sup E2|lv(e)|l*
e€[0,c]
L 2
= sup E2|lv(e)l
e€[0,c]
1 1~
< sup EZ|ju(o)l’ + sup E?|[g(e)l]

ee[0,c] e€[0,c]

< supf¢lluls, : ¢ € [0,c]) + sup E}IF ' M FEO)IP

e€[0,c]

<07k + sup E|F M. FEO)L,

e€[0,c]

which gives the boundedness of ®.

Therefore, it gives, by Lemma 2.7 and the Martelli fixed-point theorem, that A admits a fixed point
\TAS B;)’ . Setu(l) = v* + (1), 1 € [0,c]. Then, u is a fixed point of ¥, which is a mild solution of the
Hilfer stochastic control system of the Sobolev type (1.1). O

By considering the previous theorems, we can now prove the approximate controllability for the
main given stochastic system.

Theorem 3.6. If the hypotheses (Hp), (Hy), (Hg), (Hu) and (H,) are satisfied and G and H have the
uniform boundedness property, then the Hilfer stochastic control system of the Sobolev type (1.1) is
approximately controllable on 3.

Proof. Let u®(-) € O, be a fixed point of the operator II. But, based on Theorem 3.3, we know
that every fixed point of II is a mild solution of the Hilfer stochastic control system of the Sobolev
type (1.1). This shows that there is a u” such that u® € I1(u®); that is, by the stochastic Fubini theorem,
7% € S g e so that

u®(c) = U, — alal + Fg)_l[EUC + f P()dW(e) — F ' M, (©)[FE0) — R(0,8)] — F~'N(e, ue)
0

- f ) Flc—e)"'0,(c — ¢)AN(e, U, )de — f C Flc—e)"'0,(c — ©)G(e, u,)de
0 0

_ f C?—‘<c-e>f—‘0r(c—e)( f A, AW (@) e
0 0

Moreover, using the Dunford-Pettis theorem and the existing conditions on N, G and 7%, we
find that N(c,u.), G(e,u.) and A(w,u,) are weakly compact, respectively, in L*(3,Z), L*(3,7Z),
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and L2(LQ(K, Z)). So, there are subsequences, denoted by N(c,u.), G(e,U.) and i(w,u,), weakly
converging to N, G and 7, respectively, in L*(3, Z), L*(3,Z) and L*(Ly(K, Z)). Now, we write

E|lu®(c) — Ucll* < 9Ella(al + T{) ™ [El. — F ' M (0)[FEO0) — RO, O1IP
C 2
1 9E|laal + TS 'FIN(e, u)I? + 9E( f la(al + rg)-‘¢(e)||§2de)
0 0

2

+9E f a(al +T5) (e — )7 'O(c — )A[R(e, u.) — N(e)]de
0

2

+9E f a(al +TE) (e — ) 'O (c — )AR(e)de
0

2

+9E f a(al +T5) 7 (c — ) 'Ou(c — )[G(e, U,) — G(e)]de
0

2

+9E f a(al +T5) 7' (c — ©)'Oi(c — e)G(e)de
0

2

+9E f a(al +T5) ' (c— ) 'Ouc - ¢) f e [A(w, Uy) — A(w)]dW (w)de
0 0

2

+9E f a(al +T5) ' (c = ¢)'Ouc - ¢) fe Mw)dW(w)de
0 0

From (H,), for each 0 < ¢ < ¢, we get that a(af + I)"! — 0 strongly as @ — 0*. Accordingly,
alal + I“f))‘1 < 1. Consequently, we have that E|ju®(c) — U] — 0 as @« — 0 from Lebesgue’s
dominated convergence theorem and the compactness of O,(I). Hence, the Hilfer stochastic control
system of the Sobolev type (1.1) is approximately controllable which completes the proof. O

4. Example

4.1. Example I

Here, we simulate the given Hilfer stochastic control system of the Sobolev-type (1.1) by defining
some operators.
Let U = L*[0,n] and Y : D(Y) € U — U be an operator defined as

Yz=2" ze DY),

so that
D(Y) ={z € U : z, Z’ are absolutely continuous, z” € U, z(0) = z(x) = O}.

Suppose that A : D(A) C Z — Z and ¥ : D(¥) Cc Z — Z are two operators respectively given by
Az = 7" and ¥z = z — Z"”, in which, accordingly,

D(A) = D(¥) ={z € Z : z,Z' are absolutely continuous, z(0) = z(r) = 0}.
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Moreover, A and ¥ respectively take the following forms:

[ee)

Az = Z Xz, %, Y%, Z € D(A),

n=1

Fz= ) (1+n)2, %0, 2 € DIF),
n=1

where x,(y) = \/% sin(ny), n = 1,2,3,--- denotes the orthonormal vectors of A. Additionally, for
u € Z, we have

and

Note that Y admits the eigenvalues 8, = —n?, n € N, and that the corresponding eigenfunction is given
by %,. Therefore, the spectral representation of Y is formulated by

[

Yu = Z —n®(u, %,), ue D(Y).

n=1

Further, define

(o8]

M = )" exp(=n{u, %,)%,, % € U.

n=1

Specify that

(9]

a={U|U=Zvn%n, with Zvisoo},

n=2 n=2
where U is a space with the infinite dimension under the norm

o) 1

ol = (> 2)

n=2
In this step, we can define Y : U — U as
(o) (o)
Yv = 2wme; + Z UKy, U= Z v, €U,
n=2 n=2

so that Y is a linear continuous map.
Now, by the above definitions, consider the following Hilfer stochastic control system of the
Sobolev type as follows:
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o’u(l, z)

_ 8,
- —N(I,u(I,z))]: ut,2)

oa T Y2+ G(Lu(l,2)

D7 |u(l,z) -

[
+ f H(e, u(e,2))dW(e), 0 << e,
0

u(L,0) = uLx) = 0, [ >0,
I779W(0,2) = uy(2), 0<z <7, (4.1)

where W(]) is the standard one-dimensional Brownian motion in Z belonging to the filtered probability
space (A, F,P). Obviously, all assumptions (Hp), (Hy), (Hg), (Hu) and (H;) hold; thus, the
above Hilfer stochastic control system of the Sobolev type (4.1) is approximately controllable based
on Theorem 3.6.

4.2. Example I1

In this part, we examine the approximate controllability of Hilfer neutral fractional stochastic
differential systems of the Sobolev type by using an almost sectorial operator with delay. Consider
the mild solution of the system (2.3):

[
ul) = F ' M (DIFE0) — 80,1 + F 'K uy) + f F(1- )01 - )AN(e, u)de
0
[ [ e
+ f F 11— o001 - )G(e, u)de + f Fla-eo" 0,0 - e)(f (w, uw)dW(a)))de
0 0 0

[
+ f F =) 10,1 - ¢)Yx(e)de, [eY. 4.2)
0

Motivated by the filter system presented in [22, 42, 43], we present the digital filter system
corresponding to the mild solution in Figure 1. Digital filters are the backbone for any signal processing
applications. Many biomedical signals related to the human body are currently being acquired for
various informative feature extractions. Most of the aforementioned signals generally possess a low
frequency by nature. These signals describe the information pertaining to various disorders or diseases
for which the accuracy is of high concern. The efficiency of any digital signal-processing filtering
system relies on the ability to reject the noise.

Figure 1 describes the following:

(1) The product modulator 1 accepts the input [F£(0) — N(0,£)], and M, at time [ = O produces
the output M, .(D[F £(0) — R0, &)].

(2) The product modulator 2 accepts the input 8(I), produces the output N(1, u;).

(3) The product modulator 3 accepts the input x%(e) and Y and produces the output Yx(e).

(4) The product modulator 4 accepts the input u(e) and N and gives output N(e, U,).

(5) The product modulator 5 accepts the input u(e) and G and gives output G(e, U,).

(6) The product modulator 6 accepts the input u(w) and 7 and gives output A(w, U,).
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(7) The integrator performs the integral of

F 11— )10, - ¢)|AN(e, u) + G(e, uy) + f (w, u,)dW(w) + Yx(e)
0

over the period &.
Furthermore,

(1) Inputs F (1 — ¢)* 'O.(I — ¢) and AR(e, u,) are combined and multiplied with an output of the
integrator over (0, e).

(2) Inputs F (I — )" 'O,(I — ¢) and G(e, u,) are combined and multiplied with an output of the
integrator over (0, e).

(3) Inputs F (1 - ¢)"'O,(1 - ¢) and foe M(w, u,)dW(w) are combined and multiplied with an output
of the integrator over (0, ¢).

(4) Inputs F1(I — ¢)"'O.(1 — ¢) and Yx(e) are combined and multiplied with an output of the
integrator over (0, e).

F—l

- e)r_lor(l —e) @
x(e)
Y
AN (e, u,
e o
G(e,ue)
? 2
h(w,uy,)
) y Integrator [mERUREON Integrator
N(l,ul)

F$(0) >
N(0,§) Output

Figure 1. Filter system model.

Finally, we move all of the outputs from the integrators to the summer network. Therefore, the
output of u(l) is attained; it is bounded and controllable.

5. Conclusions
This paper focuses on the approximate controllability of a Hilfer stochastic neutral control system of
the Sobolev type by using an almost sectorial operator with delay. The concepts of stochastic analysis,

fractional calculus, semigroup theory and fixed-point technique are used to find the mild solutions of

AIMS Mathematics Volume 8, Issue 12, 30374-30404.
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the mentioned system. More precisely, by defining some operators, and under some control conditions,
we could prove the existence result for the mild solutions. Finally, we provided a theoretical example
and filter system to effectively analyse our results. In future works, one can extend the control Hilfer
stochastic neutral systems under some well-known boundary value conditions.
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