Research article

Accelerated preconditioning Krasnosel'skiĭ-Mann method for efficiently solving monotone inclusion problems

  • Received: 22 August 2023 Revised: 22 September 2023 Accepted: 11 October 2023 Published: 18 October 2023
  • MSC : 47H04, 47H10, 65K05, 90C25

  • In this article, we propose a strongly convergent preconditioning method for finding a zero of the sum of two monotone operators. The proposed method combines a preconditioning approach with the robustness of the Krasnosel'skiĭ-Mann method. We show the strong convergence result of the sequence generated by the proposed method to a solution of the monotone inclusion problem. Finally, we provide numerical experiments on the convex minimization problem.

    Citation: Natthaphon Artsawang. Accelerated preconditioning Krasnosel'skiĭ-Mann method for efficiently solving monotone inclusion problems[J]. AIMS Mathematics, 2023, 8(12): 28398-28412. doi: 10.3934/math.20231453

    Related Papers:

  • In this article, we propose a strongly convergent preconditioning method for finding a zero of the sum of two monotone operators. The proposed method combines a preconditioning approach with the robustness of the Krasnosel'skiĭ-Mann method. We show the strong convergence result of the sequence generated by the proposed method to a solution of the monotone inclusion problem. Finally, we provide numerical experiments on the convex minimization problem.



    加载中


    [1] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer Cham, 2011. https://doi.org/10.1007/978-3-319-48311-5
    [2] B. Engquist, Encyclopedia of applied and computational mathematics, Berlin: Springer, 2015. https://doi.org/10.1007/978-3-540-70529-1
    [3] J. Eckstein, D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293–318. https://doi.org/10.1007/BF01581204 doi: 10.1007/BF01581204
    [4] N. Artsawang, K. Ungchittrakool, A new forward-backward penalty scheme and its convergence for solving monotone inclusion problems, Carpathian. J. Math., 35 (2019), 349–363.
    [5] N. Artsawang, K. Ungchittrakool, A new splitting forward-backward algorithm and convergence for solving constrained convex optimization problem in Hilbert spaces, J. Nonlinear Convex Anal., 22 (2021), 1003–1023.
    [6] D. Kitkuan, P. Kumam, J. Martínez-Moreno, Generalized Halpern-type forward-backward splitting methods for convex minimization problems with application to image restoration problems, Optimization, 69 (2020), 1557–1581. https://doi.org/10.1080/02331934.2019.1646742 doi: 10.1080/02331934.2019.1646742
    [7] V. Dadashi, M. Postolache, Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, Arab. J. Math., 9 (2020), 89–99. https://doi.org/10.1007/s40065-018-0236-2 doi: 10.1007/s40065-018-0236-2
    [8] J. S. Jung, A general iterative algorithm for split variational inclusion problems and fixed point problems of a pseudocontractive mapping, J. Nonlinear Funct. Anal., 2022 (2022), 13. https://doi.org/10.23952/jnfa.2022.13 doi: 10.23952/jnfa.2022.13
    [9] V. A. Uzor, T. O. Alakoya, O. T. Mewomo, Modified forward-backward splitting method for split equilibrium, variational inclusion, and fixed point problems, Appl. Set-Valued Anal. Optim., 5 (2023), 95–119.
    [10] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303–320. https://doi.org/10.1007/BF00927673 doi: 10.1007/BF00927673
    [11] P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071
    [12] B. T. Polyak, Some methods of speeding up the convergence of iterative methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [13] L. Liu, S. Y. Cho, J. C. Yao, Convergence analysis of an inertial Tseng's extragradient algorithm for solving pseudomonotone variational inequalities and applications, J. Nonlinear Var. Anal., 5 (2021), 627–644.
    [14] N. Artsawang, K. Ungchittrakool, Inertial Mann-type algorithm for a nonexpansive mapping to solve monotone inclusion and image restoration problems, Symmetry, 12 (2020), 750. https://doi.org/10.3390/sym12050750 doi: 10.3390/sym12050750
    [15] Y. E. Nesterov, A method for solving a convex programming problem with convergence rate $O(1/k^2)$, Dokl. Akad. Nauk SSSR, 269 (1983), 543–547.
    [16] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11.
    [17] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. https://doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8
    [18] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773–782. https://doi.org/10.1137/S1052623403427859 doi: 10.1137/S1052623403427859
    [19] H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2009), 91–129. https://doi.org/10.1007/s10107-011-0484-9 doi: 10.1007/s10107-011-0484-9
    [20] A. Moudfi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. https://doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8
    [21] D. A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), 311–325. https://doi.org/10.1007/s10851-014-0523-2 doi: 10.1007/s10851-014-0523-2
    [22] E. Altiparmak, I. Karahan, A new preconditioning algorithm for finding a zero of the sum of two monotone operators and its application to image restoration problems, Int. J. Comput. Math., 99 (2022), 2482–2498. https://doi.org/10.1080/00207160.2022.2068146 doi: 10.1080/00207160.2022.2068146
    [23] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [24] R. I. Boţ, E. R. Csetnek, D. Meier, Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces, Optim. Method. Softw., 34 (2019), 489–514. https://doi.org/10.1080/10556788.2018.1457151 doi: 10.1080/10556788.2018.1457151
    [25] K. Ungchittrakool, S. Plubtieng, N. Artsawang, P. Thammasiri, Modified Mann-type algorithm for two countable families of nonexpansive mappings and application to monotone inclusion and image restoration problems, Mathematics, 11 (2023), 2927. https://doi.org/10.3390/math11132927 doi: 10.3390/math11132927
    [26] R. I. Boţ, D. Meier, A strongly convergent Krasnosel'skiǐ-Mann-type algorithm for finding a common fixed point of a countably infinite family of nonexpansive operators in Hilbert spaces, J. Comput. Appl. Math., 395 (2021), 113589. https://doi.org/10.1016/j.cam.2021.113589 doi: 10.1016/j.cam.2021.113589
    [27] B. Tan, S. Y. Cho, An inertial Mann-like algorithm for fixed points of nonexpansive mappings in Hilbert spaces, J. Appl. Numer. Optim., 2 (2020), 335–351. https://doi.org/10.23952/jano.2.2020.3.05 doi: 10.23952/jano.2.2020.3.05
    [28] B. Tan, S. Li, Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems, J. Nonlinear Var. Anal., 4 (2020), 337–355. https://doi.org/10.23952/jnva.4.2020.3.02 doi: 10.23952/jnva.4.2020.3.02
    [29] B. Tan, S. Y. Cho, J. C. Yao, Accelerated inertial subgradient extragradient algorithms with non-monotonic step sizes for equilibrium problems and fixed point problems, J. Nonlinear Var. Anal., 6 (2022), 89–122. https://doi.org/10.23952/jnva.6.2022.1.06 doi: 10.23952/jnva.6.2022.1.06
    [30] B. Tan, S. Xu, S. Li, Modified inertial Hybrid and shrinking projection algorithms for solving fixed point problems, Mathematics, 8 (2020), 236. https://doi.org/10.3390/math8020236 doi: 10.3390/math8020236
    [31] B. V. Limaye, Functional analysis, New Age International, 1996.
    [32] A. Dixit, D. R. Sahu, P. Gautam, T. Som, J. C. Yao, An accelerated forward backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5 (2021), 79–101. https://doi.org/10.23952/jnva.5.2021.1.06 doi: 10.23952/jnva.5.2021.1.06
    [33] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [34] P. E. Mainge, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), 469–479. https://doi.org/10.1016/j.jmaa.2005.12.066 doi: 10.1016/j.jmaa.2005.12.066
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1151) PDF downloads(64) Cited by(3)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog