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1. Introduction

Let H be a real Hilbert space equipped with an inner product denoted by 〈·, ·〉, and let ‖ · ‖ denote
the norm induced by this inner product.

The monotone inclusion problem (MIP) is to find a point x∗ ∈ H such that

0 ∈ Ax + Bx, (1.1)

where A : H → 2H is a set-value operator and B : H → H is an operator.
This problem arises in a wide range of applications, including optimization, convex minimization

problems, equilibrium problems, variational inequality problems, signal and image processing,
machine learning, mechanics and partial differential equations (see, for example, references [1–9]). To
tackle the monotone inclusion problem, various techniques have been developed, including the method
of alternating projections and the proximal point algorithm [10]. The forward-backward method is
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a well-known algorithm for solving the monotone inclusion problem involving two operators. The
method, also known as the proximal gradient method or the iterative soft-thresholding algorithm, was
introduced by Lions and Mercier in [11]. Recall some definitions of maximal monotone and cocoercive
operators. The operator A : H → 2H is called maximally monotone when no proper monotone
extension of the graph of A exists. For L > 0, the operator B : H → H is said to be L-cocoercive if it
satisfies L‖Bx − By‖2 ≤ 〈x − y, Bx − By〉 ,∀ x, y ∈ H . Their method is defined as follows:

xk+1 = (I + λkA)−1(I − λkB)xk, ∀ k ∈ N, (1.2)

where A : H → 2H is maximal monotone operator, and B : H → H is a 1/L-cocoercive. They
presented weak convergence of their algorithm under the assumption that λk ∈ (0, 2/L).

In 1964, Polyak [12] introduced several innovative ideas aimed at improving the convergence speed
of iterative algorithms. These approaches entail modifications to traditional iterative procedures,
such as incorporating variable relaxation parameters and implementing acceleration methods that
incorporate an inertial extrapolation term, denoted as θn(xn − xn−1), where θn is a sequence satisfying
specific assumptions. Subsequently, inertial extrapolation has gained substantial attention and has been
thoroughly investigated by numerous researchers; for more details, please refer to [13–19].

Afterward, Moudafi and Oliny [20] applied the concept of the inertial method and the forward-
backward method to introduce a new algorithm for solving MIP. The method is as follows:zk = xk + θk(xk − xk−1),

xk+1 = (I + λkA)−1(zk − λkB(xk)), ∀ k ∈ N,
(1.3)

where A : H → 2H is a maximal monotone operator, (θk)k≥0 ⊆ [0, 1) is an inertial parameter sequence
and B : H → H is a 1/L-cocoercive. It has been shown that the generated sequence (xk)k≥0 converges
weakly to a solution of MIP when

∑
k≥1 θk‖xk − xk−1‖

2 < +∞ and λk ∈ (2/L).
To accelerate the algorithm for solving MIP, preconditioners are frequently employed. One such

approach is the preconditioning forward-backward algorithm for solving MIP, defined as follows:

(LP15)

zk = xk + θk(xk − xk−1),
xk+1 = (I + λkM−1A)−1(zk − λkM−1B(xk)), ∀ k ∈ N,

(1.4)

where A : H → 2H is a maximal monotone operator and B : H → H is a M-cocoercive, where the
precoditioner M is a bounded linear operator. This method was introduced by Lorenz and Pock [21].
Furthermore, under appropriate assumptions on the parameters, it converges weakly to a solution of
MIP.

In 2022, Altiparmak and Karahan [22] presented a new preconditioning forward-backward
algorithm for solving MIP, incorporating the concept of viscosity. The algorithm is defined as follows:

(AK22)


zk = xk + θk(xk − xk−1),
wk = T (αk(zk) + (1 − αk)T (zk)) ,
xk+1 = βk f (wk) + (1 − βk)T (wk), ∀ k ∈ N,

(1.5)

where T := (I + λM−1A)−1(I − λM−1B), λ ∈ (0, 1], (θk)k≥0 ⊆ [0, θ] with θ ∈ [0, 1), (αk)k≥0 and (βk)k≥0

are sequences in (0, 1]. They proved the strong convergence results of this method.
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Alternatively, for a certain nonexpansive operator T : H → H with Fix T , ∅, where Fix T :=
{x ∈ H : T x = x}, the celebrated Krasnosel’skiı̆-Mann method [23, Theorem 2.2] for finding a point in
Fix T has the following form:

xk+1 := xk + λk (T (xk) − xk) ,

where x1 ∈ H is arbitrarily chosen, (λk)k≥1 ⊂ (0, 1) is a real sequence. It is well known that the
sequence generated by Krasnosel’skiı̆-Mann method converges weakly to a point in Fix T . In order to
deal with strong convergence result of Krasnosel’skiı̆-Mann type method, Boţ, Csetnek and Meier [24]
proposed a modified Krasnosel’skiı̆-Mann method [24, Scheme (2)] of the following form:

(BCM19) xk+1 = αkδkxk + (1 − αk)Tδkxk, ∀k ≥ 1, (1.6)

where x1 ∈ H and (αk)k≥1, (δk)k≥1 are sequences in (0, 1]. They proved that the generated sequence
converges strongly to a point x∗ ∈ Fix T . It is worth noting that such a point x∗ has a special feature in
the sense that it captures the minimal norm value compared to other fixed points of T . The modified
Krasnosel’skiı̆-Mann method (1.6) has been studied and generalized extensively in some aspects, see
for example [14, 25–27]. Recently, many researchers have proposed iterative methods to solve fixed
point problems; see, e.g., [28–30] and the references therein.

The main contribution of this work is the introduction of an iterative method designed to find the
zero of two monotone operators, as presented in problem (1.1). This method is built upon the principles
of preconditioning and a modified Krasnosel’skiı̆-Mann method (1.6). Under certain conditions on
the control sequences, we establish the strong convergence of our proposed algorithm to address
the problem (1.1). To illustrate the effectiveness of our approach, we present a series of numerical
experiments focused on the convex minimization problem.

2. Preliminaries

In this section, we present results from real Hilbert spaces that are pertinent to this study, particularly
in the context of convergence analysis.

Consider C as a nonempty closed convex subset ofH . For any z ∈ H , there exists a unique x∗ ∈ C
satisfying ‖z − x∗‖ = inf

x∈C
‖z − x‖. Furthermore, if we define projC : H → C by projC(z) = x∗ for all

z ∈ H, we refer to projC as the metric projection (or nearest point projection) fromH onto C.
Let A : H → 2H be a set-value operator. We denote the graph of A as gra(A) := {(x,w) ∈ H ×H :

w ∈ Ax}. The operator A is said to be monotone if 〈x − y,w − z〉 ≥ 0 for all (x,w), (y, z) ∈ gra(A), and
it is called maximally monotone when no proper monotone extension of the graph of A exists.

For a function h : H → (−∞,+∞], we say that h is proper if there exists at least one x ∈ H such
that h(x) < +∞. The subdifferential of h at x ∈ H , where h(x) ∈ R, is defined as follows:

∂h(x) = {w ∈ H : h(y) − h(x) ≥ 〈w, y − x〉 ∀y ∈ H}.

We say that and h is subdifferentiable at x ∈ H if ∂h(x) , ∅. The elements of ∂h(x) are referred to as
the subgradients of h at x. It is a well-established fact that the subdifferential of a proper convex lower
semicontinuous function constitutes a maximally monotone operator.
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Let M : H → H be a bounded linear operator. M is characterized as self-adjoint if M∗ = M, where
M∗ represents the adjoint of the operator M. A self-adjoint operator is considered positive definite if
〈M(x), x〉 > 0 for every 0 , x ∈ H [31].

〈x, y〉M = 〈x,M(y)〉 , ∀ x, y ∈ H .

Using the self-adjoint, positive and bounded linear operator M, we define the M-inner product as
follows:

‖x‖2M = 〈x,M(x)〉 , ∀ x ∈ H .

Definition 2.1. [32] Let C be a nonempty subset of H , and let M : H → H be a positive definite
operator. Then an operator T : C → H is said to be:

(i) nonexpansive operator with respect to M-norm if it satisfies: ‖T x−Ty‖M ≤ ‖x−y‖M, ∀ x, y ∈ H ,
(ii) M-cocoercive operator if it satisfies: ‖T x − Ty‖2M−1 ≤ 〈x − y,T x − Ty〉 , ∀ x, y ∈ H .

Lemma 2.1. [32] Let A : H → 2H be a maximal monotone operator, and let B : H → H be a
M-cocoercive operator, where M : H → H is a bounded linear self-adjoint operator. Assume that M
is a positive definite operator and λ ∈ (0, 1]. Then (I + λM−1A)−1(I − λM−1B) is nonexpansive with
respect to M-norm.

Lemma 2.2. [32] Let A : H → 2H be a maximal monotone operator, and let B : H → H be a M-
cocoercive operator, where M : H → H is a bounded linear self-adjoint operator. Assume that M is a
positive definite operator and λ ∈ (0,∞). Then x ∈ H is a solution of monoton inclusion problem (1.1)
if and only if x is a fixed point of (I + λM−1A)−1(I − λM−1B).

The subsequent lemma constitutes an essential characterization of the metric projection.

Lemma 2.3. [33,34] Let (sk)k≥1 and (µk)k≥1 be sequences of nonnegative real numbers and satisfy the
inequality

sk+1 ≤ (1 − δk)sk + µk + εk ∀k ≥ 1,

where 0 ≤ δk ≤ 1 for all k ≥ 1. Assume that
∑

k≥1 εk < +∞. Then the following statement hold:

(i) If µk ≤ cδk (where c ≥ 0), then (sk)k≥1 is bounded.
(ii) If

∑
k≥1 δk = ∞ and lim supk→+∞

µk
δk
≤ 0, then the sequence (sk)k≥1 converges to 0.

Lemma 2.4. [1] Let T be a nonexpansive operator fromH into itself. Let (xk)k≥1 be a sequence inH
and x ∈ H such that xk ⇀ x as k → +∞ (i.e., (xk)k≥1 converges weakly to x) and xk − T xk → 0 as
k → +∞ (i.e., (xk − T xk)k≥1 converges strongly to 0). Then x ∈ Fix(T ).

3. Main results

This section discuss the convergence analysis of the proposed algorithm.
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Algorithm 1
Initialization: Given the real sequences (αk)k≥1 and (δk)k≥1 in (0, 1] and λ ∈ (0, 1]. Choose an
aebitrary initial point x1 ∈ H .

Iterative Steps: For an iterate xk ∈ H , define xk+1 ∈ H as

xk+1 := (I + λM−1A)−1(I − λM−1B)
(
αk(δkxk) + (1 − αk)(I + λM−1A)−1(I − λM−1B)(δkxk)

)
.

Update k := k + 1.

To prove the convergence of Algorithm 1, we assume the following assumption throughout this
work.

Assumption 3.1. Let (αk)k≥1 and (δk)k≥1 be sequences in (0, 1]. Assume the conditions are verifiable,
as follows:

(1) lim inf
k→+∞

αk > 0 and
∑

k≥1 |αk − αk−1| < +∞,
(2) lim

k→+∞
δk = 1,

∑
k≥0(1 − δk) = +∞ and

∑
n≥1 |δk − δk−1| < +∞.

We have verified Assumption 3.1 as shown in the following remark.

Remark 3.1. Let z ∈ H . We set δk = 1− 1
k+1 and αk = 1

2−
1

(k+1)2 . It’s easy to see that the Assumption 3.1
is satisfied.

Theorem 3.1. Let M be a bounded linear self-adjoint and positive definite operator on H , A : H →
2H be a maximally monotone and let B : H → H be M-cocoercive operator such that (A+B)−1(0) , ∅.
Let (xk)k≥1 be generated by Algorithm 1. Assume that (αk)k≥1 and (δk)k≥1 satisfy Assumption 3.1. Then,
the sequence (xk)k≥1 strongly converges to projFix((A+B)−1(0))(0).

Proof. Let x∗ ∈ (A + B)−1(0). We define ΓA,B
λ,M := (I + λM−1A)−1(I − λM−1B) for ease of reference and

convenience. From Algorithm 1, we obtain that

‖xk+1 − x∗‖M =
∥∥∥∥ΓA,B

λ,M

(
αk(δkxk) + (1 − αk)ΓA,B

λ,M(δkxk)
)
− x∗

∥∥∥∥
M

≤
∥∥∥αk(δkxk) + (1 − αk)ΓA,B

λ,M(δkxk) − x∗
∥∥∥

M

≤ ‖δkxk − x∗‖M. (3.1)

Let us consider ‖δkxk − x∗‖M in the inequality (3.1),

‖δkxk − x∗‖M = ‖δk(xk − x∗) + (δk − 1)x∗‖M
≤ δk‖xk − x∗‖M + (1 − δk)‖x∗‖M. (3.2)

Combining (3.1) and (3.2), we have

‖xk+1 − x∗‖M ≤ δk‖xk − x∗‖M + (1 − δk)‖x∗‖M
≤ max {‖xk − x∗‖M, ‖x∗‖M}
...

≤ max {‖x0 − x∗‖M, ‖x∗‖M} , (3.3)
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for all k ≥ 0, hence (xk)k≥1 is bounded.
Next, we cliam that ‖xk+1 − xk‖ → 0 as k → +∞. Let us consider,

‖xk+1 − xk‖M =
∥∥∥∥ΓA,B

λ,M

(
αk(δkxk) + (1 − αk)ΓA,B

λ,M(δkxk)
)

− ΓA,B
λ,M

(
αk−1(δk−1xk−1) + (1 − αk−1)ΓA,B

λ,M(δkxk−1)
)∥∥∥∥

M

≤ ‖αk(δkxk − δk−1xk−1) + (αk − αk−1)δk−1xk−1‖M

+ ‖(1 − αk)(ΓA,B
λ,M(δkxk) − ΓA,B

λ,M(δk−1xk−1)) + (αk − αk−1)ΓA,B
λ,M(δk−1xk−1)‖M

≤ ‖δkxk − δk−1xk−1‖M + |αk − αk−1|(‖δk−1xk−1‖M + ‖ΓA,B
λ,M(δk−1xk−1)‖M). (3.4)

By the boundedness of a sequence (xk)k≥1 and the definition of ΓA,B
λ,M, we have there exists C1 > 0 such

that
‖δk−1xk−1‖M + ‖ΓA,B

λ,M(δk−1xk−1)‖M ≤ C1,∀k ≥ 1.

It follows that

‖xk+1 − xk‖M ≤ ‖δkxk − δk−1xk−1‖M + |αk − αk−1|C1,∀k ≥ 1. (3.5)

Next, we will consider the term ‖δkxk − δk−1xk−1‖M in the inequality (3.5).
Let us consider,

‖δkxk − δk−1xk−1‖M = ‖δk(xk − xk−1) + (δk − δk−1)xk−1‖M

≤ δk‖xk − xk−1‖M + |δk − δk−1|(‖xk−1‖M), ∀k ≥ 1. (3.6)

By the boundedness of a sequence (xk)k≥1, there exists C2 > 0 such that

‖xk−1‖M ≤ C2,∀k ≥ 1.

From inequality (3.6), we have

‖δkxk − δk−1xk−1‖M ≤ δk‖xk − xk−1‖M + |δk − δk−1|C2,∀k ≥ 1. (3.7)

Combining (3.5) and (3.7), we get that

‖xk+1 − xk‖M ≤ δk‖xk − xk−1‖M + |δk − δk−1|C2 + |αk − αk−1|MC1. (3.8)

By applying Lemma 2.3 and Assumption 3.1, we obtain that ‖xk+1 − xk‖M → 0 as k → +∞.
Now, we prove that ‖ΓA,B

λ,M(δkxk) − δkxk‖M → 0 as k → +∞. We observe that

‖ΓA,B
λ,M(δkxk) − δkxk‖M = ‖ΓA,B

λ,M(δkxk) − xk+1 + xk+1 − δkxk‖M

≤ ‖|ΓA,B
λ,M(δkxk) − xk+1‖M + ‖xk+1 − δkxk‖M

≤ ‖|δkxk − αk(δkxk) − (1 − αk)ΓA,B
λ,M(δkxk)‖M

+ ‖(1 − δk)xk+1 + δkxk+1 − δkxk‖M

≤ (1 − αk)‖ΓA,B
λ,M(δkxk) − δkxk‖M

+ (1 − δk)‖xk+1‖M + δk‖xk+1 − xk‖M. (3.9)
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It follows that

‖ΓA,B
λ,M(δkxk) − δkxk‖M ≤

1
αk

((1 − δk)‖xk+1‖M + δk‖xk+1 − xk‖M) . (3.10)

Since lim
k→+∞

‖xk+1 − xk‖M = 0 and considering the properties of the sequences involved, we have

lim
k→+∞

‖ΓA,B
λ,Mδkxk − δkxk‖M = 0.

Next, we will show that (xk)k≥1 strongly converges to projFix((A+B)−1(0))(0) := x. From inequality (3.1)
and Lemma 2.3, we implies that

‖xk+1 − x‖2M ≤ ‖δkxk − x‖2M
= ‖δkxk − δkx + δkx − x‖2M
≤ δ2

k‖xk − x‖2M + 2δk(1 − δk) 〈−x, xk − x〉M + (1 − δk)2‖x‖2M
≤ δk‖xk − x‖2M + (1 − δk)(2δk 〈−x, xk − x〉M + (1 − δk)‖x‖2M), (3.11)

for all k ≥ 0.
In order to show that the sequence (xk)k≥1 strongly converges to x, it is sufficient to prove that

lim sup
k→+∞

〈−x, xk − x〉M ≤ 0. (3.12)

On the other hand, assume that the inequality (3.12) does not hold. In this case, there exists a real
number l > 0 and a subsequence (xki)i≥1 such that

〈−x, xki − x〉M ≥ l > 0 ∀i ≥ 1.

For a sequence (xk)k≥1 bounded in a Hilbert spaceH , we can identify a subsequence (xki)i≥1 of (xk)k≥1

that weakly converges to a point z ∈ H . Without loss of generality, we can assume that xki ⇀ z as
i→ +∞. Therefore,

0 < l ≤ lim
i→+∞
〈−x, xki − x〉M = 〈−x, z − x〉M. (3.13)

Notice that lim
k→+∞

δk = 1, we get δki xki ⇀ z as i → +∞. Applying Lemma 2.4, we obtain that

z ∈ Fix(ΓA,B
λ,M). Hence, we obtain that 〈−x, z − x〉M ≤ 0, which is a contradiction. Therefore, the

inequality (3.12) is verifyed. It follows that

lim sup
k→+∞

(
2δk〈−x, xk − x〉M + (1 − δk)‖x‖2M

)
≤ 0.

Using Lemma 2.3 and (3.11), we can conclude that lim
k→+∞

xk = x. Then the proof is complete. �

Now, Let us consider the following convex minimization problem (CMP):

minimize f (x) + g(x),
subject to x ∈ H , (3.14)
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where f : H → R is a proper convex lower semi-continuous function and g : H → R is a differentiable
function with the gradient of g being a Lipschitz continuous operator with constant Lg. Moreover, since
the function g is differentiable, and by using the Baillon-Haddad Theorem (see [1]), ∇g is cocoercive
with respect to 1

Lg
. Furthermore, if f : H → R is a proper convex lower semi-continuous function,

then ∂ f is maximal monotone. It is well-known that a point x∗ is a solution of convex minimization
problem (3.14) if and only if 0 ∈ ∂ f (x∗) + ∇g(x∗). In Theorem 3.1, set A = ∂ f , B = ∇g, and
M(x) = Lg(x). As a result, we can deduce the following corollary.

Corollary 3.1. Let f : H → R be a proper convex lower semi-continuous function, and let g : H → R
be a differentiable function with the gradient of g being Lipschitz continuous operator with constant
Lg. Assume that the solution set of convex minimization problem (3.14) is nonempty, and parameters
(αk)k≥1 and (δk)k≥1 satisfy Assumption 3.1. Let (xk)k≥1 be a sequence generated by:x1 ∈ H ,

xk+1 := (I + λL−1
g ∂ f )−1(I − λL−1

g ∇g)
(
αk(δkxk) + (1 − αk)(I + λL−1

g ∂ f )−1(I − λL−1
g ∇g)(δkxk)

)
.

(3.15)

Then, the sequence (xk)k≥1 strongly converges to a solution x∗ of the convex minimization problem.

4. Numerical experiments

In this section, we present numerical results comparing the performance of Algorithm 1, AK22 [22],
BCM19 [24] and LP15 [21] in solving the convex minimization problem.

We demonstrate the effectiveness of our proposed iterative method by presenting a numerical
example in the context of convex minimization. We also compare the convergence performance
of our algorithm with existing methods from the literature. All experiments were conducted using
MATLAB 9.19 (R2022b) and performed all computations on a MacBook Pro 14-inch 2021 with an
Apple M1 Pro processor and 16 GB memory.

Let f : Rs → R be defied by f (x) = ‖x‖1 for all x ∈ Rs and g : Rs → R be defined by g(x) =

‖Kx − b‖22, where K : Rs → Rl is a non-zero linear transformation, b ∈ Rl for all x ∈ Rs, we consider
the following minimization problem:

minimize ‖x‖1 + ‖Kx − b‖22,

subject to x ∈ Rs. (4.1)

The problem (4.1) can be written in the form of the monotone inclusion problem (1.1) as:

find x ∈ Rs such that 0 ∈ ∂ f (x) + ∇g(x), (4.2)

where A = ∂ f (·) and B = ∇g(·).
We generate vectors x0 = x1 ∈ R

s and b ∈ Rl by random generating between (–1, 1), and the matrix
K ∈ Rl×s is also generated using the same method of random generation between (–1, 1).

In this numerical experiment, we terminate the algorithms by the stopping criterion

max{‖xk − xk−1‖,
‖xk − xk−1‖

‖xk + 1‖
} ≤ t.
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All computational times are given in seconds (sec.). In Theorem 3.1, we set M(x) = ‖K‖2(x) and λ = 1.
For AK22, we set M(x) = ‖K‖2(x), λ = 1, f (x) = 0.99x for all x ∈ Rs, and

θk =

 min
{
1, 1

(k+1)2‖xk−xk−1‖

}
, if xk , xk−1,

1, otherwise.
(4.3)

For BCM19, we set λ = 1
‖K‖2 . For LP15, we set λk = 1, M(x) = ‖K‖2(x) and θk defined as in (4.3).

The optimal parameter combinations for each method are as follows: Combination of each method
are as follows:

• Algorithm 1: αk = 0.1 + 1
k+1 and δk = 1 − 0.0005

k+1 .
• AK22: αk = 0.2 + 1

k+1 and βk = 1
8k .

• BCM19: αk = 0.1 + 1
k+1 and δk = 1 − 0.0005

k+1 .

For detailed parameter combinations, please refer to Appendices 1, 2 and 3.

Next, we present the behavior of Algorithm 1, AK22, BCM19 and LP15 for the average
computational running time. We performed all methods for different sizes of (l, s). The results are
plotted in Figures 1–3.
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Figure 1. Behaviors of Algorithm 1, AK22, BCM19 and LP15 for fixed dimension l = 100.

AIMS Mathematics Volume 8, Issue 12, 28398–28412.



28407

The computational runtime (sec.)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
rr

o
r 

o
f 

to
le

ra
n

ce
 (

t)
10

-4

10
-5

10
-6

10
-7

LP15

BCM19

AK22

Algorithm 1

(a) s = 100

The computational runtime (sec.)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
rr

o
r 

o
f 

to
le

ra
n

ce
 (

t)

10
-4

10
-5

10
-6

10
-7

LP15

BCM19

AK22

Algorithm 1

(b) s = 200

The computational runtime (sec.)

1 2 3 4 5 6 7

E
rr

o
r 

o
f 

to
le

ra
n

ce
 (

t)

10
-4

10
-5

10
-6

10
-7

LP15

BCM19

AK22

Algorithm 1

(c) s = 500

The computational runtime (sec.)

0 200 400 600 800 1000 1200 1400

E
rr

o
r 

o
f 

to
le

ra
n

ce
 (

t)

10
-4

10
-5

10
-6

10
-7

LP15

BCM19

AK22

Algorithm 1

(d) s = 5000

Figure 2. Behaviors of Algorithm 1, AK22, BCM19 and LP15 for fixed dimension l = 200.
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Figure 3. Behaviors of Algorithm 1, AK22, BCM19 and LP15 for fixed dimension l = 500.
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5. Conclusions

The objective of this study was to address a monotone inclusion problem guided by a maximal
monotone operator and a cocoercive operator. We employed a combination of the preconditioning
and Krasnosel’skiı̆-Mann method and proved the strong convergence of the generated sequence of
iterates towards a solution to the considered problem. Numerical experiments reveal that under certain
suitable parameters, the proposed method exhibits superior convergence behavior compared to existing
algorithms.
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Appendix 1

Parameter combinations of Algorithm 1

We start with the investigation of several parameter combinations which are chosen as in
Algorithm 1 for minimization problem (4.1) by running algorithm and terminate it by the stopping
criterion t = 10−7. We present the average computational running time for various choices of the
parameters αk and δk, when the dimension of K is (100, 400) in Table 1.

Table 1 shows that using the combination of αk = 0.1 + 1
k+1 with the relaxation parameter δk =

1 − 0.0005
k+1 resulted in the shortest computational running time (2.0055 seconds).
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Table 1. The average computational running time for several choices of parameters αk =

α + 1
k+1 and δk = 1 − δ

k+1 .

α 0.1 0.2 0.3 0.4 0.5
δ = 0.0001 2.1098 2.4669 2.5797 2.4906 2.6156
δ = 0.0005 2.0055 2.4642 2.7755 2.5717 2.6156
δ = 0.001 2.2431 2.7309 2.3649 2.5245 2.4612
δ = 0.005 2.1603 2.5758 2.5024 2.7668 2.7267
δ = 0.01 2.7637 3.0821 2.7610 2.9218 2.9517
δ = 0.05 5.5459 6.0621 5.6462 5.8979 6.2985
δ = 0.1 8.3909 8.2648 8.3734 7.8792 8.7616

Appendix 2

Parameter combinations of AK22

In this section, we present some parameter combinations of AK22. All experimental settings are
the same as mentioned above.

Table 2 presents the average computational running time for different parameter choices of λk and
δk. The combination of αk = 0.2 + 1

k+1 and βk = 1
8k resulted in the shortest computational running time

of 2.0045 seconds.

Table 2. The average computational running time for several choices of parameters αk =

α + 1
k+1 and βk = 1

σk .

α 0.1 0.2 0.3 0.4 0.5
σ=2 2.6500 2.4602 2.5416 2.6181 2.7257
σ=4 2.3598 2.1852 2.3602 2.4580 2.4626
σ=6 2.4725 2.1835 2.1933 2.7005 2.3785
σ=8 2.0482 2.0045 2.2490 2.6526 2.5000
σ=10 2.1977 2.2389 2.3762 2.3268 2.6241

Appendix 3

Parameter combinations of BCM19

In this section, we present some parameter combinations of BCM19.

Table 3 shows that using the combination of αk = 0.1 + 1
k+1 with the relaxation parameter δk =

1 − 0.0005
k+1 resulted in the shortest computational running time (2.1517 seconds).
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Table 3. The average computational running time for several choices of parameters αk =

α + 1
k+1 and δk = 1 − δ

k+1 .

α 0.1 0.2 0.3 0.4 0.5
δ=0.0001 2.1876 2.4516 2.7168 2.8837 11.3226
δ=0.0005 2.1517 2.3143 2.4915 2.9669 11.999
δ=0.001 2.2124 2.7103 2.7338 3.2380 12.1952
δ=0.005 2.2525 2.3032 2.8382 3.2330 12.6409
δ=0.01 2.4413 3.1847 2.8669 3.3555 13.8754
δ=0.05 4.1909 4.8588 5.0916 5.8662 20.3472
δ=0.1 6.6171 6.7856 6.7514 6.9288 30.8285
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