Research article

Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data

  • Received: 07 August 2023 Revised: 03 September 2023 Accepted: 05 September 2023 Published: 22 September 2023
  • MSC : 54A05, 54B10, 54D30, 54G99

  • In the field of medical applications, graph theory offers diverse topological models for representing the human heart. The key challenge is identifying the optimal structure as an effective diagnostic model. This paper explains the rationale behind using topological visualization, graph analysis, and rough sets via neighborhood systems. We introduce the novel $ 1 $-neighborhood system ($ 1 $-$ NS $) tools, enabling rough set generalization and a heart topological graph model. Exploring minimal and core minimal neighborhoods, vital for classifying subsets and accuracy computation, these approaches outperform existing methods while preserving Pawlak's properties. Multiple topologies are constructed and examined using these systems. The paper presents a real-world example showcasing innovative topological spaces through a human heart's vertex network. These spaces enhance understanding of the heart's structural organization. Two algorithms are introduced for decision-making and generating graph topologies, defining unique spaces. Beyond graph theory, these techniques apply to medical contexts like blood circulation and geographical scenarios such as community street mapping. Implemented using MATLAB, they are valuable tools.

    Citation: R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably. Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data[J]. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379

    Related Papers:

  • In the field of medical applications, graph theory offers diverse topological models for representing the human heart. The key challenge is identifying the optimal structure as an effective diagnostic model. This paper explains the rationale behind using topological visualization, graph analysis, and rough sets via neighborhood systems. We introduce the novel $ 1 $-neighborhood system ($ 1 $-$ NS $) tools, enabling rough set generalization and a heart topological graph model. Exploring minimal and core minimal neighborhoods, vital for classifying subsets and accuracy computation, these approaches outperform existing methods while preserving Pawlak's properties. Multiple topologies are constructed and examined using these systems. The paper presents a real-world example showcasing innovative topological spaces through a human heart's vertex network. These spaces enhance understanding of the heart's structural organization. Two algorithms are introduced for decision-making and generating graph topologies, defining unique spaces. Beyond graph theory, these techniques apply to medical contexts like blood circulation and geographical scenarios such as community street mapping. Implemented using MATLAB, they are valuable tools.



    加载中


    [1] M. E. Abd El-Monsef, M. A. El-Gayar, R. M. Aqeel, On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 257–271. https://doi.org/10.1504/IJGCRSIS.2014.068022 doi: 10.1504/IJGCRSIS.2014.068022
    [2] M. E. Abd El-Monsef, M. A. El-Gayar, R. M. Aqeel, A comparison of three types of rough fuzzy sets based on two universal sets, Int. J. Mach. Learn. Cybern. 8 (2017), 343–353. https://doi.org/10.1007/s13042-015-0327-8
    [3] M. E. Abd El-Monsef, O. A. Embaby, M. K. El-Bably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 292–305. https://doi.org/10.1504/IJGCRSIS.2014.068032 doi: 10.1504/IJGCRSIS.2014.068032
    [4] M. E. Abd El-Monsef, A. M. Kozae, A. L. El Maghrabi, Some semi topological applications on rough sets, J. Egypt Math. Soc., 12 (2004), 45–53.
    [5] E. A. Abo-Tabl, Rough sets and topological spaces based on similarity, Int. J. Mach. Learn. Cybern., 4 (2013), 451–458. https://doi.org/10.1007/s13042-012-0107-7 doi: 10.1007/s13042-012-0107-7
    [6] E. A. Abo-Tabl, M. K. El-Bably, Rough topological structure based on reflexivity with some applications, AIMS Mathematics, 7 (2022), 9911–9922. https://doi.org/10.3934/math.2022553 doi: 10.3934/math.2022553
    [7] R. Abu-Gdairi, M. A. El-Gayar, T. M. Al-shami, A. S. Nawar, M. K. El-Bably, Some topological approaches for generalized rough sets and their decision-making applications, Symmetry, 14 (2022), 95. https://doi.org/10.3390/sym14010095 doi: 10.3390/sym14010095
    [8] R. Abu-Gdairi, M. A. El-Gayar, M. K. El-Bably, K. K. Fleifel, Two different views for generalized rough sets with applications, Mathematics, 9 (2022), 2275. https://doi.org/10.3390/math9182275 doi: 10.3390/math9182275
    [9] M. I. Ali, M. K. El-Bably, E. A. Abo-Tabl, Topological approach to generalized soft rough sets via near concepts, Soft Comput., 26 (2022), 499–509. https://doi.org/10.1007/s00500-021-06456-z doi: 10.1007/s00500-021-06456-z
    [10] A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for basic rough set concepts, In: Rough sets, fuzzy sets, data mining, and granular computing, Berlin, Heidelberg: Springer, 2005, 64–73. https://doi.org/10.1007/11548669_7
    [11] W. S. Amer, M. I. Abbas, M. K. El-Bably, On $j$-near concepts in rough sets with some applications, J. Intell. Fuzzy Syst., 32 (2017), 1089–1099. https://doi.org/10.3233/JIFS-16169 doi: 10.3233/JIFS-16169
    [12] M. Atef, A. E. F. El Atik, Some extensions of covering-based multigranulation fuzzy rough sets from new perspectives, Soft Comput., 25 (2021), 6633–6651. https://doi.org/10.1007/s00500-021-05659-8 doi: 10.1007/s00500-021-05659-8
    [13] M. Atef, A. E. F. El Atik, A. S. Nawar, Fuzzy topological structures via fuzzy graphs and their applications, Soft Comput., 25 (2021), 6013–6027. https://doi.org/10.1007/s00500-021-05594-8 doi: 10.1007/s00500-021-05594-8
    [14] D. Chen, J. Li, R. Lin, Y. Chen, Information entropy and optimal scale combination in multi-scale covering decision systems, IEEE Access, 8 (2020), 182908–182917. https://doi.org/10.1109/ACCESS.2020.3029157 doi: 10.1109/ACCESS.2020.3029157
    [15] J. H. Dai, S. C. Gao, G. J. Zheng, Generalized rough set models determined by multiple neighborhoods generated from a similarity relation, Soft Comput., 22 (2018), 2081–2094. https://doi.org/10.1007/s00500-017-2672-x doi: 10.1007/s00500-017-2672-x
    [16] H. Dou, X. Yang, X. Song, H. Yu, W. Z. Wu, J. Yang, Decision-theoretic rough set: A multicost strategy, Knowl-Based Syst., 91 (2016), 71–83. https://doi.org/10.1016/j.knosys.2015.09.011 doi: 10.1016/j.knosys.2015.09.011
    [17] A. E. F. A. El Atik, A. A. Nasef, Some topological structures of fractals and their related graphs, Filomat, 34 (2020), 153–165. https://doi.org/10.2298/FIL2001153A doi: 10.2298/FIL2001153A
    [18] A. E. F. El Atik, A. Nawar, M. Atef, Rough approximation models via graphs based on neighborhood systems, Granul. Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z
    [19] A. E. F. A. El Atik, A. S. Wahba, Topological approaches of graphs and their applications by neighborhood systems and rough sets, J. Intell. Fuzzy Syst., 39 (2020), 6979–6992. https://doi.org/10.3233/JIFS-200126 doi: 10.3233/JIFS-200126
    [20] M. K. El-Bably, E. A. Abo-Tabl, A topological reduction for predicting of a lung cancer disease based on generalized rough sets, J. Intell. Fuzzy Syst., 41 (2021), 3045–3060. https://doi.org/10.3233/JIFS-210167 doi: 10.3233/JIFS-210167
    [21] M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Mathematics, 8 (2023), 9082–9105. https://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
    [22] M. K. El-Bably, M. I. Ali, E. A. Abo-Tabl, New topological approaches to generalized soft rough approximations with medical applications, J. Math., 2021 (2021), 2559495. https://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495
    [23] M. K. El-Bably, T. M. Al-Shami, Different kinds of generalized rough sets based on neighborhoods with a medical application, Int. J. Biomath., 14 (2021), 2150086. https://doi.org/10.1142/S1793524521500868 doi: 10.1142/S1793524521500868
    [24] M. K. El-Bably, A. E. F. A. El Atik, Soft $\beta$-rough sets and their application to determine COVID-19, Turk. J. Math., 45 (2021), 4. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93
    [25] A. El-Fattah A. El-Atik, M. E. A. El Monsef, E. I. Lashin, On finite T0 topological spaces, In: Proceedings of the Ninth Prague Topological Symposium, 2002, 75–90.
    [26] A. El-Fattah A. El-Atik, H. Z. Hassan, Some nano topological structures via ideals and graphs, J. Egypt. Math. Soc., 28 (2020), 41. https://doi.org/10.1186/s42787-020-00093-5 doi: 10.1186/s42787-020-00093-5
    [27] M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math., 2023 (2023), 4723233. https://doi.org/10.1155/2023/4723233 doi: 10.1155/2023/4723233
    [28] M. A. El-Gayar, A. E. F. El Atik, Topological models of rough sets and decision making of COVID-19, Complexity, 2022 (2022), 2989236. https://doi.org/10.1155/2022/2989236 doi: 10.1155/2022/2989236
    [29] M. K. El-Bably, M. El-Sayed, Three methods to generalize Pawlak approximations via simply open concepts with economic applications, Soft Comput., 26 (2022), 4685–4700. https://doi.org/10.1007/s00500-022-06816-3 doi: 10.1007/s00500-022-06816-3
    [30] M. K. El-Bably, K. K. Fleifel, O. A. Embaby, Topological approaches to rough approximations based on closure operators, Granul. Comput., 7 (2022), 1–14. https://doi.org/10.1007/s41066-020-00247-x doi: 10.1007/s41066-020-00247-x
    [31] M. El Sayed, M. A. El Safty, M. K. El-Bably, Topological approach for decision-making of COVID-19 infection via a nano-topology model, AIMS Mathematics, 6 (2021), 7872–7894. https://doi.org/10.3934/math.2021457 doi: 10.3934/math.2021457
    [32] M. M. El-Sharkasy, Topological model for recombination of DNA and RNA, Int. J. Biomath., 11 (2018), 1850097. https://doi.org/10.1142/S1793524518500973 doi: 10.1142/S1793524518500973
    [33] H. H. Hung, Symmetric and tufted assignments of neighborhoods and metrization, Topol. Appl., 155 (2008), 2137–2142. https://doi.org/10.1016/j.topol.2007.11.009 doi: 10.1016/j.topol.2007.11.009
    [34] Z. Huang, J. Li, Discernibility measures for fuzzy $\beta$ covering and their application, IEEE T. Cybernetics, 52 (2022), 9722–9735. https://doi.org/10.1109/TCYB.2021.3054742 doi: 10.1109/TCYB.2021.3054742
    [35] Z. Huang, J. Li, Feature subset selection with multi-scale fuzzy granulation, IEEE T. Artif. Intell., 4 (2023), 121–134. https://doi.org/10.1109/TAI.2022.3144242 doi: 10.1109/TAI.2022.3144242
    [36] Z. Huang, J. Li, Noise-tolerant discrimination indexes for fuzzy $\gamma$ covering and feature subset selection, IEEE T. Neural. Netw. Learn. Syst., (2022), 1–15. https://doi.org/10.1109/TNNLS.2022.3175922
    [37] Z. Huang, J. Li, Y. Qian, Noise-tolerant fuzzy-$\beta$-covering-based multigranulation rough sets and feature subset selection, IEEE T. Fuzzy Syst., 30 (2022), 2721–2735. https://doi.org/10.1109/TFUZZ.2021.3093202 doi: 10.1109/TFUZZ.2021.3093202
    [38] Z. Li, T. Xie, Q. Li, Topological structure of generalized rough sets, Comput. Math. Appl. 63 (2021), 1066–1071. https://doi.org/10.1016/j.camwa.2011.12.011
    [39] T. Y. Lin, Neighborhood systems and approximation in relational databases and knowledge bases, In: Proceedings of the Fourth International Symposium on Methodologies of Intelligent Systems, 1988.
    [40] T. Y. Lin, Granular computing on binary relations I: Data mining and neighborhood systems, In: Rough set representations and belief functions, rough sets in knowledge discovery 1, Heidelberg: Physica -Verlag, 1998,107–140.
    [41] S. Liang, X. Yang, X. Chen, J. Li, Stable attribute reduction for neighborhood rough set, Filomat, 32 (2018), 1809–1815. https://doi.org/10.2298/FIL1805809L doi: 10.2298/FIL1805809L
    [42] H. Lu, A. M. Khalil, W. Alharbi, M. A. El-Gayar, A new type of generalized picture fuzzy soft set and its application in decision making, J. Intell. Fuzzy Syst., 40 (2021), 12459–12475. https://doi.org/10.3233/JIFS-201706 doi: 10.3233/JIFS-201706
    [43] S. Nada, A. E. F. El Atik, M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801–5810. https://doi.org/10.1002/mma.4726 doi: 10.1002/mma.4726
    [44] A. S. Nawar, A. A. El Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), 1950006. https://doi.org/10.1142/S1793524519500062 doi: 10.1142/S1793524519500062
    [45] A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, $\theta\beta$-ideal approximation spaces and their applications, AIMS Mathematics, 7 (2022), 2479–2497. https://doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139
    [46] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956
    [47] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3534-4
    [48] K. Qin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci., 178 (2008), 4138–4141. https://doi.org/10.1016/j.ins.2008.07.002 doi: 10.1016/j.ins.2008.07.002
    [49] M. Shokry, R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103–1108.
    [50] W. Sierpinski, General topology: (Mathematical expositions No. 7), University of Toronto press, 1952. Available from: https://utorontopress.com/9781487584894/general-topology/
    [51] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fund. Inform., 27 (1996), 245–253. https://doi.org/10.3233/FI-1996-272311 doi: 10.3233/FI-1996-272311
    [52] A. Tan, S. Shi, W. Z. Wu, J. Li, W. Pedrycz, Granularity and entropy of intuitionistic fuzzy information and their applications, IEEE T. Cybernetics, 52 (2022), 192–204. https://doi.org/10.1109/TCYB.2020.2973379 doi: 10.1109/TCYB.2020.2973379
    [53] W. Z. Wu, W. X. Zhang, Neighborhood operator systems and approximations, Inform. Sci., 144 (2002), 201–217. https://doi.org/10.1016/S0020-0255(02)00180-9 doi: 10.1016/S0020-0255(02)00180-9
    [54] Y. Y. Yao, Generalized rough set models, In: Rough sets in knowledge discovery 1, Heidelberg: Physica Verlag, 1998,286–318.
    [55] Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sci., 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3
    [56] Y. Y. Yao, A Comparative study of fuzzy sets and rough sets, Inform. Sci., 109 (1998), 227–242. https://doi.org/10.1016/S0020-0255(98)10023-3 doi: 10.1016/S0020-0255(98)10023-3
    [57] Y. Y. Yao, Granular computing using neighborhood systems, In: Advances in soft computing, London: Springer, 1999,539–553. https://doi.org/10.1007/978-1-4471-0819-1_40
    [58] Y. Y. Yao, Three-way decisions with probabilistic rough sets, Inform. Sci., 180 (2010), 341–353. https://doi.org/10.1016/j.ins.2009.09.021 doi: 10.1016/j.ins.2009.09.021
    [59] Y. Y. Yao, Three-way decision and granular computing, Int. J. Approx. Reason., 103(2018), 107–123. https://doi.org/10.1016/j.ijar.2018.09.005 doi: 10.1016/j.ijar.2018.09.005
    [60] Z. Yu, X. Bai, Z. Yun, A study of rough sets based on 1-neighborhood systems, Inform. Sci., 248 (2013), 103–113. https://doi.org/10.1016/j.ins.2013.06.031 doi: 10.1016/j.ins.2013.06.031
    [61] C. Zhang, J. Ding, J. Zhan, A. K. Sangaiah, D. Li, Fuzzy intelligence learning based on bounded rationality in IoMT systems: A case study in Parkinson's disease, IEEE T. Comput. Soc. Syst., 10 (2023), 1607–1621. https://doi.org/10.1109/TCSS.2022.3221933 doi: 10.1109/TCSS.2022.3221933
    [62] C. Zhang, D. Li, J. Liang, Hesitant fuzzy linguistic rough set over two universes model and its applications, Int. J. Mach. Learn. Cybern., 9 (2018), 577–588. https://doi.org/10.1007/s13042-016-0541-z doi: 10.1007/s13042-016-0541-z
    [63] C. Zhang, D. Li, J. Liang, Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes, Inform. Sci., 507 (2020), 665–683. https://doi.org/10.1016/j.ins.2019.01.033 doi: 10.1016/j.ins.2019.01.033
    [64] P. Zhang, T. Li, C. Luo, G. Wang, AMG-DTRS: Adaptive multi-granulation decision theoretic rough sets, Int. J. Approx. Reason., 140 (2022), 7–30. https://doi.org/10.1016/j.ijar.2021.09.017 doi: 10.1016/j.ijar.2021.09.017
    [65] C. Zhang, D. Li, R. Ren, Pythagorean fuzzy multigranulation rough set over two universes and its applications in merger and acquisition, Int. J. Intell. Syst., 31 (2016), 921–943. https://doi.org/10.1002/int.21811 doi: 10.1002/int.21811
    [66] C. Zhang, X. Li, A. K. Sangaiah, W. Li, B. Wang, F. Cao, et al., Collaborative fuzzy linguistic learning to low-resource and robust decision system based on bounded rationality, ACM Transactions on Asian and Low-Resource Language Information Processing, 2023. https://doi.org/10.1145/3592605
    [67] C. Zhang, D. Li, Y. Yan, A dual hesitant fuzzy multigranulation rough set over two-universe model for medical diagnoses, Comput. Math. Meth. Medicine, 2015 (2015), 292710. https://doi.org/10.1155/2015/292710 doi: 10.1155/2015/292710
    [68] N. Zhong, Y. Yao, M. Ohshima, Peculiarity oriented multidatabase mining, IEEE T. Knowl. Data Eng., 15 (2003), 952–960. https://doi.org/10.1109/TKDE.2003.1209011 doi: 10.1109/TKDE.2003.1209011
    [69] W. Zhu, F. Y. Wang, Covering based granular computing for conflict analysis, In: Intelligence and security informatics, Berlin, Heidelberg: Springer, (2006), 566–571. https://doi.org/10.1007/11760146_58
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1333) PDF downloads(131) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog