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Abstract: In the field of medical applications, graph theory offers diverse topological models for
representing the human heart. The key challenge is identifying the optimal structure as an effective
diagnostic model. This paper explains the rationale behind using topological visualization, graph
analysis, and rough sets via neighborhood systems. We introduce the novel 1-neighborhood system
(1-NS ) tools, enabling rough set generalization and a heart topological graph model. Exploring
minimal and core minimal neighborhoods, vital for classifying subsets and accuracy computation,
these approaches outperform existing methods while preserving Pawlak’s properties. Multiple
topologies are constructed and examined using these systems. The paper presents a real-world
example showcasing innovative topological spaces through a human heart’s vertex network. These
spaces enhance understanding of the heart’s structural organization. Two algorithms are introduced
for decision-making and generating graph topologies, defining unique spaces. Beyond graph theory,
these techniques apply to medical contexts like blood circulation and geographical scenarios such as
community street mapping. Implemented using MATLAB, they are valuable tools.
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Nomenclature

NSs: Neighborhood systems. U: Finite universe set. ℵ(m): Neighborhood of m. Cℵ(m): Core
neighborhood of m. M(m): Minimal neighborhood of m. CM(m): Core minimal neighborhood of m.
K: Equivalence relation. [m]K: Equivalence classes. K: Lower approximation. K: Upper
approximation. B(A): Boundary of A. POS(A): Positive region of A. NEG(A): Negative region of
A. µ(A): Accuracy of A.
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1. Introduction

In recent years, the application of advanced mathematical techniques to medical models has
provided invaluable insights into complex datasets. This paper aims to present a concise and lucid
elucidation of the rationale driving the utilization of topological visualization and graph analysis in
conjunction with rough sets via neighborhood systems. This study assumes significance against the
backdrop of numerous medical models that exist, each presenting a unique challenge in terms of data
complexity and interrelationships.

The motivation for employing topological visualization lies in its ability to represent intricate data
structures in a visually intuitive manner, transcending the limitations of traditional numerical analysis.
By transforming complex data points into topological spaces, patterns and relationships that might
remain concealed in raw data become apparent. Graph analysis, on the other hand, offers a means to
unravel interconnectedness within datasets, highlighting key nodes and revealing emergent properties.
The integration of rough sets, a mathematical framework for dealing with uncertainty and
imprecision, with neighborhood systems enhances the versatility of analysis. This synergy capitalizes
on the strengths of both approaches, allowing for a more comprehensive understanding of intricate
medical data. Through the lens of neighborhood systems, the granularity of relationships between
elements can be adjusted, accommodating various levels of abstraction as required by medical
applications. The context of medical models underscores the significance of this endeavor. Medical
data are inherently intricate, often encompassing multifaceted interactions between variables. The
utilization of topological visualization and graph analysis in tandem with rough sets acknowledges the
need for innovative methodologies that can discern meaningful insights from complex medical
datasets. The present paper underscores the potential of this combined approach to revolutionize
medical data analysis, leading to enhanced diagnostic accuracy, treatment strategies, and ultimately,
improved patient care.

Rough sets, a concept initially introduced by Pawlak [46, 47], offer invaluable mathematical tools
for effectively managing vagueness within information systems and facilitating data analysis.
Furthermore, they serve as robust instruments for tackling issues entailing imperfect knowledge. The
foundational principle of rough sets involves the classification of objects grounded in an equivalence
relation. This framework enables us to encompass the entirety of information derived from a given
set. The theory employs approximation operators and precision metrics, equipping decision-makers
with vital insights into the structure and dimensions of the boundary region.

However, the stringent requirement of an equivalence relation imposes certain limitations on the
applications of conventional rough set theory. In response, various generalizations of the theory have
surfaced, employing either arbitrary or specific relations. In 1996, Yao [54, 55] pioneered this avenue
of research. Here, specific relations were considered to establish distinct types of generalized rough
sets, encompassing tolerance [51], similarity [5, 15], quasi-order [48] and a general relation [7, 8, 10].

On a different note, in 2014, Abd El-Monsef et al. [3] introduced the concept of the j-neighborhood
space (abbreviated as j-NS), presenting a generalized variant of the neighborhood space derived from
a general binary relation. They laid the groundwork for expanding Pawlak’s rough sets by leveraging
diverse topologies induced by the j-NS.

The applications of rough sets span a wide range, encompassing diverse fields such as medical
diagnosis, marketing and image analysis. A comprehensive understanding of the applications of
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rough set theory can be found in works related to decision-making problems [6, 7, 11, 20, 22], medical
applications [21, 23, 28, 32], economic fields [27, 29], topological reductions of attributes for
predicting COVID-19 [24, 31], Graph theory [18, 19] and biology [9, 32]. Topology plays a crucial
role in generalizing rough sets [2, 4, 41], as well as in rough fuzzy approximation
operators [1, 3, 22, 30]. Rough set theory characterizes any subset of the universe using two
approximations: Lower and upper approximations. Since its inception, researchers have shown
significant interest in both the theoretical enrichment and practical applications of rough set theory, as
evidenced by works like [38, 42, 45, 56]. Moreover, decision-theoretic rough sets, as a generalized
form of rough sets, warrant comprehensive explanation [64, 68, 69].

Moving on, neighborhood systems represent a versatile and generalized concept, encompassing
rough sets and finding various applications, especially in real-life scenarios where qualitative
information holds greater significance than numerical data. Previous studies by Lin [39, 40], Wu [53]
and Yao [55–59] have delved into granular computing, utilizing neighborhood systems for
interpreting granules. Additionally, Sierpiński and Krieger [50] introduced NS spaces to explore the
generalization of Fréchet (V)-topology, characterizing spaces where all NSs for all elements are
nonempty. Concurrently, researchers have explored topological models leveraging graph
neighborhoods in [12, 13, 17, 19, 26].

In a mathematical context, granules are referred to as neighborhoods, and the family of granules
associated with an object x is denoted as a neighborhood system (NS) on U, represented by NS(U).
Various types of neighborhood systems exist; for instance, in a binary system [55], each element has at
most one neighborhood defined by a binary relation. Furthermore, if the relation is an equivalence, the
system becomes a rough set system. Rough sets can thus be seen as a special form of neighborhood
systems [53, 55, 57], with Yao’s study delving into them as 1-neighborhood systems (1-NS).

Additionally, Hung’s work in 2008 explored core neighborhoods in general topology [33], while El
Atik et al. [25] introduced the concept of minimal neighborhoods, investigating properties of finite
topological spaces with an ordered relation between minimal neighborhoods. The concept of hesitant
fuzzy linguistic term sets (HFLTSs) holds a significant role, enabling experts to assess diverse
qualitative information using a limited set of linguistic terms. This proves particularly valuable in
situations where these experts hesitate to express themselves with certainty. To address the challenges
posed by information analysis and fusion within hesitant fuzzy linguistic (HFL) group
decision-making, and in alignment with the multi-granularity three-way decisions paradigm. In [63],
Chao et al. introduced the concept of multigranulation decision-theoretic rough sets (MG-DTRSs)
within the HFL framework, all within the context of a two-universe framework. On the other hand,
processing low-resource languages presents a challenge for intelligent decision systems due to the
scarcity of available data and resources. In effectively tackling this issue, fuzzy linguistic approaches
emerge as a promising solution. These approaches excel in converting initial vague linguistic
information into well-structured data, and they facilitate the learning of accurate decision rules within
intricate data frameworks. So, there are many important papering appearing to study these problems,
such as “Collaborative Fuzzy Linguistic Learning to Low-Resource and Robust Decision
System” [61, 66], and “Hesitant Fuzzy Linguistic Rough Sets” [62, 65, 67].

The concept of fuzzy β covering has captured substantial attention as an innovative approach.
However, both the traditional fuzzy β covering-based rough set and many of its extended models
struggle to accurately represent the distribution of samples within real-world data. This limitation
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undermines their effectiveness in applications such as classification learning and decision making.
Addressing these challenges, Huang et al. [34, 36, 37] presented a noteworthy study that introduces a
robust rough set model. This model combines fuzzy rough sets, covering-based rough sets, and
multigranulation rough sets. In this context, the model reconstructs optimistic and pessimistic lower
and upper approximations of a target concept by utilizing the fuzzy β neighborhood associated with a
family of fuzzy coverings. This innovative approach results in a novel multigranulation fuzzy rough
set model.

The granular structure inherent in intuitionistic fuzzy (IF) information embodies a dual perspective,
capturing both sample similarity and diversity. However, despite its potential, this structural framework
has yet to fully showcase its technical prowess in data mining and information processing. This is
primarily because of the dearth of suitable construction methods and semantic interpretation techniques
for effectively applying IF information to real-world data. To elevate the performance of IF-based
techniques in real-world data mining, several researchers have introduced a range of methods designed
to tackle these obstacles, as exemplified by [14, 35, 52].

Finally, to facilitate easy reference, we provide a nomenclature section listing the symbols along
with their abbreviations.

2. Basic concepts

In this study, we consider a finite universal set U , φ. We will introduce key concepts related
to NSs and explore fundamental notions and properties of rough sets, with a specific focus on the
approximation operators via NSs. Moreover, throughout our research, we will refer to (U,K) as the
approximation space.

2.1. Exploring neighborhood systems using 1-neighborhoods

Definition 2.1. [55] For each m ∈ U, there exists a neighborhood ℵ(m) ⊆ U. Consequently, the
neighborhood system NS(m) = {ℵ(m) : m ∈ U} represents the neighborhoods associated with each
element m in the set U. In other words, NS : U → P(U) is a mapping that associates each m ∈ U
with its respective neighborhood ℵ(m), where P(U) denotes the power set ofU. Importantly, the pair
(U,NS(U)) forms a Fréchet (V)-topology without imposing any additional conditions on NSs.

Definition 2.2. [55] (i) if ∀ m ∈ U, ∃ a n ∈ U s.t. n ∈ ℵ(m), ∀ m ∈ U, ℵ(m) , φ, then ℵ(m) is
serial.

(ii) if ∀ m ∈ U, ∃ a n ∈ U s.t. m ∈ ℵ(n),
⋃

m∈U ℵ(m) =U, then ℵ(m) is inverse serial.

(iii) if ∀ m ∈ U, m ∈ ℵ(m), then ℵ(m) is reflexive.

(iv) if ∀ m,n ∈ U, m ∈ ℵ(n)⇒ n ∈ ℵ(m), then ℵ(m) is symmetric.

(v) if ∀ m,n, o ∈ U s.t. [m ∈ ℵ(n),n ∈ ℵ(o)]⇒ m ∈ ℵ(o), then ℵ(m) is transitive.

(vi) if ∀ m,n, o ∈ U s.t. [m ∈ ℵ(o),n ∈ ℵ(o)]⇒ n ∈ ℵ(m), then ℵ(m) is Euclidean.

Example 2.3. Let U = {λ, µ, ν, ε}. Define NS(m),∀ m ∈ U : NS(λ) = {{λ, µ}, {µ, ν}}, NS(µ) = {{µ}},
NS(c) = {{µ, ν}, {ν}} and NS(ε) = {{λ ,ε}, {µ, ν, ε}}. Here, m ∈ ℵ(m), ∀m ∈ U and so ℵ(m) is reflexive.

Remark 2.4. It is evident that for a reflexive neighborhood, both the serial and inverse serial criteria
are satisfied. However, this is not generally true.
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Example 2.5. (Continued for Example 2.3). Neighborhoods are ℵ1(λ) = {µ, ν}, ℵ1(µ) = {λ, ε}, ℵ1(ν) =

{ν} and ℵ1(ε) = φ. Also, ℵ2(λ) = {λ, µ}, ℵ2(µ) = {µ}, ℵ2(ν) = {ε} and ℵ2(ε) = {λ, ν}. For every m ∈ U,
the neighborhood ℵ1(m) is serial, and ℵ2(m) is inverse serial. However, there are no reflexive elements
in these neighborhoods.

Definition 2.6. [55] A neighborhood system NS(m) is considered a 1-NS of m if it contains only one
neighborhood. Furthermore, the set NS (U) = {NS(m) : ∀m ∈ U} is defined as the 1-NS ofU.

Definition 2.7. [60] The core neighborhood of m is defined by Cℵ(m) = {n ∈ U : ℵ(m) = ℵ(n)}.

Some of the following conclusions are simple to demonstrate by Definition 2.7. As a result, their
proofs are skipped.

Lemma 2.8. ∀ m,n ∈ U, n ∈ Cℵ(m) if and only if m ∈ Cℵ(n).

Corollary 2.9. If n ∈ Cℵ(m), then Cℵ(n) = Cℵ(x), ∀ m,n ∈ U.

Lemma 2.10. ∀ m ∈ U, the following hold:

(i) m ∈ Cℵ(m).

(ii) The class {Cℵ(m) : m ∈ U} is a partition onU.

Lemma 2.11. If the neighborhood ℵ(m) is reflexive for all m ∈ U, then it follows that Cℵ(m) ⊆ ℵ(m).

Proof. By assumption, we have m ∈ ℵ(m). Now, if n ∈ Cℵ(m), then Cℵ(n) = Cℵ(m) and hence
n ∈ ℵ(m). Therefore, Cℵ(m) ⊆ ℵ(m). �

2.2. Rough sets based on 1-neighborhoods

Definition 2.12. [46] In (U,K), let U/K = {[m]K : m ∈ U} be the equivalence classes. The lower
(resp. upper) approximation of X ⊆ U are K(X) = {m ∈ X : [m]K ⊆ X} (resp. K(X) = {m ∈ U :
[m]K ∩ X , φ}).

According to Pawlak’s definition, set X is classified as rough if K(X) , K(X).

Proposition 2.13. [46] Let Xc be the complement of X w.r.t. U. Then:
(1) K(X) ⊆ X. (1*) X ⊆ K(X).
(2) K(φ) = φ. (2*) K(φ) = φ.
(3) K(U) = U. (3*) K(U) = U.
(4) K(X ∩ Y) = K(X)∩ K(Y) (4*) K(X ∪ Y) = K(X)∪ K(Y)
(5) If X ⊆ Y, then K(X) ⊆ K(Y) (5*) If X ⊆ Y, then K(X) ⊆ K(Y)
(6) K(X)∪ K(Y) ⊆ K(X ∪ Y) (6*) K(X)∩ K(Y) ⊇ K(X ∩ Y)
(7) K(Xc) = (K(X))c (7*) K(Xc) = (K(X))c

(8) K(K(X)) = K(X) (8*) K(K(X)) = K(X)
(9) K((K(X))c) = (K(X))c (9*) K((K(X))c) = (K(X))c

Note that: Yao [55] expanded the equivalence classes for Pawlak’s rough sets by utilizing binary
relations.

Definition 2.14. [55] Lower (resp. upper) approximations of A is defined by apr
ℵ
(A) = {m ∈ U :

ℵ(m) ⊆ A} (resp. aprℵ(A) = {m ∈ U : ℵ(m) ∩ A , φ}), for A ⊆ U.
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As stated in [55, 60], the mentioned approximations fulfill properties (3–9) and (1*, 2*, 4*–9*).
Moreover, various types of NSs also adhere to other properties of Pawlak. Furthermore, the following
approximations satisfy properties (1–9) and (1*–9*).

Definition 2.15. [60] Let us define the core-lower (respectively, core-upper) approximations of A as
follows:

apr
cℵ

(A) =
⋃
{m ∈ U : Cℵ(m) ⊆ A}, (resp. aprCℵ(A) =

⋃
m ∈ U : Cℵ(m) ∩ A , ∅), for A ⊆ U.

3. Exploring minimal neighborhoods and their core neighborhoods via 1-neighborhoods

This section presents new variations of minimal neighborhoods. Furthermore, we conduct a
comparative analysis between the proposed concepts and the methods studied in [54, 55, 60].

Definition 3.1. The minimal neighborhood of m isM(m) =
⋂
{ℵ(n) : m ∈ ℵ(n)}.

Remark 3.2. It is clear that ∀ m ∈ U:

M(m) =

{ ⋂
m∈ℵ(n) ℵ(n) : if ∃ n s.t. m ∈ ℵ(n);

φ : Otherwise.

In the upcoming results, we will present some fundamental properties of a minimal neighborhood.

Lemma 3.3. If n ∈ M(m), thenM(n) ⊆ M(m), ∀ m,n ∈ U.

Proof. Firstly, if n ∈ M(m), then n ∈ ℵ(m), ∀ m. Now, let o ∈ M(n). Then, o ∈ ℵ(n), ∀ n and so
o ∈ ℵ(m), ∀ m. Hence, o ∈ M(m), and thenM(n) ⊆ M(m). �

Lemma 3.4. Let ℵ(m) be inverse serial. Then,M(m) , φ, ∀ m ∈ U.

Proof. By assumption, we have m ∈ ℵ(m), ∀ m ∈ U. Now, let n ∈ M(m). Then, m ∈ ℵ(n), which
means that n ∈ ℵ(m). Therefore,M(m) ⊆ ℵ(m). �

Lemma 3.5. Let ℵ(m) be reflexive. Then,M(m) ⊆ ℵ(m), ∀ m ∈ U.

Proof. By assumption, we get m ∈ ℵ(m), ∀ m ∈ U. If n ∈ M(m), then m ∈ ℵ(n), which means that
n ∈ ℵ(m). Hence,M(m) ⊆ ℵ(m). �

In general, the converse of Lemma 3.5 is false.

Example 3.6. (Continued for Example 2.3). Take ℵ(λ) = {λ, µ}, ℵ(µ) = {λ, µ}, ℵ(ν) = {λ, µ, ν} and
ℵ(ε) = {µ, ν, ε}. Then, M(λ) = {λ}, M(µ) = {λ, µ}, M(ν) = {µ, ν} and M(ε) = {µ, ν, ε}. Clearly, (m) ⊆
ℵ(m), ∀ m ∈ U.

Definition 3.7. A core minimal neighborhood of m is CM(m) = {n ∈ U : M(m) = M(n)}.

The proofs of some subsequent results are simple to examine, so we omit them.

Lemma 3.8. ∀ m,n ∈ U, n ∈ CM(m) iff m ∈ CM(n).

Corollary 3.9. If n ∈ CM(m), then CM(n) = CM(m), ∀ m,n ∈ U.
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Lemma 3.10. The following hold onU:

(i) m ∈ CM(m), ∀ m ∈ U.

(ii) {CM(m) : m ∈ U} is a partition.

Lemma 3.11. Let ℵ(m) be inverse serial. Then, ∀ m ∈ U, CM(m) ⊆ M(m).

Proof. By assumption, we have M(m) , φ and m ∈ M(m), ∀ m ∈ U. Now, let o ∈ CM(m). So,
M(m) =M(o) and since o ∈ M(o), then o ∈ M(m), and so CM(m) ⊆ M(m), ∀ m ∈ U. �

Corollary 3.12. Let ℵ(m) be reflexive. Then, CM(m) ⊆ M(m), ∀ m ∈ U.

Lemma 3.13. Let ℵ(m) be reflexive. Then, CM(m) ⊆ Cℵ(m), ∀ m ∈ U.

Proof. By assumption, we get m ∈ ℵ(m), m ∈ M(m) and M(m) ⊆ M(m), ∀ m ∈ U. If o ∈ CM(m),
then M(m) = M(o). By reflexivity of M, we have o ∈ M(m) and so o ∈ ℵ(m). But, m ∈ ℵ(m), ∀
m ∈ U, and so ℵ(m) = ℵ(o). Therefore, o ∈ Cℵ(x) and hence CM(x) ⊆ Cℵ(m), ∀ m ∈ U. �

The connection between various neighborhoods in the case of reflexive neighborhoods is elucidated.

Proposition 3.14. Let ℵ(m) be reflexive. Then:

(i) CM(m) ⊆ Cℵ(m) ⊆ ℵ(m); and

(ii) CM(m) ⊆ M(m) ⊆ ℵ(m), ∀ m ∈ U.

4. Minimal rough sets via neighborhoods and their cores

In this section, we introduce a generalization of Pawlak approximations and conduct a
comprehensive investigation into some of their properties.

Definition 4.1. Let us define the minimal lower and upper approximations of A as follows:

apr
M

(A) = {m ∈ U : M(m) ⊆ A} (resp. aprM(A) = {m ∈ U : M(m) ∩ A , φ}).

Proposition 4.2. The following are satisfied for X,Y ⊆ U:
(3) apr

M
(U) = U; aprM(φ) = φ. (4*) aprM(X ∪ Y) = aprM(X)∪ aprM(Y).

(4) apr
M

(X ∩ Y) = apr
M

(X)∩ apr
M

(Y). (5*) If X ⊆ Y, then aprM(X) ⊆ aprM(Y).
(5) If X ⊆ Y, then apr

M
(X) ⊆ apr

M
(Y). (6*) aprM(X)∩ aprM(Y) ⊇ aprM(X ∩ Y).

(6) apr
M

(X)∪ apr
M

(Y) ⊆ apr
M

(X ∪ Y). (7*) aprM(Xc) = (apr
M

(X))c.
(7) apr

M
(Xc) = (aprM(X))c. (8*) aprM(aprM(X)) = aprM(X).

(8) apr
M

(apr
M

(X)) = apr
M

(X).

Proof. The properties (3–6) and (2*–6*) are straightforward. The other properties are proven as
follows:
(7) apr

M
(Xc) = ({m ∈ U : M(m) ∩ X , φ})c = {m ∈ U : M(m) ∩ X = φ} = {m ∈ Xc : M(m) ⊆ Xc} =

(aprM(X))c.
(8) First, apr

M
(apr

M
(X)) ⊆ apr

M
(X), by (L5). Now, let m ∈ apr

M
(X), then m ∈ X andM(m) ⊆ X. It is

needed to prove thatM(m) ⊆ apr
M

(X) as follows:
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Let n ∈ M(m), then M(n) ⊆ M(m) and thus M(n) ⊆ X. So, n ∈ apr
M

(X) and so M(n) ⊆ apr
M

(X).
Thus, m ∈ apr

M
(apr

M
(X)) and hence apr

M
(X) ⊆ apr

M
(apr

M
(X)).

Similarly, (U7) and (U8) are proven. �

As a general observation, properties (1), (2), (1*) and (3*) do not hold.

Example 4.3. (Continued from Example 2.3). Put ℵ(λ) = {λ, µ}, ℵ(µ) = ℵ(ν) = {µ, ν}, ℵ(ε) = φ.
Directly, M(λ) = {λ, µ}, ℵ(µ) = {µ}, ℵ(ν) = {µ, ν} and ℵ(ε) = φ. Take A = {λ, µ, ν} and B = {λ, ν, ε}.
Then, apr

M
(A) = U * A, and aprM(B) = {λ, ν} + B. Furthermore, apr

M
(φ) = {ε} , φ and aprM(U) =

{λ, µ, ν} , U.

Proposition 4.4. Let ℵ(m) be inverse serial. Then, for X ⊆ U and m ∈ U:
(1) apr

M
(X) ⊆ X. (1*) X ⊆ aprM(X).

(2) apr
M

(φ) = φ. (3*) aprM(U) = U.

Proof. Given the assumption that m ∈ M(m) for all m ∈ U, it becomes necessary to focus on proving
property (1). The other properties can be established using similar methods. Let m ∈ apr

M
(X). Then,

M(m) ⊆ X and so m ∈ X. Therefore, apr
M

(X) ⊆ X. �

Remark 4.5. Proposition 4.4 demonstrates that only inverse serial neighborhoods satisfy all of
Pawlak’s properties. Consequently, minimal approximations are a more comprehensive
generalization of rough approximations.

Definition 4.6. Let us define the core minimal lower (resp. upper) approximation of A as follows:

apr
CM

(A) =
⋃
{CM(m) : CM(m) ⊆ A}, and

aprCM(A) =
⋃
{CM(m) : CM(m) ∩ A , φ}, for A ⊆ U.

The properties in Proposition 4.7 are simple to prove using Lemma 3.3, so we skip that step.

Proposition 4.7. For X and Y belonging toU, the following properties are satisfied:
(1) apr

CM
(X) ⊆ X. (1*) X ⊆ aprCM(X).

(2) apr
CM

(φ) = φ. (2*) aprCM(φ) = φ.
(3) apr

CM
(U) = U. (3*) aprCM(U) = U.

(4) apr
CM

(X ∩ Y) = apr
CM

(X)∩ apr
CM

(Y). (4*) aprCM(X ∪ Y) = aprCM(X)∪ aprCM(Y).
(5) If X ⊆ Y, then apr

CM
(X) ⊆ apr

CM
(Y). (5*) If X ⊆ Y, then aprCM(X) ⊆ aprCM(Y).

(6) apr
CM

(X)∪ apr
CM

(Y) ⊆ apr
CM

(X ∪ Y). (6*) aprCM(X)∩ aprCM(Y) ⊇ aprCM(X ∩ Y).
(7) apr

CM
(Xc) = (aprCM(X))c (7*) aprCM(Xc) = (apr

CM
(X))c

(8) apr
CM

(apr
CM

(X)) = apr
CM

(X). (8*) aprCM(aprCM(X)) = aprCM(X).

Four different pairs of rough approximations via ℵ(m), M(m), cℵ(m) and cM(m) are given. As
shown in Definition 4.8,U can thus be partitioned into many regions.

Definition 4.8. ∀ ` ∈ {ℵ,M, cℵ, cM}, (`-boundary, `-positive and `-negative) regions and `-accuracy
of the approximations of A ⊆ U are defined by

B`(A) = apr`(A) − apr
`
(A),

POS`(A) = apr
`
(A),

NEG`(A) =U − apr`(A), and
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µ`(A) =
|apr

`
(A)|

|apr`(A)| , where |apr`(A)| , 0, respectively.
It is evident that 0 ≤ µ`(A) ≤ 1. When µ`(A) = 1, A is referred to as `-exact. On the other hand, if
µ`(A) , 1, A is classified as `-rough.

It is important to highlight that Definition 4.8 holds under the following conditions:

(a) For ` ∈ {Cℵ,CM}.

(b) For ` = ℵ, provided the ℵ-neighborhood is reflexive and transitive.

(c) For ` ∈ M, in case theM-neighborhood is inverse serial.

Proposition 4.9. Assume that ℵ(m) is inverse serial. Thus, for all m ∈ U :

apr
M

(A) ⊆ apr
CM

(A) ⊆ A ⊆ aprCM(A) ⊆ aprM(A), for A ⊆ U.

Proof. Let m ∈ apr
M

(A). Then,M(m) ⊆ A and so CM(m) ⊆ A, by Lemma 3.3. Hence, m ∈ apr
CM

(A)
and so apr

M
(A) ⊆ apr

CM
(A). Similarly, aprCM(A) ⊆ aprM(A) �

Corollary 4.10. Assume that ℵ(m) is inverse serial. Therefore, ∀ m ∈ U
(i) µM(A) ≤ µCM(A).

(ii) BCM(A) ⊆ BM(A), for A ⊆ U.

Corollary 4.11. Let ℵ(m) be inverse serial. Then, A is CM-exact if it is M-exact, for A ⊆ U and ∀
m ∈ U. The reverse does not hold, in general.

Example 4.12. (Continued from Example 2.3). Take ℵ(λ) = {λ, µ}, ℵ(µ) = {λ}, ℵ(ν) = {ν, ε} and ℵ(ε) =

{λ, µ}. Then, M(λ) = {λ}, M(µ) = {λ, µ} and M(ν) = M(ε) = {ν, ε}. So, CM(λ) = {λ}, CM(µ) = {µ}

and CM(ν) = CM(ε) = {ν, ε}. Take A = {µ} and B = {λ, µ}. Thus, apr
M

(B) = aprM(B) = {λ, µ} and
apr

CM
(B) = aprCM(B) = {λ, µ}. Also, apr

M
(A) = φ and aprM(A) = {µ}, but apr

M
(A) = aprM(A) =

{µ}. Clearly

(i) BM(A) = BCM(A) = φ and µM(B) = µCM(B) = 1. B isM (resp. CM)-exact .

(ii) BM(B) = {λ, µ} and µM(B) = 0. But, BCM(B) = φ and µCM(B) = 1. So, A is CM-exact, but not
M-exact.

Proposition 4.13 can be readily established by utilizing Corollary 4.14, rendering its proof
unnecessary.

Proposition 4.13. Let ℵ(m) be reflexive. Then, ∀ A ⊆ U and m ∈ U
(i) apr

ℵ
(A) ⊆ apr

Cℵ
(A) ⊆ apr

CM
(A) ⊆ A ⊆ aprCM(A) ⊆ aprℵ(A) ⊆ aprℵ(A).

(ii) apr
ℵ
(A) ⊆ apr

M
(A) ⊆ apr

CM
(A) ⊆ A ⊆ aprCM(A) ⊆ aprM(A) ⊆ aprℵ(A).

Corollary 4.14. Let ℵ(m) be reflexive. Then, ∀ A ⊆ U and m ∈ U
(i) µℵ(A) ≤ µCℵ(A) ≤ µCM(A). (ii) µℵ(A) ≤ µM(A) ≤ µCM(A).
(iii) BCM(A) ⊆ BCℵ(A) ⊆ Bℵ(A). (iv) BCM(A) ⊆ BM(A) ⊆ Bℵ(A).

Corollary 4.15. Let ℵ(m) be reflexive. Then, (i) CM-exact =⇒ Cℵ-exact =⇒ ℵ-exact.
(ii) CM-exact =⇒M-exact =⇒ ℵ-exact.

Generally, the reverse implications are not valid.
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Example 4.16. (Continued from Example 2.3). Assume that ℵ(λ) = ℵ(µ) = {λ, µ}, ℵ(ν) = {λ, µ, ν} and
ℵ(ε) = {µ, ν, ε}. Then, Cℵ(λ) = Cℵ(µ) = {λ, µ}, Cℵ(ν) = {ν} and Cℵ(ε) = {ε}. Also, M(λ) = {λ, µ},
M(µ) = {µ}, M(ν) = {µ, ν} and M(ε) = {µ, ν, ε}. Thus, CM(λ) = {λ}, CM(µ) = {µ} and CM(ν) = {ν},
CM(ε) = {ε}. Take A = {λ, ν}. Then, apr

ℵ
(A) = φ, aprℵ(A) = U, apr

Cℵ
(A) = {ν} and aprCℵ(A) =

{λ, µ, ν}. But, apr
CM

(A) = aprCM(A) = A. It is clear that Bℵ(A) = U, BCℵ(A) = {λ, µ}, µℵ(A) = 0 and
µCℵ(A) = 1

3 . Thus, A is ℵ-rough and also Cℵ-rough. But, BCM(A) = φ, and µcM(A) = 1. Therefore, A
is CM-exact.

Remark 4.17. Proposition 4.13 demonstrates that the core minimal approach offers a more inclusive
generalization compared to other approaches when considering a reflexive neighborhood condition.
Additionally, it provides a broader generalization of Pawlak’s rough approach without any limitations.

5. A comparative study of constructed generalized rough sets using the 1-NS approach

In this study, we explore the connections between the proposed approximations in Section 4 and
alternative methods discussed in [46,54,55,60]. To this end, we introduce four distinct approximation
operators for rough sets denoted by apr

`
and apr` takes values from the set ` ∈ {ℵ,M, cℵ, cM}. Notably,

when ` belongs to {cℵ, cM}, these approximations exhibit full compliance with Pawlak’s properties.

5.1. The first approach of 1-NS rough sets

Definition 5.1. We define the generalized lower (and upper) approximations of set A as follows:
L(A) = {m ∈ U : (Cℵ(m) ⊆ A) ∨ (CM(m) ⊆ A)} (and U(A) = {m ∈ U :
(Cℵ(m) ∩ A , φ) ∨ (CM(m) ∩ A) , φ}), for A ⊆ U.

Definition 5.2. We define the generalized boundary, positive region, negative region, and accuracy of
set A as follows:

• BN(A) = U(A) − L(A).
• POS(A) = L(A).
• NEG(A) = U − U(A).
• σ(A) =

|L(A)|
|U(A)| , where |U(A)| , 0, respectively, for A ⊆ U.

Theorem 5.3. The following hold, ∀ A ⊆ U:

(i) apr
Cℵ

(A) ⊆ L(A) ⊆ A ⊆ U(A) ⊆ aprCℵ(A).

(ii) apr
CM

(A) ⊆ L(A) ⊆ A ⊆ U(A) ⊆ aprCM(A).

(iii) L(A) = apr
Cℵ

(A) ∪ apr
CM

(A).

(iv) U(A) = aprCℵ(A) ∩ aprCM(A).

Proof. (i) Let m ∈ apr
Cℵ

(A). Then, Cℵ(m) ⊆ A and so m ∈ L(A). Accordingly, apr
Cℵ

(A) ⊆ L(A).
If m ∈ L(A), then (Cℵ(m) ⊆ A) ∨ (CM(m) ⊆ A) and since m ∈ Cℵ(m) and m ∈ CM(m), ∀ m ∈ U.
Then, m ∈ A, and so L(A) ⊆ A. Similarly, A ⊆ U(A) ⊆ aprCℵ(A) can be proven.
(ii) can be proven in a similar way to (i).
(iii) and (iv) are clear. �
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Corollary 5.4. The following statements hold for all subsets A ofU:
(i) BN(A) ⊆ BCℵ(A). (iii) µCℵ(A) ≤ σ(A).
(ii) BN(A) ⊆ BCM(A). (iv) µCM(A) ≤ σ(A).

5.2. The second approach of 1-NS rough sets

Definition 5.5. We define the generalized lower (and upper) approximations of set A as follows:
apr(A) = apr

ℵ
(A) ∪ apr

M
(A) ∪ apr

Cℵ
(A) ∪ apr

CM
(A) (resp.

apr(A) = aprℵ(A) ∩ aprM(A) ∩ aprCℵ(A) ∩ aprCM(A)), for A ⊆ U.

Definition 5.6. We define the generalized boundary, positive region, negative region and accuracy of
set A as follows:

• µ(A) = apr(A) − apr(A).
• POS(A) = apr(A).
• NEG(A) =U − apr(A).
• ρ(A) =

|apr(A)|

|apr(A)| , respectively, such that |apr(A)| , 0.

Theorem 5.7. For each ` ∈ {ℵ,M,Cℵ,CM}, apr
`
(A) ⊆ apr(A) ⊆ A ⊆ apr(A) ⊆ apr`(A).

Proof. Straightforward. �

Corollary 5.8. ∀ ` ∈ {ℵ,M,Cℵ,CM} and A ⊆ U, we get:
(i) µ(A) ⊆ B`(A). (ii) µ`(A) ≤ σ(A).

In general, the converse of Corollary 5.8 does not hold.

Example 5.9. (Continued from Example 4.3). Take ℵ(λ) = ℵ(µ) = {λ, µ}, ℵ(ν) = {λ, µ, ν} and ℵ(ε) =

{µ, ν, ε}. So, Cℵ(λ) = Cℵ(µ) = {λ, µ}, Cℵ(ν) = {ν} and Cℵ(ε) = {ε}. Also, M(λ) = {λ, µ}, M(µ) = {µ},
M(ν) = {µ, ν} and M(ε) = {µ, ν, ε}. Hence, CM(λ) = {λ}, CM(µ) = {µ} and CM(ν) = {ν}, CM(ε) =

{ε}. In Table 1, we present comparisons among various types of generalized rough approximations,
including Yao’s method [54, 55] from Definition 2.14, Yu et al.’s approach [60] from Definition 2.15,
and our proposed study.

Table 1 provides the properties of our proposed approximations. To assess whether the
approximations satisfy properties (1)–(9*), we have incorporated corresponding codes. In this table, a
code of 1 indicates that the property is satisfied, while a code of 0 indicates that the property is not
satisfied.
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Table 1. Fundamental properties of various approximation methods.

apr
ℵ

apr
M

apr
Cℵ

apr
CM
L (A) Apr (A) aprℵ aprM aprCℵ aprCM U (A) Apr (A)

1 0 0 1 1 1 0 1* 0 0 1 1 1 0
2 0 0 1 1 1 0 2* 1 1 1 1 1 1
3 1 1 1 1 1 1 3* 0 0 1 1 1 0
4 1 1 1 1 1 1 4* 1 1 1 1 1 1
5 1 1 1 1 1 1 5* 1 1 1 1 1 1
6 1 1 1 1 1 1 6* 1 1 1 1 1 1
7 1 1 1 1 1 1 7* 1 1 1 1 1 1
8 1 1 1 1 1 1 8* 1 1 1 1 1 1
9 0 0 1 1 1 0 9* 0 0 1 1 1 0

Remark 5.10. It is noteworthy, with reference to Table 2, that:

(i) Example 5.9 exemplifies the contrasts between our approaches and those presented in previous
studies.

(ii) The most effective techniques for determining the exactness and roughness of sets are Definitions
4.8 and 5.1. Due to the smaller boundary regions, our measurements are highly accurate. Therefore,
compared to Yao’s [54,55] and Yu’s [60] approaches, which we have proposed, they are more accurate.

(iii) Employing a similar method, Definitions 5.2 and 5.1 demonstrate better outcomes than Yao and
Yu’s methods.

(iv) Definition 5.1 satisfies all of Pawlak’s properties, whereas Definition 5.2 does not meet all of these
criteria.

Table 2. Comparisons between different types of rough generalizations and current methods.

Yao’s technique (Definition 2.14) The suggested method (Definition 4.1) The suggested method (Definition 2.15)
apr

ℵ
(A) aprℵ(A) Bℵ(A) µℵ(A) apr

M
(A) aprM(A) BM(A) µM(A) apr

Cℵ
(A) aprCℵ(A) BCℵ(A) µCℵ(A)

{λ} φ {λ, µ, ν} {λ, µ, ν} 0 φ {λ} {λ} 0 φ {λ, µ} {λ, µ} 0
{µ} φ U U 0 {µ} U {λ, ν, ε} 1

4 φ {λ, µ} {λ, µ} 0
{ν} φ {ν, ε} {ν, ε} 0 φ {ν, ε} {ν, ε} 0 {ν} {ν} φ 1
{ε} φ {ε} {ε} 0 φ {ε} {ε} 0 {ε} {ε} φ 1
{λ, µ} {λ, µ} U {ν, ε} 1

2 {λ, µ} U {ν, ε} 1
2 {λ, µ} {λ, µ} φ 1

{λ, ν} φ U U 0 φ {λ, ν, ε} {λ, ν, ε} 0 {ν} {λ, µ, ν} {λ, µ, ν} 1
3

{λ, ε} φ U U 0 φ {λ, ε} {λ, ε} 0 {ε} {λ, µ, ε} {λ, µ} 1
3

{µ, ν} φ U U 0 {µ, ν} U {λ, ε} 1
2 {ν} {λ, µ, ν} {λ, µ} 1

3
{µ, ε} φ U U 0 {µ} U {λ, µ, ε} 1

3 {ε} {λ, µ, ε} {λ, µ} 1
3

{ν, ε} φ {ν, ε} {ν, ε} 0 φ U U 0 {ν, ε} {ν, ε} φ 1
{λ, µ, ν} {λ, µ, ν} U {ε} 3

4 {λ, µ, ν} U {ε} 3
4 {λ, µ, ν} {λ, µ, ν} φ 1

{λ, µ, ε} {λ, µ} U U 1
2 {λ, µ} U {ν, ε} 1

2 {λ, µ, ε} {λ, µ, ε} φ 1
{λ, ν, ε} φ U U 0 φ {λ, ν, ε} {λ, ν, ε} 0 {ν, ε} U {λ, µ} 1

2
{µ, ν, ε} φ U U 0 {µ, ν, ε} U {λ} 3

4 {ν, ε} U {λ, µ} 1
2

U U U φ 1 U U φ 1 U U φ 1
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Table 2. Continued.

The current method (Definition 4.8) The current method (Definitions 5.1,5.2)
apr

CM
(A) aprCM(A) BCM(A) µCM(A) L(A) U(A) BN(A) σ(A)

{λ} {λ} {λ} φ 1 {λ} {λ} φ 1
{µ} {µ} {µ} φ 1 {µ} {µ} φ 1
{ν} {ν} {ν} φ 1 {ν} {ν} φ 1
{ε} {ε} {ε} φ 1 {ε} {ε} φ 1
{λ, µ} {λ, µ} {λ, µ} φ 1 {λ, µ} {λ, µ} φ 1
{λ, ν} {λ, ν} {λ, ν} φ 1 {λ, ν} {λ, ν} φ 1
{λ, ε} {λ, ε} {λ, ε} φ 1 {λ, ε} {λ, ε} φ 1
{µ, ν} {µ, ν} {µ, ν} φ 1 {µ, ν} {µ, ν} φ 1
{µ, ε} {µ, ε} {µ, ε} φ 1 {µ, ε} {µ, ε} φ 1
{ν, ε} {ν, ε} {ν, ε} φ 1 {ν, ε} {ν, ε} φ 1
{λ, µ, ν} {λ, µ, ν} {λ, µ, ν} φ 1 {λ, µ, ν} {λ, µ, ν} φ 1
{λ, µ, ε} {λ, µ, ε} {λ, µ, ε} φ 1 {λ, µ, ε} {λ, µ, ε} φ 1
{λ, ν, ε} {λ, ν, ε} {λ, ν, ε} φ 1 {λ, ν, ε} {λ, ν, ε} φ 1
{µ, ν, ε} {µ, ν, ε} {µ, ν, ε} φ 1 {µ, ν, ε} {µ, ν, ε} φ 1
U U U φ 1 U U φ 1

6. Exploring various topologies utilizing neighborhood systems

Abd El-Monsef et al. [3] construct topological spaces by utilizingNSs derived from binary relations.
A noteworthy extension of their work involves considering four neighborhoods, which allows us to
generate four distinct topologies and determine their respective minimal topology. This technique
holds immense significance for a wide range of applications, particularly in the fields of rough sets and
graphs.

Theorem 6.1. ∀ p ∈ U, ∃ N(p) ⊆ U. Then, τ = {A ⊆ U : ∀ p ∈ A,N(p) ⊆ A} is a topology onU.

Proof. (T1) Clearly,U, φ ∈ τ.
(T2) Let {Ai : i ∈ I} ∈ τ and p ∈

⋃
i∈I Ai. Then, ∃ i0 ∈ I s.t. p ∈ Ai0 . Thus, N(p) ⊆ Ai0 and so

N(p) ⊆
⋃

i∈I Ai. So,
⋃

i∈I Ai ∈ τ.
(T3) Let A1, A2 ∈ τ and p ∈ A1 ∩ A2. Then, p ∈ A1 and p ∈ A2 and so N(p) ⊆ A1 and N(p) ⊆ A2.
Thus, N(p) ⊆ A1 ∩ A2 and so A1 ∩ A2 ∈ τ. �

According to Theorem 6.1, four topologies from 1-NSs can be generated.

Corollary 6.2. The classes τ` = {A ⊆ U : ∀ m ∈ A,ℵ`(m) ⊆ A}, where ` ∈ {ℵ,M,Cℵ,CM}, form
topologies onU. Notably, the topologies τℵ, τCℵ, τM and τCM are independent of each other.

Example 6.3. (Continued from Example 2.3). Let ℵ(λ) = {λ}, ℵ(µ) = {λ, µ}, ℵ(ν) = {λ} and ℵ(ε) =

{λ, µ}. Then, Cℵ(λ) = Cℵ(µ) = {µ, ε} and Cℵ(ν) = Cℵ(ε) = {λ, ν}. Also, M(λ) = {λ}, M(µ) = {λ, µ}

andM(ν) = M(ε) = φ. Hence, CM(λ) = {λ}, CM(µ) = {µ} and CM(ν) = CM(ε) = {ν, ε}. Therefore, the
topologies that induced by neighborhoods are
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(i) τℵ = {U, φ, {λ}, {λ, µ}, {λ, ν}, {λ, µ, ν}, {λ, µ, ε}}.

(ii) τCℵ = {U, φ, {λ, ν}, {µ, ε}}.

(iii) τM = {U, φ, {λ}, {ν}, {ε}, {λ, µ}, {λ, ν}, {λ, ε}, {ν, ε}, {λ, µ, ν}, {λ, µ, ε}, {λ, ν, ε}}.

(iv) τCM = {U, φ, {λ}, {µ}, {λ, µ}, {ν, ε}, {λ, ν, ε}, {µ, ν, ε}}.

Proposition 6.4. Suppose ℵ(m) represents an inverse serial neighborhood. It follows that τM ⊆ τcM.

Proof. With reference to Lemma 3.5, the proof is evident. �

In general, the converse of Proposition 6.4 does not hold.

Example 6.5. (Continued from Example 2.3). Suppose that ℵ(λ) = {λ}, ℵ(µ) = ℵ(ν) = {µ, ν, ε} and
ℵ(ε) = {µ}. So,M(λ) = {λ},M(b) = {µ} andM(ν) = m(ε) = {µ, ν, ε}. Hence, CM(λ) = {λ}, CM(µ) = {µ}

and CM(ν) = CM(ε) = {ν, ε}. Therefore, the topologies that are generated by NSs are:

(i) τℵ = {U, φ, {λ}, {µ, ν, ε}}.

(ii) τM = {U, φ, {λ}, {µ}, {λ, µ}, {µ, ν, ε}}.

(iii) τCM = {U, φ, {λ}, {µ}, {λ, µ}, {ν, ε}, {λ, ν, ε}, {µ, ν, ε}}, ∀ m ∈ U.

Proposition 6.6. Suppose ℵ(m) represents a reflexive neighborhood. Thus,

(i) τℵ ⊆ τCℵ ⊆ τCM.

(i) τℵ ⊆ τM ⊆ τCM.

Proof. With reference to Theorem 5.7, the proof is evident. �

In general, the reverse implications of Proposition 6.6 do not hold.

Example 6.7. (Continued from Example 4.16). From topologies

(i) τℵ = {U, φ, {λ, µ}, {λ, µ, ν}}.

(ii) τcℵ = {U, φ, {ν}, {ε}, {λ, ν}, {ν, ε}, {λ, µ, ν}, {λ, µ, ε}, {λ, ν, ε}}.

(iii) M(m) is τM = {U, φ, {µ}, {λ, µ}, {µ, ν}, {λ, µ, ν}}.

(iv) τcM = {U, φ, {λ}, {µ}, {ν}, {ε}, {λ, µ}, {λ, ν}, {λ, ε}, {µ, ν}, {µ, ε}, {ν, ε}, {λ, µ, ν}, {λ, µ, ε}, {λ, ν, ε},

{µ, ν, ε}}.
It is noted that the reverse inclusions of Proposition 6.6 are not satisfied.

Proposition 6.8. ConsiderN(m) = Nℵ(m)∩NCℵ(m)∩NM(m)∩NCM(m), ∀m ∈ U. Then, T = {A ⊆
U : ∀ m ∈ A,N(m) ⊆ A} is a minimal topology onU that contains each of τ`, ∀ ` ∈ {ℵ,Cℵ,M,CM}.

Proof. Directly using Theorem 6.1. �

Corollary 6.9. Suppose T is a minimal topology. Thus, τℵ(m) ∩ τCℵ(m) ∩ τM(m) ∩ τCM ⊆ T .

The reverse inclusion does not hold, in general.

Example 6.10. (Continued from Example 5.9). The neighborhood N(m),∀ m ∈ U that is generated
by neighborhoodsN`(m), ∀ ` ∈ {ℵ,Cℵ,M,CM}: N(λ) = {λ},N(µ) = {µ} andN(ν) =N(ε) = φ. Thus,
a minimal topology T is given by: T = {U, φ, {λ}, {µ}, {ν}, {ε}, {λ, µ}, {λ, ν}, {λ, ε}, {µ, ν}, {µ, ε}, {ν, ε},

{λ, µ, ν}, {λ, µ, ε}, {λ, ν, ε}, {µ, ν, ε}}. Clearly, ∀ ` ∈ {ℵ,Cℵ,M,CM}: τ` ⊆ T , but T , τ`. In addition, τℵ
∩ τCℵ ∩ τM ∩ τCM = {U, φ, {λ}, {µ}, {ν}, {ε}, {λ, µ}, {λ, ν}, {λ, ε}, {µ, ε}, {ν, ε}, {λ, µ, ν}, {λ, µ, ε}, {λ, ν, ε},

{µ, ν, ε}}. Therefore, τℵ∩ τCℵ ∩τM ∩τCM ⊆ T , but T , τℵ∩ τCℵ ∩τM ∩τCM.
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7. Medical applications: Exploring various topologies in human blood circulation

The human body relies on the efficient distribution of oxygen and nutrients to every cell. This
essential process is achieved through the circulation of oxygen-rich blood, nourishing body organs,
tissues and cells, while also facilitating the removal of waste products from the system. The
coordination between the heart, lungs and blood vessels ensures the seamless flow of this vital
process. At the center of this circulation is the cardiopulmonary system, involving the movement of
blood from the heart to the lungs and back. Initially, blood is directed to the right side of the heart,
where it absorbs waste materials like carbon dioxide. It is then propelled to the lungs to acquire
oxygen for the body’s cells while simultaneously releasing carbon dioxide. The oxygenated blood
subsequently returns to the left side of the heart.

Systemic circulation follows, with the left side of the heart pumping oxygenated blood to nourish
bodily tissues. The blood travels through the entire body via the aorta, reaching all organs and tissues
to deliver vital oxygen. The cells utilize this oxygen for their proper functioning, generating waste
materials, such as carbon dioxide, that need to be eliminated.

Blood that has released its oxygen content collects waste materials from the cells and is transported
back to the heart, where it is sent to the lungs for expulsion. This efficient circulation system ensures
that all cells receive the necessary nutrients and oxygen while eliminating waste, thereby contributing
to overall health and optimal organ function.

In the study of human heart topology, operators on graphs were employed [44,49]. Nada et al. [43]
further advanced this research by classifying the heart into vertices and edges, resulting in a graph
model as shown in Figure 1. They established a topological structure denoted as τG based on this
graph.

Figure 1. A digraph model of a human heart.

We explore additional classifications of the heart using neighborhoods, core neighborhoods,
minimal neighborhoods, and core minimal neighborhoods. Through these classifications, several
topological spaces are induced. In this context, the vertices of the graph G = (V, E) represent different
regions where blood flows, while the edges represent the pathways of blood circulation within the
heart. Specifically, vertices υ1, υ2, υ3, υ4, υ5, υ6, υ7 represent deoxygenated blood from the superior
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vena cavae, inferior vena cavae, right atrium, right ventricle, pulmonary trunk, right lung, and left
lung, respectively. On the other hand, vertices υ8, υ9, υ10 represent oxygenated blood from the left
atrium, left ventricle, and aorta, respectively.

To delve deeper, we consider the setUG = {υ1, υ2, υ3, υ4, υ5, υ6, υ7, υ8, υ9, υ10} and the right (core,
minimal, core minimal) neighborhoods of each vertex, representing in-blood properties. These
neighborhoods are presented in Tables 3–5. Moreover, we examine the topologies on a subgraph
HG = {υ5, υ6, υ7, υ8} ofUG, ∀ m ∈ U. The topologies are as follows:

Table 3. Right neighborhoods of m ∈ UG.

m ∈ UG ℵr(m) Mr(m) Cℵr(m) CMr(m)
υ1 {υ3} φ {υ1, υ2} {υ1, υ2}

υ2 {υ3} φ {υ1, υ2} {υ1, υ2}

υ3 {υ4} {υ3} {υ3} {υ3}

υ4 {υ5} {υ4} {υ4} {υ4}

υ5 {υ6, υ7} {υ5} {υ5} {υ5}

υ6 {υ8} {υ6, υ7} {υ6, υ7} {υ6, υ7}

υ7 {υ8} {υ6, υ7} {υ6, υ7} {υ6, υ7}

υ8 {υ9} {υ8} {υ8} {υ8}

υ9 {υ10} {υ9} {υ9} {υ9}

υ10 φ {υ10} {υ10} {υ10}

Table 4. Right neighborhoods for m ∈ UG.

m ∈ UG ℵr(m) Mr(m) Cℵr(m) CMr(m)
υ5 {υ6, υ7} φ {υ5} {υ5}

υ6 {υ8} {υ6, υ7} {υ6, υ7} {υ6, υ7}

υ7 {υ8} {υ6, υ7} {υ6, υ7} {υ6, υ7}

υ8 φ {υ8} {υ8} {υ8}

Table 5. Left neighborhoods for m ∈ UG.

m ∈ UG ℵl(m) Ml(m) Cℵl(m) CMl(m)
υ5 φ {υ5} {υ5} {υ5}

υ6 {υ5} {υ6, υ7} {υ6, υ7} {υ6, υ7}

υ7 {υ5} {υ6, υ7} {υ6, υ7} {υ6, υ7}

υ8 {υ6, υ7} φ {υ8} {υ8}

(i) Topology using ℵr(m) is τℵr = {UG, φ, {υ8}, {υ6, υ8}, {υ7, υ8}, {υ6, υ7, υ8}}.
(ii) Topology usingMr(m) is τMr = {UG, φ, {υ5}, {υ8}, {υ5, υ8}, {υ6, υ7}, {υ5, υ6, υ7}, {υ6, υ7, υ8}}.

(iii) Topology using Cℵr(m) is τCℵr = {UG, φ, {υ5}, {υ8}, {υ5, υ8}, {υ6, υ7}, {υ5, υ6, υ7}, {υ6, υ7, υ8}}.
(iv) Topology using cMr(m) is τCMr = {UG, φ, {υ5}, {υ8}, {υ5, υ8}, {υ6, υ7}, {υ5, υ6, υ7}, {υ6, υ7, υ8}}.
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(v) Topology induced by ℵl(m) is τℵl = {UG, φ, {υ5}, {υ5, υ6}, {υ5, υ7}, {υ5, υ6, υ7}}.
(vi) Topology usingMl(m) is τMl = {UG, φ, {υ5}, {υ8}, {υ5, υ8}, {υ6, υ7}, {υ5, υ6, υ7}, {υ6, υ7, υ8}}.

(vii) Topology using Cℵl(m) is τCℵl = {UG, φ, {υ5}, {υ8}, {υ5, υ8}, {υ6, υ7}, {υ5, υ6, υ7}, {υ6, υ7, υ8}}.
(viii) Topology using CMl(m) is τCMl = {UG, φ, {υ5}, {υ8}, {υ5, υ8}, {υ6, υ7}, {υ5, υ6, υ7}, {υ6, υ7, υ8}}.

These results for blood circulation can be analyzed as follows:

(i) The topologies τℵr and τℵl are independent.
(ii) Within the human heart circulation, we find a set of distinct topological structures represented by

τMr , τMl , τCℵr , τCℵl , τCMr and τCMl , all of which are equivalent to each other.
(iii) The core topology τCMl encompasses all parts of the heart, making it the most suitable structure for

any subgraph of G. This implies that experts can utilize it for decision-making in their diagnoses.
Additionally, it serves as the optimal choice for topologists in their studies.

Making an accurate choice is one of the most difficult areas of clinical diagnosis. Therefore, with
this application, we suggested many topological tools that could assist an expert in the diagnosis of
heart problems. A generating topology is a mathematical fundamental basis for applying several
topology theories, such as connectivity, compactness, and separation axioms, which are essential
features of solutions in the medical fields.

8. Algorithms

This section presents Algorithms 1 and 2 that are used in decision-making problems and for
generating various topological structures in graphs. Each topological structure on a graph defines a
topological space. These algorithms can be applied not only in graph theory and topology but also in
medical scenarios, such as blood circulation within the human body, and geographical scenarios, such
as the street system of a community. Therefore, these techniques serve as valuable tools that can be
implemented using MATLAB.

9. Discussion and conclusions

Our exploration of the latest medical discoveries and cutting-edge application methods has
unveiled intricate graph theory structures, presenting promising trends for practical applications. By
generalizing rough set theory using neighborhood systems (NSs), we introduced and thoroughly
examined novel neighborhoods based on the concept of 1-NS. These neighborhoods illuminated
relationships among different types and were reinforced by several insightful counterexamples.

Drawing on these neighborhoods, we devised new models for rough sets and delved into their
essential characteristics, encompassing both lower and upper approximations. Through their
application, we achieved accurate subset classification and computed precise measures of accuracy.
Remarkably, our proposed methods demonstrated significantly higher accuracy compared to the
existing approaches documented in the published literature.

AIMS Mathematics Volume 8, Issue 11, 26945–26967



26962

Algorithm 1: A frame work to use `-approximations in decision-making problems.
Input: Initiate an information table generating from the given data such that the first column
contains the set of objectsU, and the set of attributes At as a first row.

Output: An accurate decision for exact and rough sets.
Define the binary relations qmKakqn ⇒ νam(qm) ⊆ νan(qn), for each ak ∈ A. m, n ∈ {1, 2, 3, · · · },
and k ∈ {1, 2, 3, · · · }.

for ` ∈ {M,CM} do
Compute all neighborhoods, as follows:
Ωqm =

⋃
k
Kak , for each k,m.

Compute all `-neighborhoods, using Definitions 3.1 and 3.7.
end
for Q ⊆ U do

Compute the `-lower approximation K`(Q) = {m ∈ U : Ω`(m) ⊆ Q}.
if K`(Q) = φ then

return Q is a rough set.
else

Compute the `-upper approximation K`(Q) = {m ∈ U : Ω`(m) ∩ Q , φ}.
Compute the `-accuracy µ`(Q) =

|K`(Q)|

|K`(Q)|
.

if µ`(Q) = 1 then
return Q is an exact set. else

return Q is a rough set.
end

end
end

end
end

Algorithm 2: A topological analysis for a human heart
Input: A digraph G = (V, E) of a human heart.
Output: A core topology τCMl .
Step 1: Insert each vertex υi ∈ UG, whereUG is the universal set of vertices.
Step 2: Determine the adjacent vertices for each υi ∈ UG.
Step 3: Each adjacent, topologically, is called a right neighborhood for υi ∈ UG.
Step 4: Each neighborhood ℵr(υ),Mr(υ), Cℵr(υ), cMr(υ), cMr(υ), ℵl(υ),Ml(υ), Cℵl(υ), and
CMl(υ) is a base for topology τℵr(υ), τMr(υ), τCℵr(υ), τcMr(υ), τcMr(υ), τℵl(υ), τMl(υ), τCℵl(υ), and
τCMl(υ), respectively, by its arbitrary unions.

Step 5: Compare between topologies on each subgraph of G.
Step 6: τCMl is the core topology.

Furthermore, these methods broadened the scope of practical problems that can be addressed, all
while upholding the core properties of Pawlak approximation spaces under fewer constraints. The
validity of these statements was established through Propositions 3–6, along with their respective

AIMS Mathematics Volume 8, Issue 11, 26945–26967



26963

corollaries, as well as Theorems 1 and 2, along with their corollaries.
Furthermore, we have constructed various types of topological structures using neighborhood

systems (NSs). The introduction of minimal and core minimal neighborhoods has facilitated a
comprehensive exploration of their characteristics, as demonstrated in Theorem 3, Corollaries 10
and 11 and Propositions 8–10. To establish the superiority of our methods, we conducted a
comparative analysis against other established approaches, employing a variety of examples for
validation. As a result, our research empowers experts to make informed decisions and assists
topologists in selecting the most suitable topological model for studying blood circulation in the
human heart. Notably, among the clinical diagnosis areas, core minimal neighborhoods emerged as
the optimal choice. By scrutinizing the topological graph structure of blood circulation, topologists
can glean invaluable insights into connectivity—A crucial aspect of medicine.

At the end of the paper, two algorithms have been introduced for decision-making and generating
graph topologies, defining unique spaces. Beyond graph theory, these techniques apply to medical
contexts like blood circulation and geographical scenarios, such as community street mapping.
Implemented using MATLAB, they are valuable tools.
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