Research article Special Issues

Logarithmic Bergman-type space and a sum of product-type operators

  • Received: 09 July 2023 Revised: 30 August 2023 Accepted: 03 September 2023 Published: 19 September 2023
  • MSC : 47B38, 47B33, 47B37, 30H05

  • One of the aims of the present paper is to obtain some properties about logarithmic Bergman-type space on the unit ball. As some applications, the bounded and compact operators $ \mathfrak{S}^m_{\vec{u}, {\varphi}} = \sum_{i = 0}^{m}M_{u_i}C_{\varphi}\Re^{i} $ from logarithmic Bergman-type space to weighted-type space on the unit ball are completely characterized.

    Citation: Yan-fu Xue, Zhi-jie jiang, Hui-ling Jin, Xiao-feng Peng. Logarithmic Bergman-type space and a sum of product-type operators[J]. AIMS Mathematics, 2023, 8(11): 26682-26702. doi: 10.3934/math.20231365

    Related Papers:

  • One of the aims of the present paper is to obtain some properties about logarithmic Bergman-type space on the unit ball. As some applications, the bounded and compact operators $ \mathfrak{S}^m_{\vec{u}, {\varphi}} = \sum_{i = 0}^{m}M_{u_i}C_{\varphi}\Re^{i} $ from logarithmic Bergman-type space to weighted-type space on the unit ball are completely characterized.



    加载中


    [1] R. A. Hibschweiler, N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mt. J. Math., 35 (2005), 843–855. http://dx.doi.org/10.1216/rmjm/1181069709 doi: 10.1216/rmjm/1181069709
    [2] C. S. Huang, Z. J. Jiang, Y. F. Xue, Sum of some product-type operators from mixed-norm spaces to weighted-type spaces on the unit ball, AIMS Math., 7 (2022), 18194–18217. http://dx.doi.org/10.3934/math.20221001 doi: 10.3934/math.20221001
    [3] W. Johnson, The curious history of Faà di Bruno's formula, Am. Math. Mon., 109 (2002), 217–234. http://dx.doi.org/10.1080/00029890.2002.11919857 doi: 10.1080/00029890.2002.11919857
    [4] E. G. Kwon, J. Lee, Composition operators between weighted Bergman spaces of logarithmic weights, Int. J. Math., 26 (2015), 1550068. http://dx.doi.org/10.1142/S0129167X15500688 doi: 10.1142/S0129167X15500688
    [5] Z. J. Jiang, Product-type operators from Zygmund spaces to Bloch-Orlicz spaces, Complex Var. Elliptic, 62 (2017), 1–20. http://dx.doi.org/10.1080/17476933.2016.1278436 doi: 10.1080/17476933.2016.1278436
    [6] Z. J. Jiang, Product-type operators from logarithmic Bergman-type spaces to Zygmund-Orlicz spaces, Mediterr. J. Math., 13 (2016), 4639–4659. http://dx.doi.org/10.1007/s00009-016-0767-8 doi: 10.1007/s00009-016-0767-8
    [7] Z. J. Jiang, Generalized product-type operators from weighted Bergman-Orlicz spaces to Bloch-Orlicz spaces, Appl. Math. Comput., 268 (2015), 966–977. http://dx.doi.org/10.1016/j.amc.2015.06.100 doi: 10.1016/j.amc.2015.06.100
    [8] Z. J. Jiang, On a class of operators from weighted Bergman spaces to some spaces of analytic functions, Taiwan. J. Math., 15 (2011), 2095–2121. http://dx.doi.org/10.11650/twjm/1500406425 doi: 10.11650/twjm/1500406425
    [9] S. Li, S. Stević, Weighted differentiation composition operators from the logarithmic Bloch space to the weighted-type space, Analele Stiint. Univ. Ovidius C., 24 (2016), 223–240. http://dx.doi.org/10.1515/auom-2016-0056 doi: 10.1515/auom-2016-0056
    [10] S. Li, S. Stević, Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces, Appl. Math. Comput., 217 (2010), 3144–3154. http://dx.doi.org/10.1515/auom-2016-0056 doi: 10.1515/auom-2016-0056
    [11] S. Li, S. Stević, Composition followed by differentiation between $H^{\infty}$ and $\alpha$-Bloch spaces, Houston J. Math., 35 (2009), 327–340.
    [12] S. Ohno, Products of composition and differentiation on Bloch spaces, B. Korean. Math. Soc., 46 (2009), 1135–1140. http://dx.doi.org/10.4134/BKMS.2009.46.6.1135 doi: 10.4134/BKMS.2009.46.6.1135
    [13] S. Li, S. Stević, Composition followed by differentiation from mixed norm spaces to $\alpha$-Bloch spaces, Sb. Math., 199 (2008), 1847–1857. http://dx.doi.org/10.1070/SM2008v199n12ABEH003983 doi: 10.1070/SM2008v199n12ABEH003983
    [14] S. Li, S. Stević, Composition followed by differentiation between Bloch type spaces, J. Comput. Anal. Appl., 9 (2007), 195–206.
    [15] W. Rudin, Function theory in the unit ball of $\mathbb{C}^{n}$, Berlin: Springer Press, 1980.
    [16] H. J. Schwartz, Composition operators on $H^{p}$, Toledo: University of Toledo, 1969. http://dx.doi.org/10.2140/pjm.1976.62.55
    [17] J. H. Shapiro, The essential norm of composition operator, Ann. Math., 125 (1987), 375–404. http://dx.doi.org/0040-5779/02/1313-0747$27.00
    [18] A. K. Sharma, Products of composition multiplication and differentiation between Bergman and Bloch type spaces, Turk. J. Math., 35 (2011), 275–291. http://dx.doi.org/10.3906/mat-0806-24 doi: 10.3906/mat-0806-24
    [19] S. Stević, Essential norm of some extensions of the generalized composition operators between $k$th weighted-type spaces, J. Inequal. Appl., 2017 (2017), 1–13. http://dx.doi.org/10.1186/s13660-017-1493-x doi: 10.1186/s13660-017-1493-x
    [20] S. Stević, Weighted radial operator from the mixed-norm space to the $n$th weighted-type space on the unit ball, Appl. Math. Comput., 218 (2012), 9241–9247. http://dx.doi.org/10.1016/j.amc.2012.03.001 doi: 10.1016/j.amc.2012.03.001
    [21] S. Stević, On some integral-type operators between a general space and Bloch-type spaces, Appl. Math. Comput., 218 (2011), 2600–2618. http://dx.doi.org/10.1016/j.amc.2011.07.077 doi: 10.1016/j.amc.2011.07.077
    [22] S. Stević, A. K. Sharma, A. Bhat, Essential norm of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 218 (2011), 2386–2397. http://dx.doi.org/10.1016/j.amc.2011.06.055 doi: 10.1016/j.amc.2011.06.055
    [23] S. Stević, Composition followed by differentiation from $H^{\infty}$ and the Bloch space to $n$th weighted-type spaces on the unit disk, Appl. Math. Comput., 216 (2010), 3450–3458. http://dx.doi.org/10.1016/j.amc.2010.03.117 doi: 10.1016/j.amc.2010.03.117
    [24] S. Stevć, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal., 2010 (2010), 1–14. http://dx.doi.org/10.1155/2010/801264 doi: 10.1155/2010/801264
    [25] S. Stević, Norm and essential norm of composition followed by differentiation from $\alpha$-Bloch spaces to $H_{\mu}^{\infty}$, Appl. Math. Comput., 207 (2009), 225–229. http://dx.doi.org/10.1016/j.amc.2008.10.032 doi: 10.1016/j.amc.2008.10.032
    [26] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, B. Belg. Math. Soc-Sim., 16 (2009), 623–635. http://dx.doi.org/10.36045/bbms/1257776238 doi: 10.36045/bbms/1257776238
    [27] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 217 (2011), 8115–8125. http://dx.doi.org/10.1016/j.amc.2011.03.014 doi: 10.1016/j.amc.2011.03.014
    [28] S. Stević, C. S. Huang, Z. J. Jiang, Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball, Math. Method. Appl. Sci., 45 (2022), 11581–11600. http://dx.doi.org/10.1002/mma.8467 doi: 10.1002/mma.8467
    [29] S. Stević, Z. J. Jiang, Weighted iterated radial composition operators from weighted Bergman-Orlicz spaces to weighted-type spaces on the unit ball, Math. Method. Appl. Sci., 44 (2021), 8684–8696. http://dx.doi.org/10.1002/mma.7298 doi: 10.1002/mma.7298
    [30] S. M. Wang, M. F. Wang, X. Guo, Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions, Taiwan. J. Math., 24 (2020), 355–376. http://dx.doi.org/10.11650/tjm/190405 doi: 10.11650/tjm/190405
    [31] S. Wang, M. F. Wang, X. Guo, Products of composition, multiplication and radial derivative operators between Banach spaces of holomorphic functions on the unit ball, Complex Var. Elliptic, 65 (2020), 2026–2055. http://dx.doi.org/10.1080/17476933.2019.1687455 doi: 10.1080/17476933.2019.1687455
    [32] W. Yang, W. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, B. Korean Math. Soc., 48 (2011), 1195–1205. http://dx.doi.org/10.4134/BKMS.2011.48.6.1195 doi: 10.4134/BKMS.2011.48.6.1195
    [33] N. Xu, Products of radial derivative and integral-type operators from Zygmund spaces to Bloch spaces, arXiv: 1111.5126, 11 (2011). http://dx.doi.org/10.48550/arXiv.1111.5126
    [34] X. Zhu, On an integral-type operator from Privalov spaces to Bloch-type spaces, Ann. Pol. Math., 101 (2011), 139–148. http://dx.doi.org/10.4064/ap101-2-4 doi: 10.4064/ap101-2-4
    [35] K. H. Zhu, Spaces of holomorphic functions in the unit ball, New York: Springer Press, 2005. http://doi.org/10.1007/0-387-27539-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(870) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog