Research article

The convergence rate for the laws of logarithms under sub-linear expectations

  • Received: 20 May 2023 Revised: 27 July 2023 Accepted: 10 August 2023 Published: 23 August 2023
  • MSC : 60F15

  • Let $ \{X_n; n\geq1\} $ be a sequence of independent and identically distributed random variables in a sub-linear expectation space $ (\Omega, \mathcal{H}, \hat{\mathbb{E}}) $. The necessary and sufficient conditions for the convergence rate on the laws of the logarithms and the law of the iterated logarithm are obtained.

    Citation: Qunying Wu. The convergence rate for the laws of logarithms under sub-linear expectations[J]. AIMS Mathematics, 2023, 8(10): 24786-24801. doi: 10.3934/math.20231264

    Related Papers:

  • Let $ \{X_n; n\geq1\} $ be a sequence of independent and identically distributed random variables in a sub-linear expectation space $ (\Omega, \mathcal{H}, \hat{\mathbb{E}}) $. The necessary and sufficient conditions for the convergence rate on the laws of the logarithms and the law of the iterated logarithm are obtained.



    加载中


    [1] P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31. http://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25
    [2] P. Erdős, On a theorem of Hsu and Robbins, Ann. Math. Statist., 20 (1949), 286–291. http://doi.org/10.1214/aoms/1177730037 doi: 10.1214/aoms/1177730037
    [3] P. Erdős, Remark on my paper "On a theorem of Hsu and Robbins", Ann. Math. Statist., 21 (1950), 138. http://doi.org/10.1214/aoms/1177729897 doi: 10.1214/aoms/1177729897
    [4] L. E. Baum, M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., 20 (1965), 108–123.
    [5] C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab., 12 (1975), 173–175.
    [6] R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal., 8 (1978), 328–333. http://doi.org/10.1016/0047-259X(78)90084-2 doi: 10.1016/0047-259X(78)90084-2
    [7] A. Spătaru, Precise asymptotics in Spitzers law of large numbers, J. Theoret. Probab., 12 (1999), 811–819. http://doi.org/10.1023/A:1021636117551 doi: 10.1023/A:1021636117551
    [8] A. Gut, A. Spătaru, Precise asymptotics in the Baum-Katz and Davis law of large numbers, J. Math. Anal. Appl., 248 (2000), 233–246. https://doi.org/10.1006/jmaa.2000.6892 doi: 10.1006/jmaa.2000.6892
    [9] A. Spătaru, A. Gut, Precise asymptotics in the law of the iterated logarithm, Ann. Probab., 28 (2000), 1870–1883. https://doi.org/10.1214/aop/1019160511 doi: 10.1214/aop/1019160511
    [10] A. Gut, J. Steinebach, Precise asymptotics-A general approach, Acta Math. Hungar., 138 (2013), 365–385. https://doi.org/10.1007/s10474-012-0236-1 doi: 10.1007/s10474-012-0236-1
    [11] J. J. He, T. F. Xie, Asymptotic property for some series of probability, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 179–186. https://doi.org/10.1007/s10255-012-0138-6 doi: 10.1007/s10255-012-0138-6
    [12] L. T. Kong, H. S. Dai, Convergence rate in precise asymptotics for Davis law of large numbers, Statist. Probab. Lett., 119 (2016), 295–300. https://doi.org/10.1016/j.spl.2016.08.018 doi: 10.1016/j.spl.2016.08.018
    [13] S. G. Peng, Backward SDE and related g-expectation, In: Pitman research notes in mathematics series, 364 (1997), 141–160.
    [14] S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 2010. https://doi.org/10.48550/arXiv.1002.4546
    [15] S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [16] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [17] L. X. Zhang, The convergence of the sums of independent random variables under the sub-linear expectations, Acta Math. Sin. (Engl. Ser.), 36 (2020), 224–244. https://doi.org/10.1007/s10114-020-8508-0 doi: 10.1007/s10114-020-8508-0
    [18] L. X. Zhang, Heyde's theorem under the sub-linear expectations, Stat. Probabil. Lett., 170 (2021), 108987. https://doi.org/10.1016/j.spl.2020.108987 doi: 10.1016/j.spl.2020.108987
    [19] C. Hu, A strong law of large numbers for sub-linear expectation under a general moment condition, Statist. Probab. Lett., 119 (2016), 248–258. http://doi.org/10.1016/j.spl.2016.08.015 doi: 10.1016/j.spl.2016.08.015
    [20] Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
    [21] Q. Y. Wu, Y. Y. Jiang, Complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, Filomat, 34 (2020), 1093–1104. https://doi.org/10.2298/FIL2004093W doi: 10.2298/FIL2004093W
    [22] Y. Wu, X. J. Wang, L. X. Zhang, On the asymptotic approximation of inverse moment under sub-linear expectations, J. Math. Anal. Appl., 468 (2018), 182–196. https://doi.org/10.1016/j.jmaa.2018.08.010 doi: 10.1016/j.jmaa.2018.08.010
    [23] Q. Y. Wu, J. F. Lu, Another form of Chover's law of the iterated logarithm under sub-linear expectations, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 114 (2020), 22. https://doi.org/10.1007/s13398-019-00757-7 doi: 10.1007/s13398-019-00757-7
    [24] Q. Y. Wu, Precise asymptotics for complete integral convergence under sub-linear expectations, Math. Probl. Eng., 2020 (2020), 3145935. https://doi.org/10.1155/2020/3145935 doi: 10.1155/2020/3145935
    [25] W. Liu, Y. Zhang, The law of the iterated logarithm for linear processes generated by a sequence of stationary independent random variables under the sub-linear expectation, Entropy, 23 (2021), 1313. https://doi.org/10.3390/e23101313 doi: 10.3390/e23101313
    [26] X. Ding, A general form for precise asymptotics for complete convergence under sublinear expectation, AIMS Mathematics, 7 (2022), 1664–1677. https://doi.org/10.3934/math.2022096 doi: 10.3934/math.2022096
    [27] W. Liu, Y. Zhang, Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Comm. Statist. Theory Methods, 52 (2023), 5727–5741. https://doi.org/10.1080/03610926.2021.2018462 doi: 10.1080/03610926.2021.2018462
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(822) PDF downloads(42) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog