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1. Introduction

Let {X, Xn; n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random variables.
Complete convergence first established by Hsu and Robbins [1] (for the sufficiency) and Erdős [2, 3]
(for the necessity) proceeds as follows:

∞∑
n=1

P(|S n| ≥ εn) < ∞, for any ε > 0,

if and only if EX = 0 and EX2 < ∞. Baum and Katz [4] extended the above result and obtained the
following theorem:

∞∑
n=1

nr/p−2P(|S n| ≥ εn1/p) < ∞, for 0 < p < 2, r ≥ p, any ε > 0, (1.1)

if and only if E|X|r < ∞, and when r ≥ 1, EX = 0.
There are several extensions of the research on complete convergence. One of them is the study

of the convergence rate of complete convergence. The first work was the convergence rate, achieved
by Heyde [5]. He got the result of lim

ε→0
ε2 ∑∞

n=1 P(|S n| ≥ εn) = EX2 under the conditions EX = 0 and
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EX2 < ∞. For more results on the convergence rate, see Chen [6], Spătaru [7], Gut and Spătaru [8],
Spătarut and Gut [9], Gut and Steinebach [10], He and Xie [11], Kong and Dai [12], etc.

But (1.1) does not hold for p = 2. However, by replacing n1/p by
√

n ln n and
√

n ln ln n, Gut and
Spătaru [8] and Spătarut and Gut [9] established the following results called the convergence rate of the
law of the (iterated) logarithm. Supposing that {X, Xn; n ≥ 1} is a sequence of i.i.d. random variables
with EX = 0 and EX2 = σ2 < ∞, Gut and Spătaru [8] and Spătarut and Gut [9] obtained the following
results respectively:

lim
ε→0

ε2+2δ
∞∑

n=1

lnδ n
n

P(|S n| ≥ ε
√

n ln n) =
E|N|2+2δσ2+2δ

δ + 1
, 0 ≤ δ ≤ 1, (1.2)

where N is the standard normal distribution, and

lim
ε→0

ε2
∞∑

n=3

1
n ln n

P(|S n| ≥ ε
√

n ln ln n) = σ2. (1.3)

Motivated by the above results, the purpose of this paper is to extend (1.2) and (1.3) to sub-linear
expectation space (to be introduced in Section 2), which was introduced by Peng [13,14], and to study
the necessary conditions of (1.2).

Under the theoretical framework of the traditional probability space, in order to infer the model,
all statistical models must assume that the error (and thus the response variable) is subject to a certain
uniquely determined probability distribution, that is, the distribution of the model is deterministic.
Classical statistical modeling and statistical inference are based on such distribution certainty or
model certainty. “Distribution certainty” modeling has yielded a set of mature theories and methods.
However, the real complex data in economic, financial and other fields often have essential and
non negligible probability and distribution uncertainty. The probability distribution of the response
variable to be studied is uncertain and does not meet the assumptions of classical statistical modeling.
Therefore, classical probability statistical modeling methods cannot be used for this type of data
modeling. Driven by uncertainty issues, Peng [14, 15] established a theoretical framework for sub-
linear expectation spaces from the perspective of expectations. Sub-linear expectation has a wide
range of application backgrounds and prospects. In recent years, a series of research achievements on
limit theory in sub-linear expectation spaces has been established. See Peng [14, 15], Zhang [16–18],
Hu [19], Wu and Jiang [20, 21], Wu et al. [22], Wu and Lu [23], etc. Wu [24], Liu and Zhang [25],
Ding [26] and Liu and Zhang [27] obtained the convergence rate for complete moment convergence.
However, the convergence rate results for the (iterative) logarithmic law have not been reported yet.
The main difficulty in studying it is that the sub-linear expectation and capacity are not additive, which
makes many traditional probability space tools and methods no longer effective; thus, it is much more
complex and difficult to study it.

In Section 2, we will provide the relevant definitions of sub-linear expectation space, the basic
properties and the lemmas that need to be used in this paper.

2. Preliminaries

Let (Ω,F ) be a measurable space and let H be a linear space of random variables on (Ω,F ) such
that if X1, . . . , Xn ∈ H then ϕ(X1, . . . , Xn) ∈ H for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the set
of local Lipschitz functions on Rn. In this case, for X ∈ H , X is called a random variable.
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Definition 2.1. A sub-linear expectation Ê onH is a function: H → R satisfying the following for all
X,Y ∈ H :
(a) Monotonicity: If X ≥ Y then ÊX ≥ ÊY;
(b) Constant preservation: Êc = c;
(c) Sub-additivity: Ê(X + Y) ≤ ÊX + ÊY;
(d) Positive homogeneity: Ê(λX) = λÊX, λ ≥ 0.

The triple (Ω,H , Ê) is called a sub-linear expectation space. The conjugate expectation ε̂ of Ê is
defined by

ε̂X := −Ê(−X), ∀X ∈ H .

Let G ⊂ F . A function V : G → [0, 1] is called a capacity if

V(∅) = 0, V(Ω) = 1 and V(A) ≤ V(B) for ∀A ⊆ B, A, B ∈ G.

The upper and lower capacities (V, ν) corresponding to (Ω,H , Ê) are respectively defined as

V(A) := inf{Êξ; I(A) ≤ ξ, ξ ∈ H}, ν(A) := 1 − V(Ac), ∀A ∈ F , Ac := Ω − A.

The Choquet integrals is defined by

CV(X) :=
∫ ∞

0
V(X > x)dx +

∫ 0

−∞

(V(X > x) − 1)dx.

From all of the definitions above, it is easy to obtain the following Proposition 2.1.

Proposition 2.1. Let X,Y ∈ H and A, B ∈ F .
(i) ε̂X ≤ ÊX, Ê(X + a) = ÊX + a, ∀a ∈ R;
(ii) |Ê(X − Y)| ≤ Ê|X − Y |, Ê(X − Y) ≥ ÊX − ÊY;
(iii) ν(A) ≤ V(A), V(A ∪ B) ≤ V(A) + V(B), ν(A ∪ B) ≤ ν(A) + V(B);
(iv) If f ≤ I(A) ≤ g, f , g ∈ H , then

Ê f ≤ V(A) ≤ Êg, ε̂ f ≤ ν(A) ≤ ε̂g. (2.1)

(v) (Lemma 4.5 (iii) in Zhang [16]) For any c > 0,

Ê (|X| ∧ c) ≤
∫ c

0
V(|X| > x)dx ≤ CV(|X|), (2.2)

where, here and hereafter, a ∧ b := min(a, b), and a ∨ b := max(a, b) for any a, b ∈ R.
(vi) Markov inequality: V(|X| ≥ x) ≤ Ê(|X|p)/xp, ∀ x > 0, p > 0;

Jensen inequality:
(
Ê(|X|r)

)1/r
≤

(
Ê(|X|s)

)1/s
for 0 < r ≤ s.

Definition 2.2. (Peng [14, 15])
(i) (Identical distribution) Let X1 and X2 be two random variables on (Ω,H , Ê). They are called
identically distributed, denoted by X1

d
= X2, if

Ê(ϕ(X1)) = Ê(ϕ(X2)), for all ϕ ∈ Cl,Lip(Rn).
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A sequence {Xn; n ≥ 1} of random variables is said to be identically distributed if for each i ≥ 1,
Xi

d
= X1.

(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1, . . . ,Yn),
Yi ∈ H is said to be independent of another random vector X = (X1, . . . , Xm), Xi ∈ H under Ê if for
each ϕ ∈ Cl,Lip(Rm × Rn), there is Ê(ϕ(X,Y)) = Ê[Ê(ϕ(x,Y))|x=X].
(iii) (Independent and identically distributed) A sequence {Xn; n ≥ 1} of random variables is said to be
i.i.d., if Xi+1 is independent of (X1, . . . , Xi) and Xi

d
= X1 for each i ≥ 1.

From Definition 2.2 (ii), it can be verified that if Y is independent of X, and X ≥ 0, ÊY ≥ 0, then
Ê(XY) = Ê(X)Ê(Y). Further, if Y is independent of X and X,Y ≥ 0, then

Ê(XY) = Ê(X)Ê(Y), ε̂(XY) = ε̂(X)ε̂(Y). (2.3)

For convenience, in all subsequent parts of this article, let {X, Xn; n ≥ 1} be a sequence of random
variables in (Ω,H , Ê), and S n =

∑n
i=1 Xi. For any X ∈ H and c > 0, set X(c) := (−c) ∨ X ∧ c. The

symbol c represents a positive constant that does not depend on n. Let ax ∼ bx denote limx→∞ ax/bx = 1,
ax � bx denote that there exists a constant c > 0 such that ax ≤ cbx for sufficiently large x, [x] denote
the largest integer not exceeding x, and I(·) denote an indicator function.

To prove the main results of this article, the following three lemmas are required.

Lemma 2.1. (Theorem 3.1 (a) and Corollary 3.2 (b) in Zhang [16]) Let {Xk; k ≥ 1} be a sequence of
independent random variables in (Ω,H , Ê).
(i) If ÊXk ≤ 0, then for any x, y > 0,

V(S n ≥ x) ≤ V
(
max
1≤k≤n

Xk > y
)

+ exp
(
−

x2

2(xy + Bn)

{
1 +

2
3

ln
(
1 +

xy
Bn

)})
;

(ii) If ε̂Xk ≤ 0, then there exists a constant c > 0 such that for any x > 0,

ν(S n ≥ x) ≤ c
Bn

x2 ,

where Bn =
∑n

k=1 ÊX2
k .

Here we give the notations of a G-normal distribution which was introduced by Peng [14].

Definition 2.3. (G-normal random variable) For 0 ≤ σ2 ≤ σ̄2 < ∞, a random variable ξ in (Ω,H , Ê) is
called a G-normalN(0, [σ2, σ̄2]) distributed random variable (write ξ ∼ N(0, [σ2, σ̄2]) under Ê), if for
any ϕ ∈ Cl,Lip(R), the function u(x, t) = Ê

(
ϕ(x +

√
tξ)

)
(x ∈ R, t ≥ 0) is the unique viscosity solution

of the following heat equation:

∂tu −G(∂2
xxu) = 0, u(0, x) = ϕ(x),

where G(α) = (σ̄2α+ − σ2α−)/2.

From Peng [14], if ξ ∼ N(0, [σ2, σ̄2]) under Ê, then for each convex function ϕ,

Ê(ϕ(ξ)) =
1
√

2π

∫ ∞

−∞

ϕ(σ̄x)e−x2/2dx. (2.4)
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If σ = σ̄ = σ, then N(0, [σ2, σ̄2]) = N(0, σ2) which is a classical normal distribution.
In particular, notice that ϕ(x) = |x|p, p ≥ 1 is a convex function, taking ϕ(x) = |x|p, p ≥ 1 in (2.4),

we get

Ê(|ξ|p) =
2σ̄p

√
2π

∫ ∞

0
xpe−x2/2dx < ∞. (2.5)

Equation (2.5) implies that

CV(|ξ|p) =

∫ ∞

0
V(|ξ|p > x)dx ≤ 1 +

∫ ∞

1

Ê(|ξ|2p)
x2 dx < ∞, for any p ≥ 1/2.

Lemma 2.2. (Theorem 4.2 in Zhang [17], Corollary 2.1 in Zhang [18]) Let {X, Xn; n ≥ 1} be a sequence
of i.i.d. random variables in (Ω,H , Ê). Suppose that
(i) lim

c→∞
Ê(X2 ∧ c) is finite;

(ii) x2V(|X| ≥ x)→ 0 as x→ ∞;
(iii) lim

c→∞
Ê(X(c)) = lim

c→∞
Ê((−X)(c)) = 0.

Then for any bounded continuous function ϕ,

lim
n→∞
Ê

(
ϕ

(
S n
√

n

))
= Ê (ϕ(ξ)) ,

and if F(x) := V(|ξ| ≥ x), then

lim
n→∞
V(|S n| > x

√
n) = F(x), if x is a continuous point of F, (2.6)

where ξ ∼ N(0, [σ2, σ̄2]) under Ê, σ̄2 = lim
c→∞
Ê(X2 ∧ c) and σ2 = lim

c→∞
ε̂(X2 ∧ c).

Lemma 2.3. (Lemma 2.1 in Zhang [17]) Let {Xn; n ≥ 1} be a sequence of independent random
variables in (Ω,H , Ê), and 0 < α < 1 be a real number. If there exist real constants βn,k such that

V(|S n − S k| ≥ βn,k + ε) ≤ α, for all ε > 0 k ≤ n,

then
(1 − α)V

(
max
k≤n

(|S k| − βn,k) > x + ε
)
≤ V(|S n| > x), for all x > 0, ε > 0.

3. The main results and the proofs

The results of this article are as follows.

Theorem 3.1. Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random variables in (Ω,H , Ê). Suppose that

CV(X2) < ∞, lim
c→∞
Ê(X(c)) = lim

c→∞
Ê((−X)(c)) = 0. (3.1)

Then for 0 ≤ δ ≤ 1,

lim
ε→0

ε2+2δ
∞∑

n=2

lnδ n
n
V(|S n| ≥ ε

√
n ln n) =

CV(|ξ|2δ+2)
δ + 1

, (3.2)

where, here and hereafter, ξ ∼ N(0, [σ2, σ̄2]) under Ê, σ̄2 = lim
c→∞
Ê(X2 ∧ c) and σ2 = lim

c→∞
ε̂(X2 ∧ c).
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Conversely, if (3.2) holds for δ = 1, then (3.1) holds.

Theorem 3.2. Under the conditions of Theorem 3.1,

lim
ε→0

ε2
∞∑

n=3

1
n ln n

V(|S n| ≥ ε
√

n ln ln n) = CV(ξ2). (3.3)

Remark 3.1. Theorems 3.1 and 3.2 not only extend Theorem 3 in [8] and Theorem 2 in [9],
respectively, from the probability space to sub-linear expectation space, but they also study and obtain
necessary conditions for Theorem 3.1.

Remark 3.2. Under the condition lim
c→∞
Ê(|X| − c)+ = 0 ( lim

c→∞
Ê(X2 − c)+ = 0⇒ lim

c→∞
Ê(|X| − c)+ = 0), it

is easy to verify that Ê(±X) = lim
c→∞
Ê((±X)(c)). So, Corollary 3.9 in Ding [26] has two more conditions

than Theorem 3.2: Ê is continuous and lim
c→∞
Ê(X2 − c)+ = 0. Therefore, Corollary 3.9 in Ding [26] and

Theorem 3.2 cannot be inferred from each other.

Proof of the direct part of Theorem 3.1. Note that

ε2+2δ
∞∑

n=2

lnδ n
n
V(|S n| ≥ ε

√
n ln n)

= ε2+2δ
∞∑

n=2

lnδ n
n
V(|ξ| ≥ ε

√
ln n) + ε2+2δ

∞∑
n=2

lnδ n
n

(
V(|S n| ≥ ε

√
n ln n) − V(|ξ| ≥ ε

√
ln n)

)
:= I1(ε) + I2(ε).

Hence, in order to establish (3.2), it suffices to prove that

lim
ε→0

I1(ε) =
CV(|ξ|2δ+2)
δ + 1

(3.4)

and
lim
ε→0

I2(ε) = 0. (3.5)

Given that lnδ n
n and V(|ξ| ≥ ε

√
ln n) is monotonically decreasing with respect to n, it holds that

I1(ε) = ε2+2δ
∞∑

n=2

lnδ n
n
V(|ξ| ≥ ε

√
ln n)

= ε2+2δ lnδ 2
2
V(|ξ| ≥ ε

√
ln 2) + ε2+2δ

∞∑
n=3

∫ n

n−1

lnδ n
n
V(|ξ| ≥ ε

√
ln n)dx

≤ ε2+2δ lnδ 2
2

+ ε2+2δ
∞∑

n=3

∫ n

n−1

lnδ x
x
V(|ξ| ≥ ε

√
ln x)dx

= ε2+2δ lnδ 2
2

+ ε2+2δ
∫ ∞

2

lnδ x
x
V(|ξ| ≥ ε

√
ln x)dx,

and
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I1(ε) = ε2+2δ
∞∑

n=2

lnδ n
n
V(|ξ| ≥ ε

√
ln n)

= ε2+2δ
∞∑

n=2

∫ n+1

n

lnδ n
n
V(|ξ| ≥ ε

√
ln n)dx

≥ ε2+2δ
∞∑

n=2

∫ n+1

n

lnδ x
x
V(|ξ| ≥ ε

√
ln x)dx

= ε2+2δ
∫ ∞

2

lnδ x
x
V(|ξ| ≥ ε

√
ln x)dx.

Therefore, (3.4) follows from

lim
ε→0

I1(ε) = lim
ε→0

ε2+2δ
∫ ∞

2

lnδ x
x
V(|ξ| ≥ ε

√
ln x)dx

= lim
ε→0

∫ ∞

ε
√

ln 2
2y2δ+1V(|ξ| ≥ y)dy (let y = ε

√
ln x)

=

∫ ∞

0
2y2δ+1V(|ξ| ≥ y)dy =

CV(|ξ|2+2δ)
δ + 1

.

Let M ≥ 40; write AM,ε := exp(Mε−2).

|I2(ε)| ≤ ε2+2δ
∑

2≤n≤[AM,ε ]

lnδ n
n

∣∣∣∣∣∣V
(
|S n|
√

n
≥ ε
√

ln n
)
− V(|ξ| ≥ ε

√
ln n)

∣∣∣∣∣∣
+ε2+2δ

∑
n>[AM,ε ]

lnδ n
n
V(|S n| ≥ ε

√
n ln n) + ε2+2δ

∑
n>[AM,ε ]

lnδ n
n
V(|ξ| ≥ ε

√
ln n)

:= I21(ε) + I22(ε) + I23(ε). (3.6)

Let us first estimate I21(ε). For any β > ε2,

I21(ε) ∼ ε2+2δ
∫ AM,ε

2

lnδ x
x

∣∣∣∣∣∣V
(
|S [x]|
√

[x]
≥ ε
√

ln x
)
− V(|ξ| ≥ ε

√
ln x)

∣∣∣∣∣∣ dx

≤ ε2+2δ
∫ Aβ,ε

2

2 lnδ x
x

dx

+ε2+2δ
∫ AM,ε

Aβ,ε

lnδ x
x

sup
n≥Aβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ ε
√

ln x
)
− V(|ξ| ≥ ε

√
ln x)

∣∣∣∣∣∣ dx

≤ 2β1+δ +

∫ √
M

0
2y1+2δ sup

n≥Aβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ y

)
− F(y)

∣∣∣∣∣∣ dy. (3.7)

By (2.2), Ê(X2 ∧ c) ≤
∫ c

0
V(X2 ≥ x)dx; also, notice that V(X2 ≥ x) is a decreasing function of x.

So, CV(X2) =
∫ ∞

0
V(X2 ≥ x)dx < ∞ implies that lim

c→∞
Ê(X2 ∧ c) is finite and lim

x→∞
x2V(|X| ≥ x) =
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lim
x→∞

xV(X2 ≥ x) = 0. Therefore, (3.1) implies the conditions of Lemma 2.2. From (2.6),

lim
ε→0

sup
n≥Aβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ y

)
− F(y)

∣∣∣∣∣∣ = 0, if y is a continuous point of F. (3.8)

Note that F(y) is a monotonically decreasing function, so its discontinuous points are countable.
Hence (3.8) holds for each y, except on a set with the null Lebesgue measure. Combining
y2δ+1 sup

n≥Aβ,ε

∣∣∣∣V (
|S n |√

n ≥ y
)
− F(y)

∣∣∣∣ ≤ 2Mδ+1/2 for any 0 ≤ y ≤
√

M, by the Lebesgue bounded convergence

theorem, (3.8) leads to the following:

lim
ε→0

∫ √
M

0
y2δ+1 sup

n≥Aβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ y

)
− F(y)

∣∣∣∣∣∣ dy = 0. (3.9)

Let ε → 0 first, then let β→ 0; from (3.7) and (3.9), we get

lim
ε→0

I21(ε) = 0. (3.10)

Next, we estimate that I22(ε). For 0 < µ < 1, let ϕµ(x) ∈ Cl,Lip(R) be an even function such that
0 ≤ ϕµ(x) ≤ 1 for all x and ϕµ(x) = 0 if |x| ≤ µ and ϕµ(x) = 1 if |x| > 1. Then

I(|x| ≥ 1) ≤ ϕµ(x) ≤ I(|x| ≥ µ). (3.11)

Given (2.1) and (3.11), and that X, Xi are identically distributed, for any x > 0 and 0 < µ < 1, we get

V(|Xi| ≥ x) ≤ Ê
[
ϕµ

(Xi

x

)]
= Ê

[
ϕµ

(X
x

)]
≤ V(|X| ≥ µx). (3.12)

Without loss of generality, we assume that σ̄ = 1. For n ≥ exp(Mε−2) ≥ exp(40ε−2), set bn :=
ε
√

n ln n/20; from Proposition 2.1 (ii) and the condition that lim
c→∞
Ê(X(c)) = 0,

n∑
i=1

∣∣∣ÊX(bn)
i

∣∣∣ = n
∣∣∣∣∣ limc→∞
Ê(X(c)) − ÊX(bn)

∣∣∣∣∣ ≤ n lim
c→∞
Ê

∣∣∣X(c) − X(bn)
∣∣∣

= n lim
c→∞
Ê (|X| ∧ c − bn)+

≤ n lim
c→∞

Ê (|X| ∧ c)2

bn
=

nσ̄2

bn
=

20
√

n

ε
√

ln n

≤
ε

2

√
n ln n, for M ≥ 40, n ≥ exp(Mε−2).

Using Lemma 2.1 for {X(bn)
i − ÊX(bn)

i ; 1 ≤ i ≤ n}, and taking x = ε
√

n ln n/2 and y = 2bn = ε
√

n ln n/10
in Lemma 2.1 (i), by Proposition 2.1 (i), Ê(X(bn)

i − ÊX(bn)
i ) = 0, and noting that |X(bn)

i − ÊX(bn)
i | ≤ y,

Bn =
n∑

i=1
Ê(X(bn)

i − ÊX(bn)
i )2 ≤ 4nÊ(X(bn)

i )2 ≤ 4n; combining this with (3.12) we get

V(S n ≥ ε
√

n ln n) ≤ V

 n∑
i=1

(X(bn)
i − ÊX(bn)

i ) ≥ ε
√

n ln n/2

 +

n∑
i=1

V(|Xi| ≥ bn)
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≤ exp
(
−

ε2n ln n
4(ε2n ln n/20 + 4n)

{
1 +

2
3

ln
ε2n ln n

80n

})
+ nV(|X| ≥ µbn)

≤ c(ε2 ln n)−3 + nV(|X| ≥ µε
√

n ln n/20)

from ε2n ln n
4(ε2n ln n/20+4n)

{
1 + 2

3 ln
(
1 + ε2 ln n

80

)}
≥ 3 ln

(
ε2 ln n

80

)
.

Since {−X,−Xi} also satisfies the (3.1), we can replace the {X, Xi} with {−X,−Xi} in the upper form

V(−S n ≥ ε
√

n ln n) ≤ c(ε2 ln n)−3 + nV(|X| ≥ µε
√

n ln n/20).

Therefore
V(|S n| ≥ ε

√
n ln n) � (ε2 ln n)−3 + nV(|X| ≥ cε

√
n ln n).

This implies the following from Markov’s inequality and (2.5),

I22(ε) + I23(ε) � ε2+2δ
∑

n≥AM,ε

lnδ n
n

(
nV(|X| ≥ cε

√
n ln n) +

1
ε6 ln3 n

+
Ê|ξ|6

ε6 ln3 n

)
∼ ε2+2δ

∫ ∞

AM,ε

lnδ xV(|X| ≥ cε
√

x ln x)dx + cε−4+2δ
∫ ∞

AM,ε

dx
x ln3−δ x

≤ ε2+2δ
∫ ∞

Mε−1

2δy
ln1−δ y

V(|X| ≥ cεy)dy + cM−2+δ

� ε2+2δ
∫ ∞

Mε−1
yV(|X| ≥ εy)dy + M−2+δ

≤ ε2δ
∫ ∞

0
zV(|X| ≥ z)dz + M−2+δ

= ε2δCV(X2)/2 + M−2+δ.

Let ε → 0 first, then let M → ∞; we get

lim
ε→0

(I22(ε) + I23(ε)) = 0.

Combining this with (3.10) and (3.6), (3.5) is established. �

Proof of the converse part of Theorem 3.1. If (3.2) holds for δ = 1, then
∞∑

n=2

ln n
n
V(|S n| ≥ ε

√
n ln n) < ∞ for any ε > 0. (3.13)

Take ξ as defined by Lemma 2.2 (Ê|ξ| < ∞ from (2.5)) and the bounded continuous function ψ such
that I(x > qÊ|ξ| + 1) ≤ ψ(x) ≤ I(x > qÊ|ξ|) for any fixed q > 0. Therefore, for any ε > 0, q > 0 and

n ≥ exp
(

qÊ|ξ|+1
ε

)2
, according to (2.1), Lemma 2.2 and the Markov inequality, one has

V(|S n| ≥ ε
√

n ln n) ≤ V(|S n| ≥ (qÊ|ξ| + 1)
√

n) ≤ Ê
(
ψ

(
|S n|
√

n

))
→ Ê (ψ(|ξ|)) ≤ V(|ξ| > qÊ|ξ|) ≤

Ê|ξ|

qÊ|ξ|

=
1
q
.
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From the arbitrariness of q, letting q→ ∞, we get the following for any ε > 0,

V(|S n| ≥ ε
√

n ln n)→ 0, n→ ∞. (3.14)

So, there is an n0 such that V(|S n| ≥ ε
√

n ln n) < 1/4 for n ≥ n0. Now for n ≥ 2n0, if k ≤ n/2, then
n − k ≥ n/2 ≥ n0, and, combining this with (2.1), (3.11) and (3.12), we get that,

V(|S n − S k| ≥ 2ε
√

n ln n) ≤ Ê
(
ϕ1/2

(
|S n − S k|

2ε
√

n ln n

))
= Ê

(
ϕ1/2

(
|S n−k|

2ε
√

n ln n

))
≤ V(|S n−k| ≥ ε

√
(n − k) ln(n − k)) < 1/2.

Also, if n/2 < k ≤ n, then n, k ≥ n/2 ≥ n0; thus,

V(|S n − S k| ≥ 2ε
√

n ln n) ≤ V(|S n| ≥ ε
√

n ln n) + V(|S k| ≥ ε
√

n ln n ≥ ε
√

k ln k) < 1/2.

Taking α = 1/2, βn,k = 0 in Lemma 2.3, for n ≥ 2n0,

V
(
max
k≤n
|S k| ≥ 4ε

√
n ln n

)
≤ V(|S n| ≥ 2ε

√
n ln n).

Since maxk≤n |Xk| ≤ 2 maxk≤n |S k|, it follows that for n ≥ 2n0

V
(
max
k≤n
|Xk| ≥ 8ε

√
n ln n

)
≤ V(|S n| ≥ 2ε

√
n ln n). (3.15)

Let Yk = ϕ8/9

(
Xk

9ε
√

n ln n

)
. Then,

I
(
max
k≤n
|Xk| ≥ 8ε

√
n ln n

)
= 1 − I

(
max
k≤n
|Xk| < 8ε

√
n ln n

)
= 1 −

n∏
k=1

I(|Xk| < 8ε
√

n ln n)

≥ 1 −
n∏

k=1

(1 − Yk).

Since {Xk; k ≥ 1} is a sequence of i.i.d. random variables, {1 − Yk; k ≥ 1} is also a sequence of i.i.d.
random variables, and 1 − Yk ≥ 0; given (2.1), (2.3) and Ê(−X) = −ε̂(X), it can be concluded that,

V
(
max
k≤n
|Xk| ≥ 8ε

√
n ln n

)
≥ Ê

1 − n∏
k=1

(1 − Yk)

 = 1 − ε̂

 n∏
k=1

(1 − Yk)


= 1 −

n∏
k=1

ε̂(1 − Yk) = 1 −
n∏

k=1

(1 − ÊYk)

≥ 1 −
n∏

k=1

e−ÊYk = 1 − e−nÊY ≥ 1 − e−nV(|X|≥9ε
√

n ln n)

∼ nV(|X| ≥ 9ε
√

n ln n).
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Hence, by (3.15) and (3.13)
∞∑

n=2

ln nV(|X| ≥
√

n ln n) < ∞.

On the other hand,
∞∑

n=2

ln nV(|X| ≥
√

n ln n) ∼
∫ ∞

2
ln xV(|X| ≥

√
x ln x)dx ∼

∫ ∞

√
2 ln 2

2yV(|X| ≥ y)dy ∼ CV(X2).

Hence,
CV(X2) < ∞. (3.16)

Next, we prove that lim
c→∞
Ê(X(c)) = lim

c→∞
Ê((−X)(c)) = 0. For c1 > c2 > 0, by (2.2) and (3.16),∣∣∣Ê(±X)(c1) − Ê(±X)(c2)
∣∣∣ ≤ Ê ∣∣∣(±X)(c1) − (±X)(c2)

∣∣∣ = Ê (|X| ∧ c1 − c2)+

≤
Ê(|X| ∧ c1)2

c2
≤

CV(X2)
c2

�
1
c2
.

This implies that
lim

c1>c2→∞

∣∣∣Ê(±X)(c1) − Ê(±X)(c2)
∣∣∣ = 0.

By the Cauchy criterion, lim
c→∞
Ê(X(c)) and lim

c→∞
Ê((−X)(c)) exist and are finite. It follows that lim

c→∞
Ê(X(c)) =

lim
n→∞
Ê(X(n)) := a. So, for any ε > 0, when n is large enough, |Ê(X(n)) − a| < ε; by Proposition 2.1 (iii),

Lemma 2.1 (ii), Ê(−X(n)
k + ÊX(n)

k )2 ≤ 4Ê(X(n)
k )2 ≤ 4CV(X2) and (3.16),

ν
(S n

n
< a − 2ε

)
≤ ν

((S n

n
< a − 2ε,∀1 ≤ k ≤ n, |Xk| ≤ n

)
∪ (∃1 ≤ k ≤ n, |Xk| > n)

)
≤ ν

 n∑
k=1

X(n)
k < (a − 2ε)n

 +

n∑
k=1

V(|Xk| > n)

= ν

 n∑
k=1

(−X(n)
k + ÊX(n)

k ) > (2ε − a)n + nEX(n)

 +

n∑
k=1

V(|Xk| > n)

≤ ν

 n∑
k=1

(−X(n)
k + ÊX(n)

k ) > εn

 +

n∑
k=1

V(|Xk| > n)

�

n∑
k=1
Ê(−X(n)

k + ÊX(n)
k )2

n2 +

n∑
k=1

Ê(|Xk| ∧ n)2

n2

�
1
n
→ 0, n→ ∞.

It is concluded that,

lim
n→∞
V

(S n

n
≥ a − 2ε

)
= 1 for any ε > 0.

If a > 0, taking ε < a/2, then ε1 := a − 2ε > 0, and

lim
n→∞
V

(
|S n|

n
≥ ε1

)
≥ lim

n→∞
V

(S n

n
≥ ε1

)
= 1. (3.17)
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On the other hand, by (3.14),

lim
n→∞
V

(
|S n|

n
≥ ε1

)
≤ lim

n→∞
V

(
|S n| ≥ ε1

√
n ln n

)
= 0,

which contradicts (3.17). It follows that a ≤ 0. Similarly, we can prove that b := lim
c→∞
Ê((−X)(c)) ≤ 0.

From (−X)(c) = −X(c) and

0 ≥ a + b = lim
c→∞

(
Ê(X(c)) + Ê(−X(c))

)
≥ lim

c→∞
Ê

(
X(c) − X(c)

)
= 0,

we conclude that a = b = 0, i.e., lim
c→∞
Ê(X(c)) = lim

c→∞
Ê((−X)(c)) = 0. This completes the proof of

Theorem 3.1. �

Proof of Theorem 3.2. Note that

ε2
∞∑

n=3

1
n ln n

V(|S n| ≥ ε
√

n ln ln n)

= ε2
∞∑

n=3

1
n ln n

V(|ξ| ≥ ε
√

ln ln n) + ε2
∞∑

n=3

1
n ln n

(
V(|S n| ≥ ε

√
n ln ln n) − V(|ξ| ≥ ε

√
ln ln n)

)
:= J1(ε) + J2(ε).

Hence, in order to establish (3.3), it suffices to prove that

lim
ε→0

J1(ε) = CV(ξ2) (3.18)

and
lim
ε→0

J2(ε) = 0. (3.19)

Obviously, (3.18) follows from

lim
ε→0

J1(ε) = lim
ε→0

ε2
∫ ∞

3

1
x ln x

V(|ξ| ≥ ε
√

ln ln x)dx

= lim
ε→0

∫ ∞

ε
√

ln ln 3
2yV(|ξ| ≥ y)dy (let y = ε

√
ln ln x)

=

∫ ∞

0
2yV(|ξ| ≥ y)dy = CV(ξ2).

Let M ≥ 32; write BM,ε := exp(exp(Mε−2)).

|J2(ε)| ≤ ε2
∑

3≤n≤[BM,ε ]

1
n ln n

∣∣∣∣∣∣V
(
|S n|
√

n
≥ ε
√

ln ln n
)
− V(|ξ| ≥ ε

√
ln ln n)

∣∣∣∣∣∣
+ε2

∑
n>[BM,ε ]

1
n ln n

V(|S n| ≥ ε
√

n ln ln n) + ε2
∑

n>[BM,ε ]

1
n ln n

V(|ξ| ≥ ε
√

ln ln n)

:= J21(ε) + J22(ε) + J23(ε). (3.20)
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Let us first estimate J21(ε). For any β > ε2,

I21(ε) ∼ ε2
∫ BM,ε

3

1
x ln x

∣∣∣∣∣∣V
(
|S [x]|
√

[x]
≥ ε
√

ln ln x
)
− V(|ξ| ≥ ε

√
ln ln x)

∣∣∣∣∣∣ dx

≤ ε2
∫ Bβ,ε

3

2
x ln x

dx

+ε2
∫ BM,ε

Bβ,ε

1
x ln x

sup
n≥Bβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ ε
√

ln ln x
)
− V(|ξ| ≥ ε

√
ln ln x)

∣∣∣∣∣∣ dx

≤ 2β +

∫ √
M

0
2y sup

n≥Bβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ y

)
− F(y)

∣∣∣∣∣∣ dy.

Similar to (3.9) we have

lim
ε→0

∫ √
M

0
y sup

n≥Bβ,ε

∣∣∣∣∣∣V
(
|S n|
√

n
≥ y

)
− F(y)

∣∣∣∣∣∣ dy = 0.

Therefore, let ε → 0 first, then let β→ 0; we get

lim
ε→0

J21(ε) = 0. (3.21)

Next, we estimate that J22(ε). Without loss of generality, we still assume that σ̄ = 1. For
n ≥ exp(exp(Mε−2)) ≥ exp(exp(32ε−2)), set an := ε

√
n ln ln n/16; from Proposition 2.1 (ii) and the

condition that lim
c→∞
Ê(X(c)) = 0,

n∑
i=1

∣∣∣ÊX(an)
i

∣∣∣ = n
∣∣∣∣∣ limc→∞
Ê(X(c)) − ÊX(an)

∣∣∣∣∣ ≤ n lim
c→∞
Ê

∣∣∣X(c) − X(an)
∣∣∣

= n lim
c→∞
Ê (|X| ∧ c − an)+

≤ n lim
c→∞

Ê (|X| ∧ c)2

an
=

nσ̄2

an

=
16
√

n

ε
√

ln ln n
≤
ε

2

√
n ln ln n.

Using Lemma 2.1 for {X(an)
i − ÊX(an)

i ; 1 ≤ i ≤ n}, and taking x = ε
√

n ln ln n/2 and y = 2an =

ε
√

n ln ln n/8 in Lemma 2.1 (i), if we note that |X(an)
i − ÊX(an)

i | ≤ y, and Bn ≤ 4n, combined with (3.12)
we get

V(S n ≥ ε
√

n ln ln n) ≤ V

 n∑
i=1

(X(an)
i − ÊX(an)

i ) ≥ ε
√

n ln ln n/2

 +

n∑
i=1

V(|Xi| ≥ an)

≤ exp
(
−

ε2n ln ln n
4(ε2n ln ln n/16 + 4n)

{
1 +

2
3

ln
ε2n ln ln n

64n

})
+nV(|X| ≥ µan)

≤ c(ε2 ln ln n)−2 + nV(|X| ≥ µε
√

n ln ln n/16)

from ε2n ln ln n
4(ε2n ln ln n/16+4n)

{
1 + 2

3 ln
(
1 + ε2 ln ln n

64

)}
≥ 2 ln

(
ε2 ln ln n

64

)
.
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Since {−X,−Xi} also satisfies (3.1), we can replace the {X, Xi} with {−X,−Xi} in the upper form

V(−S n ≥ ε
√

n ln ln n) ≤ c(ε2 ln ln n)−2 + nV(|X| ≥ µε
√

n ln ln n/16).

Therefore
V(|S n| ≥ ε

√
n ln ln n) � (ε2 ln ln n)−2 + nV(|X| ≥ cε

√
n ln ln n).

This implies the following from Markov’s inequality and (2.5):

J22(ε) + J23(ε) � ε2
∑

n≥BM,ε

1
n ln n

(
nV(|X| ≥ cε

√
n ln ln n) +

1
ε4(ln ln n)2 +

Ê|ξ|4

ε4(ln ln n)2

)

∼ ε2
∫ ∞

BM,ε

V(|X| ≥ cε
√

x ln ln x)
ln x

dx + cε−2
∫ ∞

BM,ε

dx
x ln x(ln ln x)2

≤ ε2
∫ ∞

√
Mε−1

y
ln y ln ln y

V(|X| ≥ cεy)dy + cM−1

≤

∫ ∞

√
M

zV(|X| ≥ z)dz + cM−1

→ 0, M → ∞.

Hence
lim
ε→0

(J22(ε) + J23(ε)) = 0.

Combining this with (3.20) and (3.21), (3.19) is established.
�

4. Conclusions

Statistical modeling is one of the key and basic topics in statistical theory research and practical
application research. Under the theoretical framework of traditional probability space, in order to
infer the model, all statistical models must assume that the error (and therefore the response variable)
follows a unique and deterministic probability distribution, that is, the distribution of the model is
deterministic. However, complex data in the fields of economics, finance, and other fields often have
inherent and non negligible probability and distribution uncertainties. The probability distribution
of the response variables that need to be studied is uncertain and does not meet the assumptions of
classical statistical modeling. Therefore, classical probability statistical modeling methods cannot
be used to model these types of data. How to analyze and model uncertain random data has
been an unresolved and challenging issue that has long plagued statisticians. Driven by uncertainty
issues, Peng [13] established a theoretical framework for the sub-linear expectation space from the
perspective of expectations, providing a powerful tool for analyzing uncertainty problems. The sub-
linear expectation has a wide range of potential applications. In recent years, the limit theory for sub-
linear expectation spaces has attracted much attention from statisticians, and a series of research results
have been achieved. This article overcomes the problem of many traditional probability space tools
and methods no longer being effective due to the non additivity of sub-linear expectations and capacity;
it also demonstrates the development of sufficient and necessary conditions for the rate convergence of
logarithmic laws in sub-linear expectation spaces.
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3. P. Erdős, Remark on my paper “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 21 (1950),
138. http://doi.org/10.1214/aoms/1177729897

4. L. E. Baum, M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., 20
(1965), 108–123.

5. C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab., 12 (1975), 173–
175.

6. R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal., 8 (1978), 328–333.
http://doi.org/10.1016/0047-259X(78)90084-2
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