Research article Special Issues

Mixed Chebyshev and Legendre polynomials differentiation matrices for solving initial-boundary value problems

  • Received: 03 March 2023 Revised: 20 July 2023 Accepted: 06 August 2023 Published: 21 August 2023
  • MSC : 33C45, 34A12, 65L60

  • A new form of basis functions structures has been constructed. These basis functions constitute a mix of Chebyshev polynomials and Legendre polynomials. The main purpose of these structures is to present several forms of differentiation matrices. These matrices were built from the perspective of pseudospectral approximation. Also, an investigation of the error analysis for the proposed expansion has been done. Then, we showed the presented matrices' efficiency and accuracy with several test functions. Consequently, the correctness of our matrices is demonstrated by solving ordinary differential equations and some initial boundary value problems. Finally, some comparisons between the presented approximations, exact solutions, and other methods ensured the efficiency and accuracy of the proposed matrices.

    Citation: Dina Abdelhamid, Wedad Albalawi, Kottakkaran Sooppy Nisar, A. Abdel-Aty, Suliman Alsaeed, M. Abdelhakem. Mixed Chebyshev and Legendre polynomials differentiation matrices for solving initial-boundary value problems[J]. AIMS Mathematics, 2023, 8(10): 24609-24631. doi: 10.3934/math.20231255

    Related Papers:

  • A new form of basis functions structures has been constructed. These basis functions constitute a mix of Chebyshev polynomials and Legendre polynomials. The main purpose of these structures is to present several forms of differentiation matrices. These matrices were built from the perspective of pseudospectral approximation. Also, an investigation of the error analysis for the proposed expansion has been done. Then, we showed the presented matrices' efficiency and accuracy with several test functions. Consequently, the correctness of our matrices is demonstrated by solving ordinary differential equations and some initial boundary value problems. Finally, some comparisons between the presented approximations, exact solutions, and other methods ensured the efficiency and accuracy of the proposed matrices.



    加载中


    [1] O. Bazighifan, Oscillatory applications of some fourth-order differential equations, Math. Method. Appl. Sci., 43 (2020), 10276–10286. https://doi.org/10.1002/mma.6694 doi: 10.1002/mma.6694
    [2] J. J. Tyson, B. Novak, A dynamical paradigm for molecular cell biology, Trends Cell Biol., 30 (2020), 504–515. https://doi.org/10.1016/j.tcb.2020.04.002 doi: 10.1016/j.tcb.2020.04.002
    [3] M. Merdan, Perturbation method for solving a model for HIV infection of CD4+ T cells, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 6 (2007), 39–52.
    [4] R. Garde, B. Ibrahim, Á. T. Kovács, S. Schuster, Differential equation-based minimal model describing metabolic oscillations in Bacillus subtilis biofilms, Roy. Soc. Open Sci., 7 (2020), 190810. https://doi.org/10.1098/rsos.190810 doi: 10.1098/rsos.190810
    [5] Q. Zheng, L. Zeng, G. E. Karniadakis, Physics-informed semantic inpainting: Application to geostatistical modeling, J. Comput. Phys., 419 (2020), 109676. https://doi.org/10.1016/j.jcp.2020.109676 doi: 10.1016/j.jcp.2020.109676
    [6] P. Agarwal, A. A. El-Sayed, Vieta-Lucas polynomials for solving a fractional-order mathematical physics model, J. Adv. Differ. Equ., 2020 (2020), 626. https://doi.org/10.1186/s13662-020-03085-y doi: 10.1186/s13662-020-03085-y
    [7] H. Karkera, N. N. Katagi, R. B. Kudenatti, Analysis of general unified MHD boundary-layer flow of a viscous fluid - a novel numerical approach through wavelets, Math. Comput. Simulat., 168 (2020), 135–154. https://doi.org/10.1016/j.matcom.2019.08.004 doi: 10.1016/j.matcom.2019.08.004
    [8] E. M. Abo-Eldahab, R. Adel, H. M. Mobarak, M. Abdelhakem, The effects of magnetic field on boundary layer nano-fluid flow over stretching sheet, Appl. Math. Inform. Sci., 15 (2021), 731–741. https://doi.org/10.18576/amis/150607 doi: 10.18576/amis/150607
    [9] A. F. Koura, K. R. Raslan, K. K. Ali, M. A. Shaalan, Numerical analysis of a spatio-temporal bi modal coronavirus disease pandemic, Appl. Math. Inform. Sci., 16 (2022), 729–737. https://doi.org/10.18576/amis/160507 doi: 10.18576/amis/160507
    [10] M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, Legendre polynomials' second derivative tau method for solving Lane-Emden and Ricatti equations, Appl. Math. Inform. Sci., 17 (2023), 437–445. https://doi.org/10.18576/amis/170305 doi: 10.18576/amis/170305
    [11] D. Abdelhamied, M. Abdelhakem, M. El-Kady, Y. H. Youssri, Adapted shifted ChebyshevU operational matrix of derivatives: Two algorithms for solving even-order bvps, Appl. Math. Inform. Sci., 17 (2023), 505–511. https://doi.org/10.18576/amis/170318 doi: 10.18576/amis/170318
    [12] G. Akram, H. Ur Rehman, Solution of the system of fourth order boundary value problem using reproducing kernel space, J. Appl. Math. Inform., 31 (2013), 55–63. https://doi.org/10.14317/JAMI.2013.055 doi: 10.14317/JAMI.2013.055
    [13] M. Abdelhakem, A. Ahmed, M. El-kady, Spectral monic Chebyshev approximation for higher order differential equations, Math. Sci. Lett., 8 (2019), 11–17. https://doi.org/10.18576/msl/080201 doi: 10.18576/msl/080201
    [14] M. K. Iqbal, M. Abbas, B. Zafar, New quartic B-spline approximations for numerical solution of fourth order singular boundary value problems, Punjab Univ. J. Math., 52 (2020), 47–63.
    [15] A. S. V. R. Kanth, P. M. M. Kumar, Numerical method for a class of nonlinear singularly perturbed delay differential equations using parametric cubic spline, Int. J. Nonlinear Sci. Num., 19 (2018), 357–365. https://doi.org/10.1515/ijnsns-2017-0126 doi: 10.1515/ijnsns-2017-0126
    [16] H. Ahmad, T. A. Khan, P. S. Stanimirovic, I. Ahmad, Modified variational iteration technique for the numerical solution of fifth order KdV type equations, J. Appl. Comput. Mech., 6 (2020), 1220–1227. https://doi.org/10.22055/jacm.2020.33305.2197 doi: 10.22055/jacm.2020.33305.2197
    [17] M. El-Gamel, A. Abdrabou, Sinc-Galerkin solution to eighth-order boundary value problems, SeMA, 76 (2019), 249–270. https://doi.org/10.1007/s40324-018-0172-2 doi: 10.1007/s40324-018-0172-2
    [18] P. Agarwal, M. Attary, M. Maghasedi, P. Kumam, Solving higher-order boundary and initial value problems via Chebyshev-spectral method: Application in elastic foundation, Symmetry, 12 (2020), 987. https://doi.org/10.3390/sym12060987 doi: 10.3390/sym12060987
    [19] R. Pourgholi, A. Tahmasebi, R. Azimi, Tau approximate solution of weakly singular Volterra integral equations with Legendre wavelet basis, Symmetry, 94 (2017), 1337–1348. https://doi.org/10.1080/00207160.2016.1190010 doi: 10.1080/00207160.2016.1190010
    [20] M. Abdelhakem, D. Mahmoud, D. Baleanu, M. El-kady, Shifted ultraspherical pseudo-Galerkin method for approximating the solutions of some types of ordinary fractional problems, Adv. Differ. Equ., 2021 (2021), 110. https://doi.org/10.1186/s13662-021-03247-6 doi: 10.1186/s13662-021-03247-6
    [21] M. Fawzy, H. Moussa, D. Baleanu, M. El-Kady, M. Abdelhakem, Legendre derivatives direct residual spectral method for solving some types of ordinary differential equations, Math. Sci. Lett., 11 (2022), 103–108. https://doi.org/10.18576/msl/110303 doi: 10.18576/msl/110303
    [22] M. Abdelhakem, D. Baleanu, P. Agarwal, H. Moussa, Approximating system of ordinary differential-algebraic equations via derivative of Legendre polynomials operational matrices, Int. J. Mod. Phys. C, 34 (2023), 2350036. https://doi.org/10.1142/S0129183123500365 doi: 10.1142/S0129183123500365
    [23] M. Abdelhakem, Y. H. Youssri, Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems, Appl. Numer. Math., 169 (2021), 243–255. https://doi.org/10.1016/j.apnum.2021.07.006 doi: 10.1016/j.apnum.2021.07.006
    [24] M. Abdelhakem, M. Fawzy, M. El-Kady, H. Moussa, An efficient technique for approximated BVPs via the second derivative Legendre polynomials pseudo-Galerkin method: Certain types of applications, Results Phys., 43 (2022), 106067. https://doi.org/10.1016/j.rinp.2022.106067 doi: 10.1016/j.rinp.2022.106067
    [25] M. Abdelhakem, T. Alaa-Eldeen, D. Baleanu, Maryam G. Alshehri, M. El-kady, Approximating real-life BVPs via Chebyshev polynomials' first derivative Pseudo-Galerkin method, Fractal Fract., 5 (2021), 165. https://doi.org/10.3390/fractalfract5040165 doi: 10.3390/fractalfract5040165
    [26] M. Abdelhakem, A. Ahmed, D. Baleanu, M. El-Kady, Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVPs: Applications to certain types of real-life problems, Comp. Appl. Math., 41 (2022), 253. https://doi.org/10.1007/s40314-022-01940-0 doi: 10.1007/s40314-022-01940-0
    [27] D. Abdelhamied, M. Abdelhakem, M. El-Kady, Y. H. Youssri, Modified shifted Chebyshev residual spectral scheme for even-order BVPs, Math. Sci. Lett., 12 (2023), 15–18. https://doi.org/10.18576/msl/120102 doi: 10.18576/msl/120102
    [28] M. El-Kady, H. Bakheet, M. Khalil, Pseudospectral Chebyshev approximation for solving fourth-order boundary value problems, Int. J. Math. Comput., 1 (2009), 95–105.
    [29] M. Khalil, M. M. El-Kady, H. Bakheet, Pseudospectral Chebyshev approximation for solving higher-order bvps, London: Lambert Academic Publishing, 2012.
    [30] M. Abdelhakem, D. Abdelhamied, M. G. Alshehri, M. El-Kady, Shifted Legendre fractional pseudospectral differentiation matrices for solving fractional differential problems, Fractals, 30 (2022), 2240038. https://doi.org/10.1142/S0218348X22400382 doi: 10.1142/S0218348X22400382
    [31] M. Abdelhakem, M. Biomy, S. Kandil, D. Baleanu, M. El-kady, A numerical method based on Legendre differentiation matrices for higher order ODEs, Inform. Sci. Lett., 9 (2020), 175–180. https://doi.org/10.18576/isl/090303 doi: 10.18576/isl/090303
    [32] A. Ghorbani, D. Baleanu, Fractional spectral differentiation matrices based on Legendre approximation, Inform. Sci. Lett., 2020 (2020), 138. https://doi.org/10.1186/s13662-020-02590-4 doi: 10.1186/s13662-020-02590-4
    [33] M. Abdelhakem, H. Moussa, D. Baleanu, M. El-Kady, Shifted Chebyshev schemes for solving fractional optimal control problems, J. Vib. Control, 25 (2019), 2143–2150. https://doi.org/10.1177/1077546319852218 doi: 10.1177/1077546319852218
    [34] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, New York: Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036114
    [35] A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1
    [36] Y. H. Youssri, W. M. Abd-Elhameed, M. Abdelhakem, A robust spectral treatment of a class of initial value problems using modified Chebyshev polynomials, Math. Method. Appl. Sci., 44 (2021), 9224–9236. https://doi.org/10.1002/mma.7347 doi: 10.1002/mma.7347
    [37] M. Abdelhakem, H. Moussa, Pseudo-spectral matrices as a numerical tool for dealing BVPs, based on Legendre polynomials' derivatives, Alex. Eng. J., 66 (2023), 301–313. https://doi.org/10.1016/j.aej.2022.11.006 doi: 10.1016/j.aej.2022.11.006
    [38] J. Shen, T. Tang, L. L. Wang, Spectral methods: Algorithms, analysis and applications, Springer Science and Business Media, 2011.
    [39] J. Stewart, Single variable essential calculus: Early transcendentals, Belmont: Cengage Learning, 2012.
    [40] T. Sun, L. Yi, A new Galerkin spectral element method for fourth-order boundary value problems, Int. J. Comput. Math., 93 (2016), 915–928. https://doi.org/10.1080/00207160.2015.1011142 doi: 10.1080/00207160.2015.1011142
    [41] W. M. Abd-Elhameed, Y. H. Youssri, Connection formulae between generalized Lucas polynomials and some Jacobi polynomials: Application to certain types of fourth-order BVPs, Int. J. Appl. Comput. Math., 6 (2020), 45. https://doi.org/10.1007/s40819-020-0799-4 doi: 10.1007/s40819-020-0799-4
    [42] W. M Abd-Elhameed, Y. H. Youssri, Explicit shifted second-kind Chebyshev spectral treatment for fractional Riccati differential equation, Comput. Model. Eng. Sci., 121 (2019), 1029–1049. https://doi.org/10.32604/cmes.2019.08378 doi: 10.32604/cmes.2019.08378
    [43] X. Rong, L. Yang, H. Chu, M. Fan, Effect of delay in diagnosis on transmission of COVID-19, Math. Biosci. Eng., 17 (2020), 2725–2740. https://doi.org/10.3934/mbe.2020149 doi: 10.3934/mbe.2020149
    [44] S. E. Moore, E. Okyere, Controlling the transmission dynamics of COVID-19, Commun. Math. Biol. Neurosci., 2022 (2022), 6.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1242) PDF downloads(62) Cited by(4)

Article outline

Figures and Tables

Figures(5)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog