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1. Introduction

The ordinary differential equations (ODEs) pose many engineering [1], biology [2,3], physics [4–6],
and fluid mechanics [7, 8] problems. Its applications have grown in prominence and relevance over
the last several decades, owing primarily to its proven applicability in a wide range of seemingly
disparate and vast disciplines. Recently, many studies have been introduced to solve such boundary
value problems (BVPs) numerically [9–11], including the quintic non-polynomial spline solutions,
the Galerkin algorithm, the quartic spline method, the cubic spline method, the variational iteration
technique, and the sinc-Galerkin method [12–17].

Different types of polynomials are applied via other techniques to approximate the solutions of the
differential equations. The Chebyshev-spectral method is used to solve ODEs in [18]. In [19], the
authors solved ODEs using the Legendre wavelet basis. In addition, Ultraspherical polynomials with
the pseudo-Galerkin method are used in [20]. In [21–26], the authors investigated the derivatives of
Legendre (LPs), Chebyshev polynomials (CHPs) and monic CHPs, respectively. In addition, methods
for higher-order ODEs have been developed in [27].

The pseudospectral approach, unlike the finite differences and finite element methods, is unique for
particular classes of solving ODEs. The pseudospectral method performs well; it saves several orders
of magnitude in computer memory se well as time, [28, 29]. The pseudospectral method has more
specialty than the other methods. When we generate the weight, orthogonality, and nodes, we directly
construct the differentiation matrices (D-matrices). So, we have a direct method to find the derivative of
any order for functions. In ODEs, the unknown function can be found easily without any complicated
steps. Thus, the pseudospectral method can be classified as a significantly important method for solving
ODEs. D-matrices were expanded based on the relationship between the coefficients of derivatives
and those of the function itself. Many authors introduced the D-matrices from the perspective of the
pseudospectral method [30–33].

The spirit of the spectral and pseudospectral methods is the choice of the used polynomials. Many
authors are trying to construct, introduce, and modify new polynomials for the original polynomials.
The authors in [34] defined the monic CHPs. While in [35], the authors introduced modified shifted
LPs. Similarly, modified shifted CPs are investigated in [36]. Other proposals are presented in [37] as
the derivatives of the polynomials.

Consequently, we continued in this direction and investigated modified basis functions. The main
focus is on constructing two sets of polynomials generated from CHPs and LPs. As is known, in the
spectral methods, the unknown function is considered to be a sum of unknown constants multiple by
selected basis functions. Herein, the introduced basis functions will be alternating between CHPs and
LPs. First, the spectral’s sum is chosen as CHPs of even degrees, and LPs of odd degrees are applied.
The newly generated polynomials will be called Chebyshev-Legendre polynomials (CH-L)Ps.
Additionally, recurrence and other relations are investigated for the (CH-L)Ps. Moreover, the
associated Gauss-Lobatto quadrature (GLQ) zeros and weights dependent on the Chebyshev
GLQ (CH-GLQ) and Legendre GLQ (L-GLQ) are determined. Consequently, the new
D-matrices ((CH-L) D-matrices) is built. Similarly, D-matrices are constructed for the LPs even terms
and CHPs odd terms (i.e., Legendre-Chebyshev polynomials (L-CH)Ps).

Our paper consists of seven sections. In Section (2), we mention the main definitions and relations
that we use. In Section (3), we generate the mixed basis functions and their properties, like the
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recurrence relation, corresponding weights and some relations, that are used in our method. In
Section (4), two D-matrices are formed with two GLQs. In Section (5), the error analysis determines
the error order of the presented method. The method of obtaining the solution through the use of our
techniques to solve ODEs is shown in Section (6). Finally, we solve some problems in Section (7).

2. Preliminaries

Through this section, a brief of the needed concepts definitions is presented. The CHPs, Tn(ξ);
n = 0, 1, · · · , are the solutions of the following Chebyshev’s differential equation [28, 34]:

(1 − ξ2)
d2 f
dξ2 − ξ

d f
dξ
+ n2 f = 0 , (2.1)

where, ξ ∈ [−1, 1].
Similar results can be obtained via the following recurrence formula:

Tn+1(ξ) = 2ξTn(ξ) − Tn−1(ξ) , n = 1, 2, 3, ... , (2.2)

where T0(ξ) = 1, and T1(ξ) = ξ.
CHPs form an orthogonal set as follows:∫ 1

−1
Tn(ξ)Tm(ξ)

1√
1 − ξ2

dξ =
cnπ

2
δmn , (2.3)

where δnm is the Kronecker delta, c0 = 2 and cn = 1 for n > 0.
CHPs are bounded according to the following property:

|Tn(ξ)| ≤ 1 , n = 0, 1, · · · . (2.4)

The N + 1 CH-GLQ points are given by

ξ j = cos
π j
N
, j = 0, 1, ...N , (2.5)

and the quadrature weights are given by

w j =
πθ j

N
, 0 ≤ j ≤ N , (2.6)

where θ0 = θN =
1
2

, θ j = 1, and 0 < j < N. The discrete inner product of the CHPs is defined as:

⟨Tn,Tm⟩N,w =
π

2θn
δmn . (2.7)

The LPs, Pn(ζ) ; n = 0, 1, 2, · · · , are the solutions of the following Legendre differential
equation [38]:

(1 − ζ2) f
′′

− 2ζ f
′

+ n(n + 1) f = 0 ,
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where ζ ∈ [−1, 1].
LPs can be generated by using the following relation:

(n + 1)Pn+1(ζ) = (2n + 1)ζPn(ζ) − nPn−1(ζ) , (2.8)

with the initial P0(ζ) = 1 and P1(ζ) = ζ, which are orthogonal by satisfying the following orthogonal
relation: ∫ 1

−1
Pm(ζ)Pn(ζ)dζ =

2
2n + 1

δmn . (2.9)

The boundedness of LPs can be given by:

|Pn(ζ)| ≤ 1 , n = 0, 1, · · · . (2.10)

Unlike CH-GLQ points, the N + 1 L-GLQ points cannot be obtained exactly. Thus, it is necessary to
numerically solve the equation (1 − ζ2)P′N(ζ) = 0 to get the points. The general form for the GLQ
weights is given by

w j =
2

N(N + 1)[PN(ζ j)]2 , 0 ≤ j ≤ N , (2.11)

and the discrete inner product is given by

⟨Pn, Pm⟩N,w =


0, n , m ,

2
2n + 1

, n = m , N ,

2
N
, n = m = N .

(2.12)

As in the spectral method, the function, f (ξ), in the pseudospectral method can be expanded as
follows [38]:

fN(ξ) =
N∑

k=0

αkqk(ξ) , (2.13)

such that {αk}
N
0 denotes arbitrary constants and {qk}

N
0 is a set of orthogonal polynomials.

Using the discrete inner product with {ξ j,w j}
N
j=o as the associated GLQ points and weights we get

αk =
1

⟨qk, qk⟩N,w

N∑
j=0

qk(ξ j) f (ξ j)w j, k = 0, 1, 2...N . (2.14)

Substituting Eq (2.14) into Eq (2.13) gives

f (ξ) =
N∑

j=0

N∑
k=0

w j

⟨qk, qk⟩N,w
qk(ξ j)qk(ξ) f (ξ j) . (2.15)

This approximation is actually represented not by its coefficients but by its values of f (ξ j) at N + 1
GLQ points ξ j, j = 0, 1, 2...N.
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In the pseudospectral D-matrices, we want to evaluate different derivatives of the approximation
given by Eq (2.15):

f (n)
N (ξi) =

N∑
j=0

d(n)
i j f (ξ j), i = 0, 1, ...,N, (2.16)

where

d(n)
i j = w j

N∑
k=0

1
⟨qk, qk⟩N,w

qk(ξ j)qk(ξ) . (2.17)

Equation (2.16) can be written in the following matrix form:

f (n)
N = D(n) fN . (2.18)

The matrices {D(n) : n = 1, 2, ...} are called the D-matrices.

3. Chebyshev and Legendre polynomials mixed basis function

In this section, we shall define a mixed basis function constructed from CHPs and LPs.

Definition 3.1. The set {ϕ j(z)}Nj=0 of mixed polynomials that are constructed by alternating between
CHPs and LPs is called a set of Chebyshev-Legendre polynomials (CH-L)Ps if

ϕ j(z) =

T j(z) , j = 2i

P j(z) , j = 2i + 1
i = 0, 1, ..N. (3.1)

Definition 3.2. The set {ψ j(z)}Nj=0 of mixed polynomials that are constructed by alternating between
LPs and CHPs is called a set of Legendre-Chebyshev polynomials (L-CH)Ps if

ψ j(z) =

P j(z) , j = 2i

T j(z) , j = 2i + 1
i = 0, 1, ..N. (3.2)

Now, the recurrence and some essential relations will be investigated.

3.1. Recurrence relations

Since two polynomials will be used, we shall modify the recurrence relations of CHPs and LPs.

Lemma 3.1. Let {T j(ξ)}nj=o denote CHPs. Then,

Tn(ξ) = 2(2ξ2 − 1)Tn−2(ξ) − Tn−4(ξ) , n = 4, 5, ...N. (3.3)

Proof. It is straightforward by using Eq (2.2).

Lemma 3.2. Let {P j(ζ)}Nj=o denote LPs. Then,

Pn(ζ) =
[
(2n − 1)(2n − 3)

n(n − 1)
ζ2 −

(2n − 1)(n − 2)2

n(n − 1)(2n − 5)
−

n − 1
n

]
Pn−2(ζ)−[

(n − 3)(2n − 1)(n − 2)
n(n − 1)(2n − 5)

]
Pn−4(ζ) , n = 4, 5, ...N.

(3.4)
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Proof. The proof is straightforward by using Eq (2.8).

The following will present the recurrence relations for {ϕn(z)}Nn=0 and {ψn(z)}Nn=0.

Corollary 3.1. Let {ϕn(z)}Nn=0 denote the (CH-L)Ps defined by Definition (3.1). Then

ϕn(z) =
[
2(2z2 − 1) + δg1

(
−4n + 3
n(n − 1)

z2 +
4n2 − 14n + 9

n(n − 1)(2n − 5)

)]
ϕn−2(z) (3.5)

−

[
1 − δg1

4n2 − 12n + 6
n(n − 1)(2n − 5)

]
ϕn−4(z) n = 4, 5, ...N,

where g =GCD (n, 2), ϕ0(z) = 1, ϕ1(z) = z, ϕ2(z) = 2z2 − 1 and ϕ3(z) =
1
2

(5z3 − 3z).

Proof. If n is even, then δg1 = 0. That transforms Eq (3.5) to Eq (3.3). For the odd case for n, δg1 = 1.
With simple calculations Eq (3.5) takes the form of Eq (3.4).

We can estimate the following lemma by using similar steps as for the previous lemma.

Corollary 3.2. Let {ψn(z)}Nn=0 denote the (L-CH)Ps defined by Definition (3.2). Then

ψn(z) =
[
2(2z2 − 1) + δg2

(
−4n + 3
n(n − 1)

z2 +
4n2 − 14n + 9

n(n − 1)(2n − 5)

)]
ψn−2(z) (3.6)

−

[
1 − δg2

4n2 − 12n + 6
n(n − 1)(2n − 5)

]
ψn−4(z) n = 4, 5, ...N,

where g =GCD (n, 2), ψ0(z) = 1, ψ1(z) = z, ψ2(z) =
1
2

(3z2 − 1) and ψ3(z) = 4z3 − 3z.

3.2. Weights and orthogonal relations

This section will discuss the orthogonal relationship between CHPs and LPs. This requires
investigating important integration-type relations between the two novel constructed
polynomials {ϕ j(z)}Nj=0 and {ψ j(z)}Nj=0.

Recall that we let f (ξ) be an integral odd function. Then, the integration
∫ a

−a
f (ξ)dξ is equal to

zero. Moreover, if n is even (odd), then the CHPs and LPs are even (odd) functions. Consequently, the
following corollary will be fulfilled.

Corollary 3.3. Let {Tn(z)}Nn=0 and {Pm(z)}Nm=0 denote CHPs and LPs, respectively. Then∫ 1

−1
T2n(z)P2m+1(z) w(z) dz =

∫ 1

−1
T2n+1(z)P2m(z) w(z) dz = 0 , (3.7)

where
w(z) = 1 , (3.8)

or
w(z) =

1
√

1 − z2
. (3.9)
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By using the orthogonal properties of CHPs and LPs and Corollary (3.3), it will be an easy task to
prove the following theorems.

Theorem 3.1. Let {ϕn(z)}Nn=0 denote a set of (CH-L)Ps. Then, {ϕn(z)}Nn=0 satisfies the following:

∫ 1

−1
ϕn(z)ϕm(z)w(z)dz =



0 : |n − m| = 2i − 1 ,w(z) =
1

√
1 − z2

or w(z) = 1 ,

π : n = m = 0 , w(z) =
1

√
1 − z2

,

π

2
: n = m = 2i , w(z) =

1
√

1 − z2
,

2
2n + 1

: n = m = 2i − 1 , w(z) = 1 ,

(3.10)

where i = 1, 2, · · · .

Theorem 3.2. Let {ψn(z)}Nn=0 denote a set of (L-CH)Ps. Then, {ψn(z)}Nn=0 satisfies the following:

∫ 1

−1
ψn(z)ψm(z)w(z)dz =



0 : |n − m| = 2i + 1 ,w(z) =
1

√
1 − z2

or w(z) = 1 ,

2
2n + 1

: n = m = 2i, w(z) = 1 ,
π

2
: n = m = 2i + 1, w(z) =

1
√

1 − z2
,

(3.11)

where i = 0, 1, 2, · · · .
The following section is devoted to establishing and constructing the pseudospectral D-matrices

that use the investigated novel (CH-L)Ps, {ϕn(z)}Nn=0 and (L-CH)Ps, {ψn(z)}Nn=0, as trial functions.

4. Pseudospectral Chebyshev and Legendre differentiation matrices

The introduced mixed polynomials are classified as (CH-L)Ps and (L-CH)Ps. Hence, two main
D-matrices can be constructed.

4.1. Chebyshev-Legendre differentiation matrices

Consider the approximation of f (z) as a summation of the basis function ϕn(z):

f (z) =
N∑

n=0

anϕn(z). (4.1)

In the following subsections, the used zeros will be CH-GLQ points ({ξi}
N
i=0) and L-GLQ points ({ζi}

N
i=0).
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4.1.1. Chebyshev-Gauss-Lobatto points

Lemma 4.1. Consider the expansion given by Eq (4.1) associated with N + 1 CH-GLQ points. Then,
the spectral expansion constants can be given as follows:

an =



2θn

N

N∑
j=o
θ j f (ξ j)ϕn(ξ j) : n is even,

1
αn

N∑
j=0

2
N(N + 1)P2

N(ζ j)
f (ζ j)ϕn(ξ j) : n is odd,

(4.2)

where

θn =

1/2 : n = 0 = N,

1 : 0 < n < N,

and

αn =


2

2n + 1
: 0 ≤ n < N,

2
N

: n = N.

Proof. The expansion given by Eq (4.1) can be written as follows:

f (ξ) =
⌊N/2⌋∑
n=0

a2nϕ2n(ξ) +
⌈N/2⌉∑
n=1

a2n−1ϕ2n−1(ξ). (4.3)

Then, by using Theorem (3.1), a2n and a2n−1 can be determined to get the following:

f (ξ) =
⌊N/2⌋∑
n=0

2θ2n

N

N∑
j=0

θ j f (ξ j)ϕ2n(ξ j)ϕ2n(ξ)+

⌈N/2⌉∑
n=1

1
α2n−1

N∑
j=0

2
N(N + 1)P2

N(ζ j)
f (ζ j)ϕ2n−1(ζ j)ϕ2n−1(ξ).

Comparing the above equation with Eq (4.3) completes the proof.

Theorem 4.1. Let f (ξ) be real valued function that satisfies Lemma (4.1). Then, its derivative can be
obtained by

D1Ch f (ξ)=
[
D1Ch

]
·

[
f (ξ)
f (ζ)

]
, (4.4)

where D1Ch f (ξ) = ( f ′(ξ0), f ′(ξ1), · · · , f ′(ξN))T , f (ξ) = ( f (ξ0), f (ξ1), · · · , f (ξN))T ,
f (ζ) = ( f (ζ0), f (ζ1), · · · , f (ζN))T ,

D1Ch =
[
d11 d12

]
, (4.5)
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d11 =



d1100 d1101 · · · d110N

d1110 d1111 · · · d111N

...
... · · ·

...

d11N0 d11N1 · · · d11NN


, (4.6)

d11i, j =

⌊N/2⌋∑
n=0

2θ2nθ j

N
ϕ2n(ξ j)ϕ′2n(ξi), (4.7)

d12 =



d1200 d1201 · · · d120N

d1210 d1211 · · · d121N

...
... · · ·

...

d12N0 d12N1 · · · d12NN


, (4.8)

d12i, j =

⌈N/2⌉∑
n=1

1
α2n−1

2
N(N + 1)P2

N(ζ j)
ϕ2n−1(ζ j)ϕ′2n−1(ξi). (4.9)

Proof. By using Lemma (4.1) we get

f (ξ) =
N∑

j=0

⌊N/2⌋∑
n=0

2θ2nθ j

N
f (ξ j)ϕ2n(ξ j)ϕ2n(ξ) +

⌈N/2⌉∑
n=1

1
α2n−1

2
N(N + 1)P2

N(ζ j)
f (ζ j)ϕ2n−1(ζ j)ϕ2n−1(ξ)

 .
Then, by differentiating the above equation and collocating it by CH-GLQ points we get

f ′(ξi) =
N∑

j=0

d11i, j f (ξ j) + d12i, j f (ζ j) , (4.10)

where:

d11i, j =

⌊N/2⌋∑
n=0

2θ2nθ j

N
ϕ2n(ξ j)ϕ′2n(ξi) ,

d12i, j =

⌈N/2⌉∑
n=1

1
α2n−1

2
N(N + 1)P2

N(ζ j)
ϕ2n−1(ζ j)ϕ′2n−1(ξi) .

The abbreviation “Ch” in Eq (4.4) denotes that the points used are CH-GLQ points.

4.1.2. Legendre-Gauss-Lobatto points

Similar to the above subsection, but using L-GLQ {ζ j}
N
j=0 points instead of CH-GLQ points, we have

D1Lg f (ζ)=
[
D1Lg

]
·

[
f (ξ)
f (ζ)

]
, (4.11)
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where D1Lg f (ζ) = ( f ′(ζ0), f ′(ζ1), · · · , f ′(ζN))T ,

D1Lg =
[
d13 d14

]
, (4.12)

d13 =



d1300 d301 · · · d130N

d1310 d1311 · · · d131N

...
... · · ·

...

d13N0 d13N1 · · · d13NN


, (4.13)

d13i, j =

⌊N/2⌋∑
n=0

2θ2nθ j

N
ϕ2n(ξ j)ϕ′2n(ζi) , (4.14)

d14 =



d1400 d1401 · · · d140N

d1410 d1411 · · · d141N

...
... · · ·

...

d14N0 d14N1 · · · d14NN


, (4.15)

d14i, j =

⌈N/2⌉∑
n=1

1
α2n−1

2
N(N + 1)P2

N(ζ j)
ϕ2n−1(ζ j)ϕ′2n−1(ζi) . (4.16)

Alternatively, it may be written as follows:

f ′(ζi) =
N∑

j=0

d13i, j f (ξ j) + d14i, j f (ζ j) . (4.17)

The abbreviation “Lg” denotes that the points used are L-GLQ points.

4.2. Legendre-Chebyshev differentiation matrices

In this subsection, the (L-CH)Ps will be used to construct another two matrices. To avoid redundant
work, we shall only define the symbols for the matrices. The matrices D2Ch and D2Lg represent
the (L-Ch) D-matrices using CH-GLQ points and L-GLQ points, respectively.

D2Ch f (ξ)=
[
D2Ch

]
·

[
f (ξ)
f (ζ)

]
, (4.18)

where,
D2Ch =

[
d21 d22

]
, (4.19)

d21i, j =

⌊N/2⌋∑
n=0

1
α2n

2
N(N + 1)P2

N(ζ j)
ψ2n(ζ j)ψ

′

2n(ξi), (4.20)

AIMS Mathematics Volume 8, Issue 10, 24609–24631.



24619

d22i, j =

⌈N/2⌉∑
n=1

2θ2n−1θ j

N
ψ2n−1(ξ j)ψ

′

2n−1(ξi). (4.21)

Also,

D2Lg f (ζ)=
[
D2Lg

]
·

[
f (ξ)
f (ζ)

]
, (4.22)

where,
D2Lg =

[
d23 d24

]
, (4.23)

d23i, j =

⌊N/2⌋∑
n=0

1
α2n

2
N(N + 1)P2

N(ζ j)
ψ2n(ζ j)ψ′2n(ζi), (4.24)

d24i, j =

⌈N/2⌉∑
n=1

2θ2n−1θ j

N
ψ2n−1(ξ j)ψ′2n−1(ζi). (4.25)

4.3. Test functions

Herein, the investigated matrices will be used as differentiation tools. Consider the following
functions:

f1(z) = z2, f2(z) = ez and f3(z) = sinπz. Tables 1–3 show the maximum absolute error (MAE)
for the derivatives of the functions f1(z), f2(z) and f3(z) corresponding to different values of N. The
results were compared with the obtained results by using the CHPs D-matrix (DCh) and LPs
D-matrix (DLg).

Table 1. The MAE for f1(z).

N D1Ch D1Lg D2Ch D2Lg DCh DLg
4 4.4409e-16 4.4409e-16 8.8818e-16 8.8818e-16 6.6613e-16 4.4409e-16
8 6.6613e-16 8.8818e-16 3.7303e-14 3.7303e-14 7.1054e-15 3.5527e-14
12 6.0396e-14 6.0396e-14 1.6342e-13 1.6342e-13 1.2079e-13 7.8160e-14
16 2.1316e-14 2.1316e-14 1.9895e-13 1.9895e-13 4.8850e-14 1.2079e-13

Table 2. The MAE for the first derivative of f2(z).

N D1Ch D1Lg D2Ch D2Lg DCh DLg
6 1.09e-04 1.09e-04 8.99e-05 8.99e-05 8.72e-05 2.00e-03
8 5.44e-07 5.44e-07 4.06e-07 4.06e-07 3.91e-07 1.77e-05
10 1.64e-09 1.64e-09 1.13e-09 1.13e-09 1.09e-09 8.41e-08
12 3.64e-12 3.64e-12 2.48e-12 2.48e-12 2.45e-12 2.48e-10
14 6.28e-13 6.28e-13 7.07e-13 7.07e-13 1.09e-12 7.01e-13
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Table 3. The MAE for the first derivative of f3(z).

N D1Ch D1Lg D2Ch D2Lg DCh DLg
6 1.93e-01 1.93e-01 1.47e-01 1.47e-01 1.47e-01 1.93e-01
8 1.08e-02 1.08e-02 7.50e-02 7.5e-02 7.45e-03 1.08e-02
10 3.50e-04 3.50e-04 2.22e-04 2.22e-04 2.23e-04 3.50e-04
12 7.45e-06 7.45e-06 4.41e-06 4.41e-06 4.41e-06 7.46e-06
14 1.12e-07 1.12e-07 6.24e-08 6.24e-08 6.24e-08 1.12e-07

Before starting the problem formulation, the method of obtaining the solution and the numerical
simulation, the expansion’s convergence must be guaranteed.

5. Error analysis

In this section, the investigation of the error analysis of the presented method will be proved. This
will prove the accuracy of our approach.

Lemma 5.1. [39] Consider the function f (z) that satisfies the following:

(1) f (k) = ak.
(2) f (z) is a positive, continuous, and decreasing function for z ⩾ k.
(3)

∑
a j is convergent and Rk =

∑∞
j=k+1 an;

then,

Rk ⩽

∫ ∞

k
f (z) dz. (5.1)

Lemma 5.2. The (CH-L)Ps, “ϕn(z)” and the (L-CH)Ps, “ψn(z)” are bounded such that

|ϕn(z)| ≤ 1 , |ψn(z)| ≤ 1 , (5.2)

where n ≥ 0.

Proof. It is straightforward by using Eqs (2.4) and (2.10).

Theorem 5.1. If a continuous function f (z), z ∈ [−1, 1], and | f (q)(z)| < R can be expanded as an infinite

sum of (CH-L)Ps or (L-CH)Ps as f (z) =
∞∑

n=0
anϕn(z) or f (z) =

∞∑
n=0

anψn(z), then

|an| ≲
1

nq−1 , (5.3)

where q ∈ N.

Proof. Let f (z) be a function that can be expressed as an infinite sum of (CH-L)Ps, i.e.,

AIMS Mathematics Volume 8, Issue 10, 24609–24631.



24621

f (z) =
∞∑

n=0
anϕn(z). Then according to Eq (3.10),

an =



2
π

1∫
−1

f (z)ϕn(z)
1

√
1 − z2

dz , n = 2i,

2n + 1
2

1∫
−1

f (z)ϕn(z)dz , n = 2i + 1,

i = 0, 1, 2, · · · . (5.4)

As special case of Theorem 2 in [36] and Theorem 4 in [35] we have

|an| ≲


R
nq , n = 2i,

2qR
nq−1 , n = 2i + 1,

i = 0, 1, 2, · · · . (5.5)

A similar result can be proved by using (L-CH)Ps.

Theorem 5.2. Suppose that f (z) follows the assumptions of Theorem (5.1). Then,

| f − fN | ≲ O
(

1
Nq−2

)
, (5.6)

where fN(z) =
N∑

n=0
an ϕn(z).

Proof. Since f (z) =
∞∑

n=0
an ϕn(z) and fN(z) =

N∑
n=0

an ϕn(z),

| f − fN | =

∣∣∣∣∣∣∣
∞∑

n=N+1

an ϕn(z)

∣∣∣∣∣∣∣ ≲
∣∣∣∣∣∣∣
∞∑

n=N+1

an

∣∣∣∣∣∣∣ . (5.7)

Using Lemma (5.1) and Theorem (5.1) we have

| f − fN | =

∫ ∞

N
a(x) dx ≲ O

(
1

Nq−2

)
.

The next theorem concerns the stability of the error, which estimates the error propagation.

Theorem 5.3. Let fN and fN+1 be two successive approximations of the function f (z) that satisfies
Theorem (5.2). Then

| fN − fN+1| ≲ O
(

1
Nq−2

)
. (5.8)

AIMS Mathematics Volume 8, Issue 10, 24609–24631.



24622

Proof. Since f (z) satisfies Theorem (5.2), it follows that

| f − fN | ≲ O
(

1
Nq−2

)
(5.9)

and

| f − fN+1| ≲ O
(

1
(N + 1)q−2

)
. (5.10)

Thus

| fN − fN+1| ≲ O
(

1
Nq−2

)
+ O

(
1

(N + 1)q−2

)
< O

(
1

Nq−2

)
. (5.11)

6. Problem formulation and the method of obtaining the solution

The proposed method for solving ODEs with the presented matrices will be introduced in this
section. Consider the ODEs as follows:

F
(
z, c0(z), c1(z), .., ck(z), f (z), f

′

(z), ..., f (n)(z)
)
= 0 (6.1)

for z ∈ [−1, 1], subject to the following n initial and boundary conditions:

d f s(−1)
dzs = bs,

d f m(1)
dzm = em, (6.2)

where s = 0, 1, · · · , l, m = 0, 1, · · · , r, k, n, l, r, ∈ Z+, ck(z) denotes real functions of z, and bs, em ∈ R.
The next subsection will be devoted to solving the BVPs given by Eqs (6.1) and (6.2) using the

(CH-L) D-matrices.

6.1. Chebyshev-Legendre differentiation matrices for solving ordinary differential equations

As mentioned in Eqs (4.10) and (4.17), the first derivative of the unknown function can be written
as:

f ′(z) = D(CH−L) · f (z) , (6.3)

where

z = (ξ0, ξ1, ...ξN , ζ0, ζ1, ..., ζN)T , D(CH−L) =

[
d11 d12
d13 d14

]
. (6.4)

The second order derivative can be approximated by D(CH−L)
(2) = D(CH−L) · D(CH−L). So, the nth

derivative can be written as
f (n)(z) = D(CH−L)

(n) · f (z). (6.5)

By applying Eq (6.5) to the BVPs given by Eqs (6.1) and (6.2), we have

F
(
z, c0(z), c1(z), ck(z), f (z),D(CH−L) · f (z), ...,D(CH−L)

(n) · f (z)
)
= 0, (6.6)
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N∑
j=0

d11(s)
0, j f (ξ j) + d12(s)

0, j f (ζ j) = bs,

N∑
j=0

d13(s)
0, j f (ξ j) + d14(s)

0, j f (ζ j) = bs , (6.7)

N∑
j=0

d11(m)
N, j f (ξ j) + d12(m)

N, j f (ζ j) = em,

N∑
j=0

d13(m)
N, j f (ξ j) + d14(m)

N, j f (ζ j) = em . (6.8)

Consider Eqs (4.10), (4.17), (6.4) and (6.5); Eqs (6.6)–(6.8) will be transformed into an algebraic
system of the unknown function f (z). This system can be solved by any solver.

6.2. Legendre-Chebyshev differentiation matrices for solving change: ordinary differential equations

Similar procedures can be executed by using (L-CH)Ps. However, instead, we will use the
following:

f ′(ξi) =
N∑

j=0

d21i, j f (ξ j) + d22i, j f (ζ j) , (6.9)

f ′(ζi) =
N∑

j=0

d23i, j f (ξ j) + d24i, j f (ζ j) , (6.10)

where d21i, j, d22i, j, d23i, j and d22i, j are defined in Eqs (4.20, 4.21, 4.24, 4.25). Hence, the derivative
of the unknown function can be written in the form:

f ′(z) = D(L−CH) · f (z) , (6.11)

where:

D(L−CH) =

[
d21 d22
d23 d24

]
. (6.12)

7. Numerical examples

This section applies the D-matrices to several ODEs. Then, comparisons with exact solutions and
other numerical methods are made. These comparisons show the efficiency of our mixed matrices.

These simulations were conducted by using an Intel® CoreT M i7-4500 CPU @ 1.80GHz, 2.40
GHz, and with a SSD hard disk. The software used are MATLAB R2013a and Mathematics 11.

Example 7.1. Consider the following fourth-order equation [40]:

f (4)(z) + 4 f (z) = 1, z ∈ [−1, 1], f (±1) = f ′′(±1) = 0,

with the exact solution

f (z) =
1
4

[
1 −

2(sin 1 sinh 1 sin z sinh z + cos 1 cosh 1 cos z cosh z)
cos 2 + cosh 2

]
.

One of the applications of ODEs involves studying the transverse vibration of a uniform beam. This
specific scenario can be effectively modeled by using a fourth-order ODE, which describes the

AIMS Mathematics Volume 8, Issue 10, 24609–24631.



24624

relationship between the beam’s deflection and the forces acting upon it. By applying the presented
matrices to the equation, the results were obtained as reported in Table 4. The table shows that the
presented matrices are more accurate and more efficient than the method in [40]. The stability of the
approximate solution is reported in Figures 1 and 2.

Table 4. The MAE for Example (7.1).

N CH-L L-CH [40]
8 6.32e-05 5.97e-05 8.65e-4
12 3.21e-09 2.98e-09 4.90e-6
16 4.55e-11 2.51e-11 1.25e-7
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Figure 1. Log error by using L-CH for Example (7.1).
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Figure 2. MAE for several values of N obtained by using L-CH for Example (7.1).
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Example 7.2. Consider the obtained fourth-order equation [41]:

32 f (4)(z) − 8 f (2)(z) − 2 f (z) = (z − 5)e
z+1

2 , z ∈ [−1, 1],
f (−1) = 1, f ′(−1) = 0, f (1) = 0, f ′(1) = −e/2 ,

with the exact solution
f (z) =

1 − z
2

e
1+z

2 .

According to Table 5, the presented matrices achieved higher accuracy at N = 8, 12, and almost the
same result at N = 14. Those results showed the efficiency of the constructed matrices. A comparison
of the exact and approximate solutions is reported in Figure 3 for N = 14.

Table 5. The MAE for Example (7.2).

N CH-L L-CH [41]
8 2.27e-04 2.63e-04 1.92e-03
12 5.25e-09 4.42e-09 2.29e-07
14 1.86e-08 5.60e-09 3.49e-09

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

f(z) Exact

f(z) Appr

Figure 3. The approximate solution and the exact solution for N = 14 by using L-CH for
Example (7.2).

Example 7.3. Consider the following nonlinear Ricatti equation [42]:

2 f ′(z) + f 2(z) = 1 , z ∈ [−1, 1] ,
f (−1) = 0 ,

with exact solution
f (z) = tanh(

z + 1
2

).

A point-wise absolute error comparison is shown in Table 6 and Figure 4 for this problem at N = 12.
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Table 6. The point-wise absolute error for Example (7.3).

z CH-L L-CH [42]
0 1.11e-16 3.49e-15 0
0.2 8.47e-13 7.43e-12 1.51e-11
0.4 3.71e-11 1.08e-10 3.48e-11
0.6 5.55e-11 1.35e-10 1.42e-10
0.8 1.95e-11 4.92e-12 2.78e-11
1 5.65e-10 2.32e-11 1.58e-11
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Figure 4. Point-wise absolute error obtained by using L-CH at N = 12 for Example (7.3).

Example 7.4. The following nonlinear system describes the effect of COVID-19 [26, 43, 44]:

f ′1(z) = −(a1 f3(z) + a2 f4(z) + a3 f5(z) + a4 f8(z)) f1(z) − r1 f1(z) + r2 f2(z),
f ′2(z) = r1 f1(z) − r2 f2(z),
f ′3(z) = (a1 f3(z) + a2 f4(z) + a3 f5(z) + a4 f8(z)) f1(z) − ω f3(z),
f ′4(z) = φω f3(z) − (η + κ) f4(z),
f ′5(z) = (1 − φ)ω f3(z) − (β + κ) f5(z),
f ′6(z) = η f4(z) + β f5(z) − (m + κ) f6(z),
f ′7(z) = m f6(z),
f ′8(z) = g1 f3(z) + g2 f4(z) + g3 f5(z) − (e + ε) f8(z),

(7.1)

and

f1(0) = 11081000, f2(0) = 159, f3(0) = 399,
f4(0) = 28, f5(0) = 54, f6(0) = 41, f7(0) = 12,

(7.2)
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where
a1 = 3.511e − 8, a2 = 3.112e − 8, a3 = 1.098e − 7,

a4 = 1.009e − 10, r1 =
1

10
, r2 =

1
200000

, ω =
1

5.2
,

φ = 0.4, η =
1

2.9
, κ = 1.7826e − 5, β =

1
10
, m =

1
14
,

g1 = 1440, g2 = 1008, g3 = 1728, e + ε = 144

Figure 5 shows that the presented method is in agreement with the methods in [26,44]. Table 7 reports
the maximum residual error for the eight differential equations comprising Eq (7.1) at different values
of N.
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Figure 5. Exposed population for Example (7.4).

Table 7. The maximum residual error for Example (7.4).

N Eq 1 Eq 2 Eq 3 Eq 4 Eq 5 Eq 6 Eq 7 Eq 8
20 2.32e-01 2.26e-02 2.87e-01 8.93e-02 3.70e-01 6.00e-02 7.10e-03 2.76e-06
25 7.20e-03 1.20e-03 9.70e-03 8.20e-03 1.28e-02 1.20e-03 2.51e-04 1.01e-07
30 9.35e-05 2.42e-05 1.42e-04 7.11e-05 1.84e-04 3.86e-06 2.98e-06 3.37e-09

8. Conclusions

From the perspective of the pseudospectral spectral method, matrices for differentiation have been
constructed. A mix between CHPs and LPs is used in these matrices as basis functions. We show that
alternating between both polynomials’ even and odd degrees generates two novel polynomials. Then,
recurrence and some essential relations for the mixed polynomials are presented and proved.
However, the study showed that the generated polynomials are not orthogonal. Thus,
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quasi-orthogonal relations have been established. Hence, two D-matrices have been created for each
set of basis functions. Then, as usual for the D-matrices, the derivatives of three test functions have
been calculated, and the results have been compared with the exact differentiation, Chebyshev
differentiation matrix and Legendre differentiation matrix. Moreover, several theorems for error
analysis have been developed to ensure the correctness of the new expansions. Finally, numerical
simulations for linear and non-linear BVPs were conducted to examine and verify the correctness of
the investigated matrices. The promising results encourage us, as future work, to use the introduced
matrices to solve integro-differential equations, partial differential equations and optimal control
problems. Also, the shifted matrices may be introduced to deal with the fractional cases.
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