Research article

On the vectorial multifractal analysis in a metric space

  • Received: 03 June 2023 Revised: 18 July 2023 Accepted: 24 July 2023 Published: 31 July 2023
  • MSC : 28A78, 28A80

  • Multifractal analysis is typically used to describe objects possessing some type of scale invariance. During the last few decades, multifractal analysis has shown results of outstanding significance in theory and applications. In particular, it is widely used to characterize the geometry of the singularity of a measure $ \mu $ or to study the time series, which has become an important tool for the study of several natural phenomena. In this paper, we investigate a more general level set studied in multifractal analysis. We use functions defined on balls in a metric space and that are Banach valued which is more general than measures used in the classical multifractal analysis. This is done by investigating Peyrière's multifractal Hausdorff and packing measures to study a relative vectorial multifractal formalism. This leads to results on the simultaneous behavior of possibly many branching random walks or many local Hölder exponents. As an application, we study the relative multifractal binomial measure in symbolic space $ \partial {\mathcal A} $.

    Citation: Najmeddine Attia, Amal Mahjoub. On the vectorial multifractal analysis in a metric space[J]. AIMS Mathematics, 2023, 8(10): 23548-23565. doi: 10.3934/math.20231197

    Related Papers:

  • Multifractal analysis is typically used to describe objects possessing some type of scale invariance. During the last few decades, multifractal analysis has shown results of outstanding significance in theory and applications. In particular, it is widely used to characterize the geometry of the singularity of a measure $ \mu $ or to study the time series, which has become an important tool for the study of several natural phenomena. In this paper, we investigate a more general level set studied in multifractal analysis. We use functions defined on balls in a metric space and that are Banach valued which is more general than measures used in the classical multifractal analysis. This is done by investigating Peyrière's multifractal Hausdorff and packing measures to study a relative vectorial multifractal formalism. This leads to results on the simultaneous behavior of possibly many branching random walks or many local Hölder exponents. As an application, we study the relative multifractal binomial measure in symbolic space $ \partial {\mathcal A} $.



    加载中


    [1] N. Attia, On the multifractal analysis of covering number on the Galton Watson tree, J. Appl. Probab., 56 (2019), 265–281. http://dx.doi.org/10.1017/jpr.2019.17 doi: 10.1017/jpr.2019.17
    [2] N. Attia, On the multifractal analysis of the branching Random walk in $\mathbb{R}^d$, J. Theor. Probab., 27 (2014), 1329–1349. http://dx.doi.org/10.1007/s10959-013-0488-x doi: 10.1007/s10959-013-0488-x
    [3] N. Attia, On the multifractal analysis of branching random walk on Galton-Watson tree with random metric, J. Theor. Probab., 34 (2021), 90–102. http://dx.doi.org/10.1007/s10959-019-00984-z doi: 10.1007/s10959-019-00984-z
    [4] N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459–471. http://dx.doi.org/10.4134/CKMS.c170143 doi: 10.4134/CKMS.c170143
    [5] N. Attia, R. Guedri, A note on the Regularities of Hewitt-Stromberg h-measures, Ann. Univ. Ferrara, 69 (2023), 121–137. http://dx.doi.org/10.1007/s11565-022-00405-w doi: 10.1007/s11565-022-00405-w
    [6] N. Attia, O. Guizani, A note on scaling properties of Hewitt-Stromberg measure, Filomat, 36 (2022), 3551–3559. http://dx.doi.org/10.2298/FIL2210551A doi: 10.2298/FIL2210551A
    [7] N. Attia, O. Guizani, A. Mahjoub, Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure, Filomat, 37 (2023), 13–20. http://dx.doi.org/10.2298/FIL2301013A doi: 10.2298/FIL2301013A
    [8] A. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann., 110 (1935), 321–330. http://dx.doi.org/10.1007/BF01448030 doi: 10.1007/BF01448030
    [9] A. Besicovitch, A general form of the covering principle and relative differentiation of additive function, Math. Proc. Cambridge, 41 (1945), 103–110. http://dx.doi.org/10.1017/S0305004100022453 doi: 10.1017/S0305004100022453
    [10] J. Cole, Relative multifractal analysis, Chaos Soliton. Fract., 11 (2000), 2233–2250. http://dx.doi.org/10.1016/S0960-0779(99)00143-5 doi: 10.1016/S0960-0779(99)00143-5
    [11] K. Falconer, Fractal geometry: mathematical foundations and applications, 2 Eds., Hoboken: John Wiley & Sons, 2003.
    [12] A. Fan, D. Feng, On the distribution of long-term time averages on symbolic space, J. Stat. Phys., 99 (2000), 813–856. http://dx.doi.org/10.1023/A:1018643512559 doi: 10.1023/A:1018643512559
    [13] R. Guedri, N. Attia, A note on the generalized Hausdorff and packing measures of product sets in metric space, Math. Inequal. Appl., 25 (2022), 335–358. http://dx.doi.org/10.7153/mia-2022-25-20 doi: 10.7153/mia-2022-25-20
    [14] O. Guizani, A. Mahjoub, N. Attia, On the Hewitt-Stromberg measure of product sets, Ann. Mat. Pur. Appl., 200 (2021), 867–879. http://dx.doi.org/10.1007/s10231-020-01017-x doi: 10.1007/s10231-020-01017-x
    [15] H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr., 134 (1987), 295–307. http://dx.doi.org/10.1002/mana.19871340121 doi: 10.1002/mana.19871340121
    [16] H. Haase, The dimension of analytic sets, Acta Universitatis Carolinae. Mathematica et Physica, 29 (1988), 15–18.
    [17] T. Halsey, M. Jensen, L. Kadano, I. Procaccia, B. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A, 33 (1986), 1141. http://dx.doi.org/10.1103/PhysRevA.33.1141 doi: 10.1103/PhysRevA.33.1141
    [18] H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116 (1951), 770. http://dx.doi.org/10.1061/TACEAT.0006518 doi: 10.1061/TACEAT.0006518
    [19] H. Hurst, R. Black, Y. Simaika, Long-term storage: an experimental study, Oakland: Constable, 1965.
    [20] P. Loiseau, C. Médigue, P. Gonçalves, N. Attia, S. Seuret, F. Cottin, et al., Large deviations estimates for the multiscale analysis of heart rate variability, Physica A, 391 (2012), 5658–5671. http://dx.doi.org/10.1016/j.physa.2012.05.069 doi: 10.1016/j.physa.2012.05.069
    [21] B. Mandelbrot, J. van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. http://dx.doi.org/10.1137/1010093 doi: 10.1137/1010093
    [22] B. Mandelbrot, J. Wallis, Some long-run properties of geophysical records, Water Resour. Res., 5 (1969), 321–340. http://dx.doi.org/10.1029/WR005i002p00321 doi: 10.1029/WR005i002p00321
    [23] B. Mandelbrot, Multifractals and $1/f$ noise: wild self-affinity in physics, New York: Springer, 1999. http://dx.doi.org/10.1007/978-1-4612-2150-0
    [24] B. Mandelbrot, Les objects fractales: forme, hasard et dimension, Paris: Flammarion, 1975.
    [25] B. Mandelbrot, The fractal geometry of nature, New York: W. H. Freeman, 1982.
    [26] A. Mahjoub, N. Attia, A relative vectorial multifractal formalism, Chaos Soliton. Fract., 160 (2022), 112221. http://dx.doi.org/10.1016/j.chaos.2022.112221 doi: 10.1016/j.chaos.2022.112221
    [27] L. Olsen, A multifractal formalism, Adv. Math., 116 (1995), 82–196. http://dx.doi.org/10.1006/aima.1995.1066 doi: 10.1006/aima.1995.1066
    [28] J. Peyrière, A vectorial multifractal formalism, Proc. Sympos. Pure Math., 72 (2004), 217–230.
    [29] R. Riedi, I. Scheuring, Conditional and relative multifractal spectra, Fractals, 5 (1997), 153–168. http://dx.doi.org/10.1142/S0218348X97000152 doi: 10.1142/S0218348X97000152
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1084) PDF downloads(48) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog