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Abstract: Multifractal analysis is typically used to describe objects possessing some type of scale
invariance. During the last few decades, multifractal analysis has shown results of outstanding
significance in theory and applications. In particular, it is widely used to characterize the geometry
of the singularity of a measure µ or to study the time series, which has become an important tool for
the study of several natural phenomena. In this paper, we investigate a more general level set studied
in multifractal analysis. We use functions defined on balls in a metric space and that are Banach
valued which is more general than measures used in the classical multifractal analysis. This is done
by investigating Peyrière’s multifractal Hausdorff and packing measures to study a relative vectorial
multifractal formalism. This leads to results on the simultaneous behavior of possibly many branching
random walks or many local Hölder exponents. As an application, we study the relative multifractal
binomial measure in symbolic space ∂A.
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1. Introduction

The concept of multifractal analysis was developed around 1980, following the work of B.
Mandelbrot, when he studied the multiplicative cascades for energy dissipation in the context of
turbulence [24, 25]. Since then, it has been developed rapidly and discussed by several authors,
emphasizing its importance in the study of local properties of functions and measures. In particular,
the multifractal spectrum provides a characterization in terms of the geometric properties of the
singularities of a distribution. More precisely, let X : Rd −→ R be a signal; the multifractal analysis
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is a processing method that allows the examination of X by using the characteristics of its pointwise
regularity, which are measured by αX(x), i.e., the exponent of pointwise regularity. This is done by
using the multifractal spectrum, which is the Hausdorff dimension of the set of locations where the
function αX(x) is distributed, to characterize the set of x such that αX(x) = α. Specifically, consider the
set

E(α) =
{
x ∈ Rd; αX(x) = α

}
, (1.1)

which gives a geometric and global account of the variations in X’s regularity along x. Usually, we
use the Hurst exponent H as a quantification of the degree of self-similarity of the time series which
is directly correlated with the fractal dimension D and describes the complexity of the signals. A
higher value of D indicates a higher irregularity of the signals: D = 2 − H [11, 18]. In the last
few decades, multifractal analysis has become a powerful tool to study the time series which has
become an important tool for the study of several natural phenomena. In fact, such series present
complex statistical fluctuations that are associated with long-range correlations between the dynamical
variables present in these series, and which obey the behavior usually described by the decay of the
fractal power law. This theory in time series was first introduced by B. Mandelbrot in [21–23] including
early approaches by Hurst and colleagues [18,19]. Since then, fractal and multifractal scaling behavior
has been reported in many natural time series generated by complex systems, including medical and
physiological time series especially recordings of the heartbeat, respiration, blood pressure wind speed,
seismic events, etc.

Recall the set E(α) given in (1.1) and consider, for n ≥ 1, the dyadic interval In(k) = [(k−1)2−n, k2−n]
with 1 ≤ k ≤ 2n and with length |In(k)| = 2−n. In fact, there are various definitions of the exponent α:

α = lim
n→∞

log AX(In(k))
log |In(k)|

,

where AX(In(k)) may be chosen to be the wavelet-leaders LX(In(k)) or the oscillation OscX(In(k)) of X
over the interval In(k) [20]. Therefore, it is interesting to introduce the local dimension of a probability
measure µ at a point x:

dimloc(x, µ) = lim
r→0

log(µ(B(x, r))
log r

,

as well as the set Eµ(α) =
{
x ∈ Rd; dimloc(x, µ) = α

}
, where B(x, r) stands for the closed ball of

center x and radius r and α ≥ 0. In the beginning, the multifractal formalism used “boxes”, or in other
terms took place in a totally disconnected metric space. To get rid of these boxes and have a formalism
meaningful in geometric measure theory, Olsen [27] introduced a formalism which is now commonly
used. Especially, we compute the Hausdorff multifractal spectrum function fµ defined as

fµ(α) = dim
(
Eµ(α)

)
,

where dim denotes the Hausdorff dimension. To this end, multifractal analysis can be considered
as another way to describe the local properties of time series. Since then, numerous writers have
looked at these measures, stressing their significance for the study of local fractal properties and fractal
products [5–7, 13–16, 26].

Moreover, the developments of this field showed that getting a valid variant of the multifractal
formalism does not require the application of radius power-laws equivalent measures. This leads one
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to think about a general framework wherein the restriction of the vector-valued function on balls may be
any vector-valued function ξ(B(x, r)) which is not equivalent to power-laws rα and develops a general
multifractal analysis. In particular, and in another context, to overcome the problem of being a non-
doubling, non-Hölderian measure, Cole, in [10] proposed to control the analyzed measure µ by another
suitable measure ν via a relative multifractal analysis of the relative singularity sets. More specifically,
he calculated, for α ≥ 0, the size of the set

E(α) =

{
x ∈ supp µ ∩ supp ν; lim

r→0

log µ(B(x, r))
log ν(B(x, r))

= α

}
,

where supp µ is the topological support of the measure µ. For this, he introduced a generalized
Hausdorff and packing measures denoted byHq,s

µ,ν and Pq,s
µ,ν respectively. One can emphasize the duality

by replacing Rd by a general metric space (X, d) and then replacing the diameter by a more general
function defined on balls in X and analyzing functions defined on balls which are more general than
measures. More precisely, let E be a separable real Banach space, whose dual is denoted by E′ and the
form of the duality 〈 , 〉. We denote by B(X) the set of closed balls on X. We consider the functionsξ : B(X) → R,

κ : X × R+ → E′,
(1.2)

such that, for all x ∈ X, one has that lim
r→0

ξ(B(x, r)) = +∞. For α ∈ E′, we consider the set

Xχ(α) =

{
x ∈ X; lim

r→0

〈w, κ(x, r)〉
ξ(x, r)

= 〈w, α〉 , ∀w ∈ E
}
,

where χ = (κ, ξ). The set Xχ(α) may be thought of as the set of points x such that κ(x,r)
ξ(x,r) tends to α in

the sense of topology σ(E,E′) when r tends to 0. In [28], Peyrière introduced vectorial Hausdorff and
packing measures denoted by Hq,t

χ and Pq,t
χ respectively. He defined, in a natural way, the Hausdorff

and packing dimensions denoted respectively as dimq
χ and Dimq

χ. In particular, if κ = 0 then dimq
χ will

be denoted by dimξ and Dimq
χ will be denoted by Dimξ. In fact, such measures are appropriate for the

study of a general formalism by relating

dimξ

(
Xχ(α)

)
and Dimξ

(
Xχ(α)

)
to the Legendre transform of the multifractal Hausdorff and packing functions denoted respectively by
bχ and Bχ (see Section 2 for the definition).

The purpose of this paper is to study the Hausdorff and packing dimensions of the set Xχ(α). In
fact, it is difficult to compute these dimensions in general, but we can compute a lower bound of
the Hausdorff and packing dimensions of this level set. Indeed, we can decompose the set Xχ(α) and

calculate the size of the subset of Xχ(α) whose points satisfy that lim
r→0

ξ(x, r)
− log r

= β. Inspired by [4,10,29],

we define α ∈ E′ and β ≥ 0 ; then the set is given as

Xχ(α, β) =

{
x ∈ X; lim

r→0

〈w, κ(x, r)〉
ξ(x, r)

= 〈w, α〉 and lim
r→0

ξ(x, r)
− log r

= β, ∀w ∈ E
}
.
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This article is organized as follows. The next section is devoted to recalling the definitions of the
various multifractal dimensions and measures investigated in the paper. In Section 3, we will state and
prove our main results concerning the study of Hausdorff and packing dimensions of the set Xχ(α, β). In
general settings, we have that dim Xχ(α, β) , Dim Xχ(α, β); for this, we give in Section 4 a sufficient
condition so that we have the equality. In this case, we say that the relative multifractal formalism
holds. As an application, we study the validity of the relative multifractal formalism for the binomial
measure in symbolic space ∂A.

2. Preliminaries

2.1. Vectorial multifractal measures and dimensions

In this section, we recall the multifractal Hausdorff and packing measures introduced in [28]. We
assume throughout this paper that X is a separable metric space verifying the Besicovitch covering
property [8, 9]. We define

B(x, r) :=
{
y ∈ X; d(x, y) ≤ r

}
,

i.e., the closed ball with center x ∈ X and radius r > 0. We denote by B(X) the set of closed balls on X.
Let ξ : B(X) −→ R be an application such that, for all x ∈ X, one has that lim

r→0
ξ(B(x, r)) = +∞. Such

a function will be called a valuation on X and we will write that ξ(x, r) = ξ(B(x, r)), for simplicity.
When such a valuation is given, one sets

Xn =
{
x ∈ X; ξ(x, r) > 1 for r ≤ 1/n

}
.

We consider the function κ : X ×R+ −→ E
′. We denote by 〈 , 〉 the duality bracket between E and E′.

Let A ⊆ X, t ∈ R, q ∈ E, χ = (κ, ξ) and δ > 0; we write

H
q,t
χ,δ(A) = inf

∑
i

e−
(
〈q,κ(xi,ri)〉+t ξ(xi,ri)

)
,

where the infimum is taken over all families {(xi, ri)}i satisfying that
{
B(xi, ri)

}
i is a centered δ-cover of

A, that is, A ⊆
⋃

i

B(xi, ri), ri ≤ δ and xi ∈ A. Let

H
q,t
χ (A) = lim

δ→0
H

q,t
χ,δ(A) and H̃q,t

χ (A) = sup
F⊆A
H

q,t
χ (F).

Now H̃q,t
χ is a metric outer measure. In addition, the function t 7−→ H̃

q,t
χ (A) is non-decreasing;

nevertheless, it is so if A is a subset of one of the Xn. This is why one more step is needed in the
construction. We write

Hq,t
χ (A) = lim

n→∞
H̃q,t

χ (A ∩ Xn).

Similarly, multifractal packing measures are defined as

P
q,t
χ,δ(A) = sup

∑
i

e−
(
〈q,κ(xi,ri)〉+t ξ(xi,ri)

)
,
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where the supremum is taken over all families {(xi, ri)}i such that
(
B(xi, ri)

)
i is a δ-packing of A, that is,

ri ≤ δ, xi ∈ A and B(xi, ri) ∩ B(x j, r j) = ∅, for i , j. Then, we define

P
q,t
χ (A) = lim

δ→0
P

q,t
χ,δ(A),

P̃q,t
χ (A) = inf

{∑
i

P
q,t
χ (Ai)

∣∣∣ A ⊆
⋃

i

Ai

}
,

and
Pq,t
χ (A) = lim

n→∞
P̃q,t
χ (A ∩ Xn).

The functions P̃q,t
χ and Pq,t

χ are metric outer measures. Furthermore, we may prove using the well
known Besicovitch covering theorem that there exists an integer θ ∈ N such that

Hq,t
χ ≤ θP

q,t
χ . (2.1)

The measures Hq,t
χ and Pq,t

χ assign in the usual way a multifractal dimension to each subset A of X.
They are respectively denoted by dimq

χ(A) and Dimq
χ(A). More precisely, we have

dimq
χ(A) = inf

{
t ∈ R | Hq,t

χ (A) = 0
}

= sup
{
t ∈ R | Hq,t

χ (A) = ∞
}
,

Dimq
χ(A) = inf

{
t ∈ R | Pq,t

χ (A) = 0
}

= sup
{
t ∈ R | Pq,t

χ (A) = ∞
}
.

One also defines ∆
q
χ, which generalizes the Minkowski-Bouligand dimension; for a bounded set A, one

sets
∆q
χ(A) = inf

{
t ≥ 0

∣∣∣ lim
n→+∞

P
q,t
χ (A ∩ Xn) = 0

}
.

If A is unbounded, one chooses x0 ∈ X and can set

∆q
χ(A) = lim

n→+∞
∆q
χ

(
A ∩ B(x0, n)

)
.

As a direct consequence of the definition, the dimensions defined above satisfy that dimq
χ(A) ≤

Dimq
χ(A) ≤ ∆

q
χ(A). Moreover, for κ = 0, the functions Hq,t

χ , Pq,t
χ and P

q,t
χ will be denoted respectively

byH t
ξ, P

t
ξ and P

t
ξ; then, we will write

dimξ(A) = dimq
χ(A), Dimξ(A) = Dimq

χ(A) and ∆ξ(A) = ∆q
χ(A).

Remark 1. In the special case where κ = 0 and ξ(x, r) = − log r, we come back to the classical
definitions of the Hausdorff and packing measures and dimensions in their original forms [27]. In
particular, we get

Hq,t
χ = H t, Pq,t

χ = Pt,

and
dimq

χ(A) = dim(A), Dimq
χ(A) = Dim(A).

Finally, we respectively define the multifractal functions bχ, Bχ and Λχ : E −→ [−∞,+∞] by

bχ(q) = dimq
χ(X), Bχ(q) = Dimq

χ(X) and Λχ(q) = ∆q
χ(X). (2.2)

Moreover, it is well known [28] that Λχ and Bχ are convex and bχ ≤ Bχ ≤ Λχ.
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2.2. Example: Homogeneous tree

Let b ≥ 2 and consider the set A∗ =
⋃
k≥0

Ak as a free monoid consisting of words on A =

{0, 1, 2, . . . , b − 1}. The empty word ε is the identity element and it is convenient to set A0 = {ε}.
The concatenation of two words u and v will be simply denoted by a juxtaposition, that is the word.
The length of the word u is denoted by |u|. Moreover, we may define an order “ ≺ ” onA∗ : if a word v
is a prefix of the word u, we write v ≺ u. The set of infinite sequences of elements ofA will be denoted
by ∂A. We identify u ∈ A∗ with the cylinder [u] := {x ∈ ∂A, u ≺ x}. We define an ultrametric
distance on ∂A by

d(u, v) = b−|u∧v|, (2.3)

where u∧ v stands for their largest common prefix. In this example, we consider X to be the space ∂A
and χ = (κ, ξ) defined in (1.2) such that χ constitutes functions defined on the cylinder. Let δ > 0; A is
a bounded subset of X. We set

P
∗q, t
χ,δ (A) = sup

∑
j

e−〈q, κ(x j, r j)〉−t ξ(xi,ri),

where the supremum is taken over by the collection of δ-packings {B(x j, r j)} of A such that δ/b < r j ≤

δ. We define
P∗q, tχ (A) = sup

n≥1
lim sup
δ→0

P
∗q, t
χ,δ (A ∩ Xn)

and
∆∗qχ (A) = inf

{
t ≥ 0 | P∗q, tχ (A) = 0

}
.

Definition 1. For b ≥ 2, the valuation ξ is said to be normal if, for all n ≥ 1 and all ε > 0, there exists
ρ > 0, such that

∑
j≥0

e−t ξ̃n(ρb− j) < ∞, where

ξ̃n(t) = inf
x∈Xn

inf
t/b≤r<t

ξ(x, r).

Lemma 1. Let q ∈ E, t ∈ R and k ≥ 1. If ξ is normal, then we have the following

(1) P∗q, t
χ, b−k(∂A) =

∑
u∈Ak

e−〈q, κ([u])〉−tξ([u]).

(2) ∆
q
χ = ∆

∗q
χ .

Proof. (1) Let {B(x j, r j)} j be a packing of ∂A such that b−k−1 < r j ≤ b−k; then,∑
j

e−〈q, χ(B(x j,r j))〉−tξ(xi,ri) ≤
∑
u∈Ak

e−〈q, κ([u]))〉−ξ([u]).

It follows that P∗q, t
χ, b−k(∂A) ≤

∑
u∈Ak

e〈q, κ([u]))〉−ξ([u]). On the other hand, since
{
[u], u ∈ Ak

}
is a b−k-

packing of ∂A, we have ∑
u∈Ak

e〈q, κ([u]))〉−ξ([u]) ≤ P
∗q,t
κ,b−k(∂A)

as required.
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(2) Since, for all n ≥ 1, P∗q, tχ (A) ≤ P
q, t
χ (A ∩ Xn), one has that ∆

∗q
χ (A) ≤ ∆

q
χ(A). Now, suppose that

∆
q
χ(A)> 0. Let t and ε be two positive numbers such that 0 < t − ε < t < ∆

q
χ(E). Therefore,

P
q,t
χ (A) = +∞. We define recursively a sequence {ηm}m≥0. First, η0 = b−k0ρ, where ρ given by the

normality of ξ and k0 is chosen so that η0 ≤ 1/n. Suppose that ηm has been defined. Then, there
exists an (ηm/b)-packing of A ∩ Xn with∑

e−
(
〈q, κ(x j, r j)〉+t ξ(xi,r j)

)
≥ 1.

There exists a positive integer k ≥ 1 such that∑
j: ηm/b< bkr j ≤ ηm

e−
(
〈q, κ(x j, r j)〉+t ξ(xi,r j)

)
≥ e−εξ̃(b

−kηm)/∑
k≥1

e−εξ̃(b
−kηm).

Then we set ηm+1 = b−kηm. It follows that

P
∗q, t
χ,ηm+1

(A ∩ Xn) ≥
∑

j: ηm/b< bkr j ≤ ηm

e−
(
〈q, κ(x j, r j)〉+t ξ(xi,r j)

)
eεξ(x jr j) > 1

/∑
k≥1

e−εξ̃(b
−kηm).

Therefore P∗q, t−εχ (A) = +∞ and ∆
∗q
χ (A) ≥ t − ε.

�

Proposition 1. Let q ∈ E, t ∈ R and k ≥ 1. If the valuation ξ is normal, then we have

Λχ(q) = inf
{
t ∈ R, lim sup

k→∞

1
k

log
∑
u∈Ak

e−〈q, κ([u])〉−tξ([u]) ≤ 0
}
.

Proof. Let t > f (q) := inf
{
t ∈ R, lim sup

k→∞

1
k

log
∑
u∈Ak

e−〈q, κ([u])〉−tξ([u]) ≤ 0
}
. Then, there exists k0 ∈ N

such that ∑
u∈Ak

e−〈q, κ([u])〉−tξ([u]) ≤ 1, k ≥ k0.

It follows that

P
∗q, t
χ, b−k(∂A) =

∑
u∈Ak

e−〈q, κ([u])〉−tξ([u]) ≤ 1,

and, then P∗q, tχ < ∞. This implies that Λχ(q) ≤ f (q). On the other hand, assume that t < f (q); then,
there exists a sequence (km)m≥1 such that∑

u∈Akm

e−〈q, χ([u])〉−tξ([u]) > 1.

It follows that

P
∗q, t
χ, b−km (∂A) =

∑
u∈Akm

e−〈q, κ([u])〉−tξ([u]) > 0

and then P∗q, tχ > 0. This implies that Λχ(q) ≥ f (q) as required. �
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Remark 2. If χ = (κ,− log r) then

P
∗q, t
χ, b−k(∂A) = b−kt

∑
u∈Ak

e−〈q, κ([u])〉

and
Λχ(q) = lim sup

k→∞

1
k

logb

∑
u∈Ak

e−〈q, κ([u])〉.

3. Main results

Multifractal analysis is typically used to describe objects possessing some type of scale invariance.
The investigation has focused on structures produced by one mechanism which were analyzed with
respect to the ordinary volume or metric. The most imported examples include branching random walk
and self-similar measures [1,2,27]. In particular, the multifractal spectrum provides a characterization
of the singularities of a distribution in terms of the geometrical properties. Unfortunately, we may
obtain identical spectra despite having strikingly different measures. For this, we will study a more
general level set. More precisely, let (X, d) be a separable metric space verifying the Besicovitch
covering property; E′ is the dual of a separable real Banach space E and χ = (κ, ξ) such that κ and ξ
satisfy (1.2). For α ∈ E′ and β ≥ 0, we recall the set

Xχ(α, β) =

{
x ∈ X; lim

r→0

〈w, κ(x, r)〉
ξ(x, r)

= 〈w, α〉 and lim
r→0

ξ(x, r)
− log r

= β, ∀w ∈ E
}
.

In this section, we will state our main results concerning the estimation of the Hausdorff and packing
dimensions of the set Xχ(α) by using the Legendre transform of the multifractal Hausdorff and packing
functions, where the Legendre transform of a real valued function f : E→ R is a function f ∗ : E′ −→ R
defined by

f ∗(α) = inf
q∈E
〈q, α〉 + f (q).

More precisely, we have the following results.

Theorem A. (1) Let q ∈ E and β ≥ 0. Assume that, at some point q, the multifractal function
bχ is convex and differentiable and set α = −b

′

χ(q). Then, provided that b∗χ(α) ≥ 0 and
H

q,bχ(q)
χ (Xχ

(
α, β

)
) > 0, one has

dim Xχ

(
α, β

)
= β b∗χ(α).

(2) Let q ∈ E and β ≥ 0. Assume that, at some point q, the multifractal function Bχ is differentiable
and set α = −B′χ(q). Then, provided that B∗χ(α) ≥ 0 and Pq,Bχ(q)

χ

(
Xχ(α, β)

)
> 0, one has

Dim Xχ(α, β) = β B∗χ(α).

The most common example in this context is considered when we study the multifractal measure µ
with respect to arbitrary measure ν. More precisely, take

κ(x, r) = − log µ(B(x, r)) and ξ(x, r) = − log ν(B(x, r)),
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where µ and ν are two Borel measures defined in the metric space X. The major interest of this is to
use a partition of the space in sets of equal ν measures instead of equal size (when considering the
diameter). In [10] the author formalizes the idea of performing multifractal analysis with respect to
an arbitrary reference measure by developing a formalism for the multifractal analysis of one measure
with respect to another. This formalism is based on the ideas of the ‘multifractal formalism’ as first
introduced by Halsey et al. [17], and closely parallels Olsen’s formal treatment of this formalism
in [27]. The Hausdorff and packing dimensions of Xχ(α) are fully carried by some subset Xχ(α, β).
The following corollary provides us with a sufficient condition that gives the lower bound for the
Hausdorff and packing dimensions of Xχ(α).

Corollary B. (1) Assume that, at some point q, the multifractal function bχ is convex and
differentiable. Set α = −b

′

χ(q) and

I =
{
β ≥ 0 | Hq,bχ(q)

χ (Xχ

(
α, β

)
) > 0

}
.

Suppose that b∗χ(α) ≥ 0; then,

dim Xχ(α) ≥ sup
β∈I

β b∗χ(α).

(2) Assume that, at some point q, the multifractal function Bχ is differentiable. Set α = −B′χ(q) and

J =
{
β ≥ 0 | Pq,Bχ(q)

χ (Xχ

(
α, β

)
) > 0

}
.

Suppose that B∗χ(α) ≥ 0; then,

Dim Xχ(α) ≥ sup
β∈J

β B∗χ(α).

Remark 3. It is not difficult to observe that the second assertion of the preview corollary remains true
when we consider Λχ instead of Bχ. In particular, let α = −Λ

′

χ(q) and

Ĩ =
{
β ≥ 0 | Hq,Λχ(q)

χ (Xχ

(
α, β

)
) > 0

}
.

Then, provided that Λ∗χ(α) ≥ 0, we have that dim Xχ(α) = Dim Xχ(α) ≥ supβ∈Ĩ β Λ∗χ(α).

In the following example, we will consider a special case when the function Λχ is differentiable.
This fact will be used in Section 4.

Example 1. In this example, we will use the same notation as in Section 2.2. Let X = ∂A, E be the
Euclidean space RN and

{
(pi, j)0≤ j<b

}
1≤i≤N be a family of positive numbers. Define the recurrence pi,u

for given i and u ∈ A∗:
pi, ε = 1 and pi,u j = pi,u pi, j.

Then, when
b−1∑
j=0

pi, j = 1, the function [u] 7−→ pi,u extends to a probability measure on ∂A. We set the

function κ([u]) = (− log pi,u)1≤i≤N and ξ([u]) = − log r. For q = (q1, q2, . . . , qN) ∈ RN , we have∑
u∈Ak+1

e−〈q, κ([u])〉 =
∑

u∈Ak+1

N∏
i=1

pqi
i,u =

∑
u∈Ak

b−1∑
j=0

N∏
i=1

pqi
i,u pqi

i, j =

∑
u∈Ak

e−〈q, κ([u])〉


 b−1∑

j=0

N∏
i=1

pqi
i, j

 .
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It follows that the sequence

∑
u∈Ak

e−〈q, κ([u])〉


k

is geometric; then, using Remark 2,

Λχ(q) = lim sup
n→∞

1
k

logb

∑
u∈Ak

e−〈q, κ([u])〉 = lim sup
k→∞

1
k

logb

( b−1∑
j=0

N∏
i=1

pqi
i, j

)k
= logb

b−1∑
j=0

N∏
i=1

pqi
i, j,

which is clearly differentiable.

3.1. Upper bound of Hausdorff and packing dimensions

Let A ⊆ E, α ∈ E′ and β ≥ 0; we define

Xχ(α, β; A) :=
{
x
∣∣∣ lim

r→0

〈w, κ(x, r)〉
ξ(x, r)

≥ 〈w, α〉 and lim
r→0

ξ(x, r)
− log r

≥ β, ∀w ∈ A
}
,

Xχ(α, β; A) :=
{
x
∣∣∣ lim

r→0

〈w, κ(x, r)〉
ξ(x, r)

≤ 〈w, α〉 and lim
r→0

ξ(x, r)
− log r

≤ β, ∀w ∈ A
}
.

The sets Xχ(α, β;E) and Xχ(α, β;E) will simply be denoted by Xχ(α, β) and Xχ(α, β) respectively. We
will be interested in the set

Xχ(α, β) := Xχ(α, β) ∩ Xχ(α, β).

Theorem 1. For α ∈ E′ and β ≥ 0, we have the following:

(1) dim
(
Xχ(α, β)

)
≤ β b∗χ(α).

(2) Dim
(
Xχ(α, β)

)
≤ β B∗χ(α).

A negative dimension means that Xχ(α, β) is empty.

Proof. This theorem follows immediately from the following lemma. �

Lemma 2. Let α ∈ E′, q ∈ E, A ⊆ E and β ≥ 0.

(1) If 〈q, α〉 + bχ(q) ≥ 0, then

dim
(
Xχ(α, β; A)

)
≤ β

(
〈q, α〉 + bχ(q)

)
.

(2) If 〈q, α〉 + Bχ(q) ≥ 0, then

Dim
(
Xχ(α, β; A)

)
≤ β

(
〈q, α〉 + Bχ(q)

)
.

Proof. It is clear that we only have to consider the case when the set A = {q}. Let n and m be two
positive integers such that m ≥ n, q ∈ E, t ∈ R and ε1 and ε2 are two positive numbers such that

ε1 ≤ 〈q, α〉 + t and ε2 ≤ β
(
〈q, α〉 + t − ε1

)
.

We consider the set

Am,n(ε1, ε2) =

{
x ∈ Xn

∣∣∣∣〈q, κ(x, r)〉
ξ(x, r)

≤ 〈q, α〉 + ε1 and
ξ(x, r)
− log r

≤ β +
ε2

〈q, α〉 + t + ε1
for r ≤

1
m

}
.

Then, we have
Xχ

(
α, β; {q}

)
⊆

⋃
n≥1

⋂
p1,p2≥1

⋃
m≥n

Am,n(1/p1, 1/p2).
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(1) Let
(
B(xi, ri)

)
i
be a centered δ-covering of a subset F ⊆ Am,n(ε1, ε2) with 0 < δ ≤ 1

m . Then one has

e−(〈q, α〉+ε1)ξ(xi,ri) ≤ e−〈q, κ(xi,ri)〉 and rβ(〈q, α〉+t+ε1)+ε2
i ≤ e−(〈q, α〉+t+ε1)ξ(xi,ri). It follows that, for t = bχ(q)+η

r
β
(
〈q, α〉+bχ(q)+η+ε1

)
+ε2

i ≤ e−
(
〈q, α〉+bχ(q)+η+ε1

)
ξ(xi,ri) ≤ e−

(
〈q, κ(xi,ri)〉+(bχ(q)+η) ξ(xi,ri)

)
.

Therefore, we have

H
β(〈q,α〉+bχ(q)+η+ε1)+ε2

δ (F) ≤
∑

i

r
β
(
〈q,α〉+bχ(q)+η+ε1

)
+ε2

i ≤
∑

i

e−
(
〈q, κ(xi,ri)〉+(bχ(q)+η)ξ(xi,ri)

)
.

From this, we can deduce that for 0 < δ ≤ 1
m , H

β(〈q,α〉+bχ(q)+η+ε1)+ε2

δ (F) ≤ H
q,bχ(q)+η
χ,δ (F). Now,

letting δ→ 0, we obtain, for all F ⊆ Am,n(ε1, ε2),

Hβ(〈q,α〉+bχ(q)+η+ε1)+ε2(Am,n(ε1, ε2)) ≤ Hq,bχ(q)+η
χ (Am,n(ε1, ε2)).

Then it is easy to conclude thatHβ(〈q,α〉+bχ(q)+η+ε1)+ε2
(
Am,n(ε1, ε2)

)
= 0. This implies that

dim
(
Am,n(ε1, ε2)

)
≤ β

(
〈q, α〉 + bχ(q) + ε1

)
+ ε2;

then by the countable stability and monotony of the Hausdorff dimension, we have

dim
(
Xχ

(
α, β; A

)
≤ β

(
〈q, α〉 + bχ(q)

)
.

(2) Let
(
B(xi, ri)

)
i

be a δ-packing of F ⊆ Am,n(ε1, ε2) with 0 < δ ≤ 1
m . Then, for t = Bχ(q) + η, we

have that e−(〈q, α〉+ε1)ξ(xi,ri) ≤ e−〈q, κ(xi,ri)〉 and ri
β
(
〈q, α〉+Bχ(q)+η+ε1

)
+ε2 ≤ e−

(
〈q, α〉+Bχ(q)+η+ε1

)
ξ(xi,ri). Putting

these together we see that

r
β
(
〈q, α〉+Bχ(q)+η+ε1

)
+ε2

i ≤ ri
β
(
〈q, α〉+Bχ(q)+η+ε1

)
+ε2 ≤ e−

(
〈q, κ(xi,ri)〉+(Bχ(q)+η) ξ(xi,ri)

)
.

Hence
∑

i

r
β
(
〈q,α〉+Bχ(q)+η+ε1)

)
+ε2

i ≤
∑

i

e−
(
〈q, κ(xi,ri)〉+(Bχ(q)+η) ξ(xi,ri)

)
. Then, we can deduce that, for 0 <

δ ≤ 1
m

P
β(〈q,α〉+Bχ(q)+η+ε1)+ε2

δ (F) ≤ P
q,Bχ(q)+η
χ,δ (F).

Letting δ → 0, we obtain that P
β(〈q,α〉+Bχ(q)+η+ε1)+ε2

(F) ≤ P
q,Bχ(q)+η
ξ,κ (F). Now, let (Ai)i∈N be a

covering of Am,n(ε1, ε2). We have

Pβ(〈q,α〉+Bχ(q)+η+ε1)+ε2(Am,n(ε1, ε2)) ≤
∑

i

P
β(〈q,α〉+Bχ(q)+η+ε1)+ε2

(A ∩ Ai)

≤
∑

i

P
q,Bχ(q)+η
χ (A ∩ Ai)

≤
∑

i

P
q,Bχ(q)+η
χ (Ai).
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It results that Pβ(〈q,α〉+Bχ(q)+η+ε1)+ε2 (Am,n(ε1, ε2)) ≤ P̃q,Bχ(q)+η
χ (Am,n(ε1, ε2)). Since Pq,Bχ(q)+η

χ (X) = 0,
it follows that, for all n, P̃q, Bχ(q)+η

χ (Xn) = 0. Therefore,

Pβ(〈q,α〉+Bχ(q)+η+ε1)+ε2 (Am,n(ε1, ε2)) = P̃β(〈q,α〉+Bχ(q)+η+ε1)+ε2 (Am,n(ε1, ε2)) = 0.

So, we have that Dim (Am,n(ε1, ε2)) ≤ β(〈q, α〉 + Bχ(q) + ε1) + ε2; then,

Dim
(
Xχ

(
α, β; A

)
≤ β(〈q, α〉 + Bχ(q)).

�

3.2. Lower bound of Hausdorff and packing dimensions

Let v, q ∈ E and assume that
∣∣∣Bξ,κ(q)

∣∣∣ < ∞. We define

∂vBχ(q) = lim
t→0

Bχ(q + tv) − Bχ(q)
t

.

We will denote by B
′

χ(q) (as an element of E′) the derivative of Bχ at q when it exists. When Bχ has a
partial derivative at point q along the direction v, one has that ∂−vBχ(q) = −∂vBχ(q). In this case, we
have

∂vBχ(q) = 〈v, B
′

χ(q)〉.

Assume that the function v 7−→ ∂vBχ(q) is lower semi-continuous; then, from [28, Proposition 10]
and (2.1), one gets that Pq,Bχ(q)

χ

(
Xχ(α)

)
> 0, which implies that there exists β such that

P
q,Bχ(q)
χ

(
Xχ(α, β)

)
> 0. Similarly, if the function bχ is convex and differentiable and v 7−→ ∂vbχ(q)

is lower semi-continuous, then

H
q,bχ(q)
χ

(
Xχ(α)

)
> 0 or H

q,bχ(q)
χ

(
X

∖
Xχ(α)

)
= 0,

which implies that there exists β such thatHq,bχ(q)
χ

(
Xχ(α, β)

)
> 0.

Theorem 2. (1) If, for some q, Hq,bχ(q)
χ

(
Xχ

(
α, β

))
> 0 and if v 7−→ ∂vbχ(q) is lower semi-continuous,

then, if bχ(q) is convex and differentiable at q, one has

dim
(
Xχ

(
− b′χ(q), β

))
≥ β

(
bχ(q) − ∂qbχ(q)

)
.

(2) If, for some q, Pq,Bχ(q)
χ

(
Xχ(α, β)

)
> 0 and if v 7−→ ∂vBχ(q) is lower semi-continuous, then one has

Dim
(
Xχ

(
− B′χ(q), β

))
≥ β

(
Bχ(q) − ∂qBχ(q)

)
.

Proof. This theorem follows immediately from the following Lemma. �

Lemma 3. (1) If bχ(q) is convex and differentiable at q and we set α = −b′χ(q), then for each Borel
set E ⊆ Xχ(α, β) ∩ Xn, we have

H
q,bχ(q)
χ (E) ≤ Hβ

(
bχ(q)−∂qbχ(q)−ε1

)
−ε2 (E).
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(2) Set α = −B′χ(q); then, for each Borel set E ⊆ Xχ(α, β) ∩ Xn, we have

P
q,Bχ(q)
χ (E) ≤ Pβ

(
Bχ(q)−∂qBχ(q)−ε1

)
−ε2 (E).

Proof. (1) For m ≥ n, we consider the set

Am =

{
x ∈ Xχ(α, β) ∩ Xn

∣∣∣ 〈q, κ(x, r)〉 +
(
∂qbχ(q) + ε1

)
ξ(x, r) ≥ 0

and
ξ(x, r)
− log r

≥ β +
ε2

bχ(q) − ∂qbχ(q) − ε1
for r ≤

1
m

}
.

Given n and a subset F of Am, let (B(xi, ri))i a centered δ-covering of F with 0 <

δ < min{1/n, 1/m}. We have that e−
(

bχ(q)−∂qbχ(q)−ε1

)
ξ(xi,ri) ≥ e−

(
〈q,κ(xi,ri)〉+bχ(q) ξ(xi,r)

)
and

r
(
β
(

bχ(q)−∂qbχ(q)−ε1

)
−ε2

)
i ≥ e−

(
bχ(q)−∂qbχ(q)−ε1

)
ξ(xi,ri). Therefore, we have

H
q,bχ(q)
χ,δ (F) ≤

∑
e−

(
〈q,κ(xi,ri)〉+bχ(q) ξ(xi,r)

)
≤

∑
r
−
(
β
(

bχ(q)−∂qbχ(q)−ε1

)
−ε2

)
i .

Then, for δ ≤ min{1/n, 1/m}, we have that H
q,bχ(q)
χ,δ (F) ≤ H

β
(

bχ(q)−∂qbχ(q)−ε1

)
−ε2

δ (F), and letting
δ→ 0 gives that for all F ⊆ Am

H
q,bχ(q)
χ (F) ≤ H

β
(

bχ(q)−∂qbχ(q)−ε1

)
−ε2

(F) ≤ Hβ
(

bχ(q)−∂qbχ(q)−ε1

)
−ε2(Am),

which gives that tHq,bχ(q)
χ (Am) ≤ Hβ

(
bχ(q)−∂qbχ(q)−ε1

)
−ε2(Am). Finally, since E =

⋃
m Am, we obtain

H
q,bχ(q)
χ (E) ≤ Hβ

(
bχ(q)−∂qbχ(q)−ε1

)
−ε2(E).

(2) For m ≥ n, consider

Am =

{
x ∈ Xχ(α, β) ∩ Xn

∣∣∣ 〈q, κ(x, r)〉 +
(
∂qBχ(q) + ε1

)
ξ(x, r) ≥ 0

and
ξ(x, r)
− log r

≥ β +
ε2

Bχ(q) − ∂qBχ(q) − ε1
for r ≤

1
m

}
.

Given n and a subset F of Am, 0 < δ < 1
m and let (B(xi, ri))i be a δ-packing of F. Then, we have that

e−
(

Bχ(q)−∂qBχ(q)−ε1

)
ξ(xi,ri) ≥ e−

(
〈q,κ(xi,ri)〉+Bχ(q) ξ(xi,r)

)
and r

−
(
β
(

Bχ(q)−∂qBχ(q)−ε1

)
−ε2

)
i ≥ e−

(
Bχ(q)−∂qBχ(q)−ε1

)
ξ(xi,ri).

Putting these together we see that∑
i

e−
(
〈q,κ(xi,ri)〉+Bχ(q) ξ(xi,r)

)
≤

∑
i

r
−
(
β
(

Bχ(q)−∂qBχ(q)−ε1

)
−ε2

)
i ≤ P

q,Bχ(q)
δ (F);

then, P
q,Bχ(q)
χ,δ (F) ≤ P

q,Bχ(q)
δ (F). Thus, letting δ → 0 gives that for all F ⊆ Am, P

q,Bχ(q)
χ (F) ≤

P
q,Bχ(q)

(F). Now, let (Ai)i be a covering of Am. Therefore, we have

Pq,t
χ (Am) ≤ Pq,Bχ(q)

χ

(
∪i (Am ∩ Ai)

)
≤

∑
i

P
q,Bχ(q)
χ

(
Am ∩ Ai

)
≤

∑
i

P
q,Bχ(q)
χ (Am ∩ Ai).
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It follows that

P
q,Bχ(q)
χ (Am) ≤

∑
i

P
β
(

Bχ(q)−∂qBχ(q)−ε1

)
−ε2

(Am ∩ Ai). ≤
∑

i

P
β
(

Bχ(q)−∂qBχ(q)−ε1

)
−ε2

(Ai).

We can deduce now that Pq,Bχ(q)
χ (E) ≤ Pβ

(
Bχ(q)−∂qBχ(q)−ε1

)
−ε2(E).

�

As mentioned above, in the last decay, there has been a great interest in the validity and non-validity
of the multifractal formalism. Many positive results have been written in various situations. What
follows, we state a sufficient condition so that we obtain the validity of the multifractal formalism.
This result will be used to study the binomial measure in symbolic space ∂A.

Proposition 2. Let q ∈ E and β ≥ 0. Assume that, at some point q, the function Λχ is differentiable
and set α = −Λ′χ(q). Then, provided thatHq,Λχ(q)

χ

(
Xχ(α, β)

)
> 0, one has

dim
(
Xχ(α, β)

)
= Dim

(
Xχ(α, β)

)
= β b∗χ(α) = β B∗χ(α) = β Λ∗χ(α).

Proof. It is known from Theorem 1, that for all β ≥ 0 and α ∈ E, one has

Dim
(
Xχ(α, β)

)
≤ β B∗χ(α) ≤ β Λ∗χ(α).

It is clear that Xχ(α, β) ⊆ Xχ(α). Then the assumptionHq,Λχ(q)
χ

(
Xχ(α, β)

)
> 0 implies that

H
q,Λχ(q)
χ

(
Xχ(α)

)
> 0.

Therefore from [28, Theorem 12] we obtain that bχ(q) = Bχ(q) = Λχ(q). Hence, using Lemma 4 and
the fact that Λχ is differentiable at q, we get

0 < Hq,Λχ(q)
χ

(
Xχ(α, β)

)
≤ Hβ

(
∂qΛχ(q)+Λχ(q)−ε1

)
−ε2

(
Xχ(α, β)

)
and then

dim
(
Xχ(α, β)

)
≥ β

(
∂qΛχ(q) + Λχ(q) − ε1

)
− ε2.

Letting ε1 → 0 and ε2 → 0 yields that dim Xχ(α, β) ≥ β
(
∂qΛχ(q) + Λχ(q)

)
, which achieves the

proof. �

Usually, it is difficult to check the hypothesis that Hq,Λχ(q)
χ

(
Xχ(α, β)

)
> 0. For this, we use the

Frostman lemma, which is a useful tool to verify this hypothesis.

Lemma 4. (Frostman lemma [28]) For β ≥ 0, if there exists a Borel measure µq, and two positive
numbers η and C such that µq

(
Xχ(α, β)

)
> 0 and such that, for all x ∈ Xχ(α, β) and all r ≤ η, one has

µq(B(x, r)) ≤ C e−
(
〈q,κ(x,r)〉+Λχ(q) ξ(x,r)

)
,

thenHq,Λχ(q)
χ

(
Xχ(α, β)

)
> 0.
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4. Application

In this section, we will consider a special case when κ and ξ are two functions defined by using
binomial measures. In this situation, we are able to construct an auxiliary measure µq so that we obtain
the validity of the relative multifractal formalism, that is

dim
(
Xχ(α, β)

)
= Dim

(
Xχ(α, β)

)
.

Moreover, we can compute explicitly the Hausdorff and packing dimensions in this case. Take the
space E to be the Euclidean space R and we denote by X the space ∂A with b = 2, that is, X = {0, 1}N.
Let (p0, p1) and (ω0, ω1) be two probability vectors, that is p0, p1, ω0, ω1 ≥ 0 and

∑
pi =

∑
ωi = 1. We

define on ∂A two binomial probability measures µp, νω by µp([ε]) = νω([ε]) = 1 and, for all u ∈ A∗

and i ∈ {0, 1},
µ([ui]) = pu pi and ν([ui]) = ωu ωi.

Now, we consider the functions κ and ξ to be defined on the cylinder such that, for all u ∈ Ak, we have
that κ([u]) = − log µ([u]) and

ν([u])1+h(k) ≤ e−ξ([u]) ≤ ν([u])1−h(k),

where h : N −→ R∗ is a non-increasing function with lim
k→∞

h(k) = 0. It is clear that a special example of
the function ξ is when it is defined using the measure ν by ξ([u]) = − log ν([u]). For q ∈ R, we define
τ(q) as the unique number satisfying

pq
0ω

τ(q)
0 + pq

1ω
τ(q)
1 = 1. (4.1)

Choose h(k) small enough so that 1/2 ≤ infu∈Ak ν([u])−τ(q)h(k) ≤ supu∈Ak ν([u])−τ(q)h(k) ≤ 3/2 (take for
instance h(k) = ◦

(
inf{ln ν(u), u ∈ Ak}

)
). Finally, we define

β(q) := −p0ω
τ(q)
0 log2 ω0 − p1ω

τ(q)
1 log2 ω1.

Theorem 3. Let (α, β) ∈ R2 such that α = −τ′(q) and β = β(q) for some q ∈ R. Then,

dim
(
Xχ(α, β)

)
= Dim

(
Xχ(α, β)

)
= β τ∗(α).

Observe that, for all k ≥ 1, we have∑
u∈Ak+1

e−〈q, κ([u])〉−τ(q)ξ([u]) =
∑

u∈Ak+1

µ([u])qν([u])τ(q)(1−h(k))

≤ 3/2
∑

u∈Ak+1

µ([u])qν([u])τ(q)

≤ 3/2
∑
u∈Ak

µ([u])qν([u])τ(q)
(
pq

0ω
τ(q)
0 + pq

1ω
τ(q)
1

)︸                 ︷︷                 ︸
=1

≤ 3/2.

Similarly, we have that
∑

u∈Ak+1

e−〈q, κ([u])〉−τ(q)ξ([u]) ≥ 1/2. It is clear that ξ is normal; therefore, according

to Lemma 1, we have

0 < P∗q, τ(q)
χ (∂A) < ∞ and then Λχ(q) = τ(q).
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We define, for each q ∈ R, the measure µq on ∂A by

µq([ε]) = ∅ and µq([u]) = pq
u ω

τ(q)
u (4.2)

for all u ∈ A∗.

Lemma 5. Let µl be a binomial probability with the parameter l ∈ (0, 1); then, for µq-almost every x

lim
k→∞

log2 µl([x|n])
−n

= −p0ω
τ(q)
0 log2 l − p1ω

τ(q)
1 log2(1 − l),

where x|k = x1 . . . xk ∈ A
k.

Proof. The proof follows immediately from the law of large numbers see the details in [29], or [3] in a
more general case. �

In particular, using the Lemma 5, for µq-almost every x ∈ ∂A, we have

lim
k→∞

ξ([x|k])
k log 2

= lim
k→∞

(1 − h(k)) log2 ν([x|k])
−k

= −p0ω
τ(q)
0 log2 ω0 − p1ω

τ(q)
1 log2 ω1 = β(q)

and

lim
k→∞

κ([x|k])
ξ([x|k])

= lim
k→∞

log2 µ([x|k])
−k

−k(1 − h(k))−1

log2 ν([x|k])
=

p0ω
τ(q)
0 log2 p0 + p1ω

τ(q)
1 log2 p1

p0ω
τ(q)
0 log2 ω0 + p1ω

τ(q)
1 log2 ω1

= −τ′(q) = α.

Hence, µq(Xχ(α, β)) = 1. Moreover, for any u ∈ ∂A, we have

µq([u])
e−〈q, κ([u])〉−τ(q)ξ([u]) ≤

µq([u])
µ([u])qν([u])τ(q)(1+h(k)) ≤ Ck

µq([u])
µ([u])qν([u])τ(q)

≤
3
2

µq([u])
µ([u])qν([u])τ(q) ≤

3
2

pq
u ω

τ(q)
u

pq
u ω

τ(q)
u

≤
3
2
.

Therefore, from Lemma 4, we have thatHq,τ(q)
χ (Xχ(α, β)) > 0, which implies that

bχ(q) = Bχ(q) = Λχ(q) = τ(q).

Since τ is differentiable at q, Theorem 2 gives that

dim
(
Xχ(α, β)

)
≥ β

(
qα + τ(q)

)
.

On the other hand, by Theorem 1, we have that dim
(
Xχ(α, β)

)
≤ β b∗χ(α) = β τ∗(α). Finally, we

obtain
dim

(
Xχ(α, β)

)
= Dim

(
Xχ(α, β)

)
= β b∗χ(α) = β B∗χ(α) = β τ∗(α).

Remark 4. In fact, we can use the mass distribution principle [12] to compute the validity of the
multifractal analysis. Indeed, for µq-almost every x ∈ ∂A, we have

lim
k→∞

log2 µq([x|k])
−k

= lim
k→∞

log µq([x|k])
−ξ([x|k]

ξ([x|k])
k log 2

= β
(
q lim

k→∞
(1 − h(k))−1 log px|k

logωx|k
+ τ(q)

)
= β

(
qα + τ(q)

)
.

Therefore, the Hausdorff dimension of the measure µq is β τ∗(α), where β = β(q).
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