Research article Special Issues

Existence criteria for fractional differential equations using the topological degree method

  • Received: 24 March 2023 Revised: 16 June 2023 Accepted: 20 June 2023 Published: 10 July 2023
  • MSC : 34A08, 37C25, 34K10, 34K37

  • In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.

    Citation: Kottakkaran Sooppy Nisar, Suliman Alsaeed, Kalimuthu Kaliraj, Chokkalingam Ravichandran, Wedad Albalawi, Abdel-Haleem Abdel-Aty. Existence criteria for fractional differential equations using the topological degree method[J]. AIMS Mathematics, 2023, 8(9): 21914-21928. doi: 10.3934/math.20231117

    Related Papers:

  • In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.



    加载中


    [1] S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045. https://doi.org/10.1515/fca-2018-0056 doi: 10.1515/fca-2018-0056
    [2] T. Abdeljawad, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775–1786.
    [3] A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62–69. https://doi.org/10.30538/psrp-oma2019.0033 doi: 10.30538/psrp-oma2019.0033
    [4] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Math., 4 (2019), 1101–1113. https://doi.org/10.3934/math.2019.4.1101 doi: 10.3934/math.2019.4.1101
    [5] Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional diffential equations, Surv. Math. Appl., 12 (2017), 103–115.
    [6] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method. H., 28 (2018), 828–856. https://doi.org/10.1108/HFF-07-2016-0278 doi: 10.1108/HFF-07-2016-0278
    [7] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480–487. https://doi.org/10.1016/j.amc.2010.05.080 doi: 10.1016/j.amc.2010.05.080
    [8] M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, RACSAM Rev. R. Acad. A, 112 (2018), 25–35. https://doi.org/10.1007/s13398-016-0359-2 doi: 10.1007/s13398-016-0359-2
    [9] W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc., 8 (2018), 165–176. https://doi.org/10.7153/fdc-2018-08-10 doi: 10.7153/fdc-2018-08-10
    [10] W. Benhamida, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138–145.
    [11] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
    [12] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamardtype fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27.
    [13] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
    [14] C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
    [15] K. Deimling, Nonlinear functional analysis, Springer, Berlin, Heidelberg, 1985.
    [16] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [17] M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), 1–20. https://doi.org/10.1155/2011/720702 doi: 10.1155/2011/720702
    [18] J. R. Graef, N. Guerraiche, S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. U. Babes-Bol. Mat., 62 (2017), 427–438. https://doi.org/10.24193/subbmath.2017.4.02 doi: 10.24193/subbmath.2017.4.02
    [19] G. Rahman, S. Ahmad, F. Haq, Application of topological degree method in quantitative behavior of fractional differential equations, Filomat, 34 (2020), 421–432.
    [20] E. F. D. Goufo, C. Ravichandran, G. A. Birajdar, Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Math. Model. Anal., 26 (2021), 591–611.
    [21] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101–186.
    [22] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
    [23] H. Sweis, N. Shawagfeh, O. A. Arqub, Fractional crossover delay differential equations of Mittag-Leffler kernel: Existence, uniqueness, and numerical solutions using the Galerkin algorithm based on shifted Legendre polynomials, Results Phys., 41 (2022), 105891.
    [24] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75 (2006), 233–240.
    [25] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [26] K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control Th., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [27] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, 1993.
    [28] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
    [30] L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opusc. Math., 31 (2011), 629–643. https://doi.org/10.7494/OpMath.2011.31.4.629 doi: 10.7494/OpMath.2011.31.4.629
    [31] M. Manjula, K. Kaliraj, T. Botmart, K. S. Nisar, C. Ravichandran, Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses, AIMS Math., 8 (2023), 4645–4665. https://doi.org/10.3934/math.2023229 doi: 10.3934/math.2023229
    [32] J. Mawhin, Topological degree methods in nonlinear boundary value problems, American Mathematical Society, 1979.
    [33] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 1–15. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [34] S. M. Momani, A. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl., 52 (2006), 459–470. https://doi.org/10.1016/j.camwa.2006.02.011 doi: 10.1016/j.camwa.2006.02.011
    [35] A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2023), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299
    [36] Q. Ma, R. Wang, J. Wang, Y. Ma, Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436–445. https://doi.org/10.1016/j.amc.2014.10.084 doi: 10.1016/j.amc.2014.10.084
    [37] O. A. Arqub, M. Al-Smadi, Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm, J. Porous Media, 23 (2020), 783–804. https://doi.org/10.1615/JPorMedia.2020025011 doi: 10.1615/JPorMedia.2020025011
    [38] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [39] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1999.
    [40] C. Promsakon, E. Suntonsinsoungvon, S. K. Ntouyas, J. Tariboon, Impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2416-6 doi: 10.1186/s13662-019-2416-6
    [41] K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Fractal., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008
    [42] K. Shah, R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim., 37 (2016), 887–899. https://doi.org/10.1080/01630563.2016.1177547 doi: 10.1080/01630563.2016.1177547
    [43] K. Shah, W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim., 40 (2019), 1355–1372. https://doi.org/10.1080/01630563.2019.1604545 doi: 10.1080/01630563.2019.1604545
    [44] D. Bainov, P. Simeonov, Impulsive differential equations: Periodic solutions and applications, Routledge, London, 1993.
    [45] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space. Appl., 2018 (2018), 1–8. https://doi.org/10.1155/2018/6974046 doi: 10.1155/2018/6974046
    [46] Y. Tian, W. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, P. Edinburgh. Math. Soc., 51 (2008), 509–527. https://doi.org/10.1017/S0013091506001532 doi: 10.1017/S0013091506001532
    [47] J. R. Wang, Y. Zhou, W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim., 33 (2012), 216–238. https://doi.org/10.1080/01630563.2011.631069 doi: 10.1080/01630563.2011.631069
    [48] J. R. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044
    [49] W. X. Zhou, X. Liu, J. G. Zhang, Some new existence and uniqueness results of solutions to semilinear impulsive fractional integro-differential equations, Adv. Differ. Equ., 2015 (2015), 1–16. https://doi.org/10.1186/s13662-015-0372-3 doi: 10.1186/s13662-015-0372-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1261) PDF downloads(77) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog