Research article Special Issues

Two-step inertial method for solving split common null point problem with multiple output sets in Hilbert spaces

  • Received: 21 May 2023 Accepted: 12 June 2023 Published: 19 June 2023
  • MSC : 47H09, 47H10, 49J53, 90C25

  • In this paper, an algorithm with two-step inertial extrapolation and self-adaptive step sizes is proposed to solve the split common null point problem with multiple output sets in Hilbert spaces. Weak convergence analysis are obtained under some easy to verify conditions on the iterative parameters in Hilbert spaces. Preliminary numerical tests are performed to support the theoretical analysis of our proposed algorithm.

    Citation: Chibueze C. Okeke, Abubakar Adamu, Ratthaprom Promkam, Pongsakorn Sunthrayuth. Two-step inertial method for solving split common null point problem with multiple output sets in Hilbert spaces[J]. AIMS Mathematics, 2023, 8(9): 20201-20222. doi: 10.3934/math.20231030

    Related Papers:

  • In this paper, an algorithm with two-step inertial extrapolation and self-adaptive step sizes is proposed to solve the split common null point problem with multiple output sets in Hilbert spaces. Weak convergence analysis are obtained under some easy to verify conditions on the iterative parameters in Hilbert spaces. Preliminary numerical tests are performed to support the theoretical analysis of our proposed algorithm.



    加载中


    [1] A. Adamu, A. A. Adam, Approximation of solutions of split equality fixed point problems with applications, Carpathian J. Math., 37 (2021), 381–392. https://doi.org/10.37193/CJM.2021.03.02 doi: 10.37193/CJM.2021.03.02
    [2] A. Adamu, D. Kitkuan, P. Kumam, A. Padcharoen, T. Seangwattana, Approximation method for monotone inclusion problems in real Banach spaces with applications, J. Inequal. Appl., 2022 (2022), 70. https://doi.org/10.1186/s13660-022-02805-0 doi: 10.1186/s13660-022-02805-0
    [3] A. Adamu, P. Kumam, D. Kitkuan, A. Padcharoen, Relaxed modified Tseng algorithm for solving variational inclusion problems in real Banach spaces with applications, Carpathian J. Math., 39 (2023), 1–26. https://doi.org/10.37193/CJM.2023.01.01 doi: 10.37193/CJM.2023.01.01
    [4] A. Adamu, D. Kitkuan, A. Padcharoen, C. E. Chidume, P. Kumam, Inertial viscosity-type iterative method for solving inclusion problems with applications, Math. Comput. Simul., 194 (2022), 445–459. https://doi.org/10.1016/j.matcom.2021.12.007 doi: 10.1016/j.matcom.2021.12.007
    [5] B. Ali, A. A. Adam, A. Adamu, An accelerated algorithm involving quasi-$\phi$-nonexpansive operators for solving split problems, J. Nonlinear Model. Anal., 5 (2023), 54–72. https://doi.org/10.12150/jnma.2023.54 doi: 10.12150/jnma.2023.54
    [6] F. Alvarez, On the minimizing of a second other dissipative dynamical system in Hilbert space, SIAM J. Control Optim., 38 (2000), 1102–1119. https://doi.org/10.1137/S0363012998335802 doi: 10.1137/S0363012998335802
    [7] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operator via discretization of nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
    [8] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773–782. https://doi.org/10.1137/S1052623403427859 doi: 10.1137/S1052623403427859
    [9] H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), 232–256. https://doi.org/10.1137/130910294 doi: 10.1137/130910294
    [10] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542
    [11] R. I. Bot, E. R. Csetnek, An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algor., 71 (2016), 519–540. https://doi.org/10.1007/s11075-015-0007-5 doi: 10.1007/s11075-015-0007-5
    [12] R. I. Bot, E. R. Csetnek, An inertial alternating direction method of multipliers, Minimax Theory Appl., 1 (2016), 29–49.
    [13] R. I. Bot, E. R. Csetnek, A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 36 (2015), 951–963. https://doi.org/10.1080/01630563.2015.1042113 doi: 10.1080/01630563.2015.1042113
    [14] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 084919. https://doi.org/10.1155/AAA/2006/84919 doi: 10.1155/AAA/2006/84919
    [15] C. Byrne, Iterative oblique projection onto convex sets and split feasibility, Inverse Probl., 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310
    [16] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [17] C. Byrne, Y. Censor, A. Gibali, S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759–775.
    [18] C. E. Chidume, A. Adamu, Solving split equality fixed point problem for quasi-phi-nonexpansive mappings, Thai J. Math., 19 (2021), 1699–1717.
    [19] C. E. Chidume, A. Adamu, A new iterative algorithm for split feasibility and fixed point problem, J. Nonlinear Var. Anal., 5 (2021), 201–210. https://doi.org/10.23952/jnva.5.2021.2.02 doi: 10.23952/jnva.5.2021.2.02
    [20] C. E. Chidume, A. A. Adam, A. Adamu, An algorithm for split equality fixed point problems for a class of quasi-phi-nonexpansive mappings in certain real Banach spaces, Creat. Math. Inform., 32 (2023), 29–40. https://doi.org/10.37193/CMI.2023.01.04 doi: 10.37193/CMI.2023.01.04
    [21] C. E. Chidume, A. Adamu, P. Kumam, D. Kitkuan, Generalized hybrid viscosity-type forward-backward splitting method with application to convex minimization and image restoration problems, Numer. Funct. Anal. Optim., 42 (2021), 1586–1607. https://doi.org/10.1080/01630563.2021.1933525 doi: 10.1080/01630563.2021.1933525
    [22] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [23] Y. Censor, T. Elfving, N. Kopf, T. Bortfield, The multiple-set split feasibility problem and its application, Inverse Probl., 21 (2005), 2071–2084. https://doi.org/10.1088/0266-5611/21/6/017 doi: 10.1088/0266-5611/21/6/017
    [24] Y. Censor, A. Gibali, S. Reich, Algorithms for split variational inequality problems, Numer. Algor., 59 (2012), 301–323. https://doi.org/10.1007/s11075-011-9490-5 doi: 10.1007/s11075-011-9490-5
    [25] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587–600.
    [26] P. L. Combettes, L. E. Glaudin, Quasi-nonexpansive iterations on the affine hull of orbits: from Mann's mean value algorithm to inertial methods, SIAM J. Optim., 27 (2017), 2356–2380. https://doi.org/10.1137/17M112806X doi: 10.1137/17M112806X
    [27] V. Dadashi, Shrinking projection algorithms for split common null point problem, Bull. Aust. Math. Soc., 96 (2017), 299–306. https://doi.org/10.1017/S000497271700017X doi: 10.1017/S000497271700017X
    [28] P. Dechboon, A. Adamu, P. Kumam, A generalized Halpern-type forward-backward splitting algorithm for solving variational inclusion problems, AIMS Mathematics, 8 (2023), 11037–11056. https://doi.org/10.3934/math.2023559 doi: 10.3934/math.2023559
    [29] J. Deepho, A. Adamu, A. H. Ibrahim, A. B. Abubakar, Relaxed viscosity-type iterative methods with application to compressed sensing, J. Anal., 2023. https://doi.org/10.1007/s41478-022-00547-2 doi: 10.1007/s41478-022-00547-2
    [30] K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, New York: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152
    [31] K. Goebel, S. Reich, Uniform convexity, Hyperbolic Geometry, and Nonexpansive mappings, New York: Marcel Dekker Inc, 1984.
    [32] J. Liang, Convergence rates of first-order operator splitting methods, PhD thesis, Normandie Université, 2016.
    [33] P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223–236. https://doi.org/10.1016/j.cam.2007.07.021 doi: 10.1016/j.cam.2007.07.021
    [34] P. E. Maingé, Regularized and inertial algorithms for common points of nonlinear operators, J. Math. Anal. Appl., 34 (2008), 876–887. https://doi.org/10.1016/j.jmaa.2008.03.028 doi: 10.1016/j.jmaa.2008.03.028
    [35] E. Masad, S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert space, J. Nonlinear Convex Anal., 8 (2007), 367–371.
    [36] F. U. Ogbuisi, The projection method with inertial extrapolation for solving split equilibrium problems in Hilbert spaces, Appl. Set-Valued Anal. Optim., 3 (2021), 239–255. https://doi.org/10.23952/asvao.3.2021.2.08 doi: 10.23952/asvao.3.2021.2.08
    [37] F. U. Ogbuisi, O. S. Iyiola, J. M. T. Ngnotchouye, T. M. M. Shumba, On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., 2021 (2021), 4. https://doi.org/10.23952/jnfa.2021.4 doi: 10.23952/jnfa.2021.4
    [38] C. C. Okeke, A. U. Bello, L. O. Jolaoso, K. C. Ukandu, Inertial method for split null point problems with pseudomonotone variational inequality problems, Numer. Algebra Control Optim., 12 (2022), 815–836. https://doi.org/10.3934/naco.2021037 doi: 10.3934/naco.2021037
    [39] C. C. Okeke, L. O. Jolaoso, R. Nwokoye, A Self-Adaptive Shrinking Projection Method with an Inertial Technique for Split Common Null Point Problems in Banach Spaces, Axioms, 9 (2020), 140. https://doi.org/10.3390/axioms9040140 doi: 10.3390/axioms9040140
    [40] C. C. Okeke, L. O. Jolaoso, Y. Shehu, Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 769–790. https://doi.org/10.1515/ijnsns-2021-0116 doi: 10.1515/ijnsns-2021-0116
    [41] B. T. Polyak, Introduction to optimization. Optimization Software, New York: Publications Division, 1987.
    [42] C. Poon, J. Liang, Trajectory of Alternating Direction Method of Multiplier and Adaptive Acceleration, Advances In Neural Information Processing Systems, 2019.
    [43] C. Poon, J. Liang, Geometry of First-order Methods and Adaptive Acceleration, 2003. https://doi.org/10.48550/arXiv.2003.03910
    [44] S. Reich, T. M. Tuyen, Two new self-adaptive algorithms for solving the split common null point problem with multiple output sets in Hilbert spaces, J. Fixed Point Theory Appl., 23 (2021), 16. https://doi.org/10.1007/s11784-021-00848-2 doi: 10.1007/s11784-021-00848-2
    [45] S. Reich, T. M. Tuyen, Iterative methods for solving the generalized split common null point problem in Hilbert spaces, Optimization, 69 (2020), 1013–1038. https://doi.org/10.1080/02331934.2019.1655562 doi: 10.1080/02331934.2019.1655562
    [46] S. Reich, T. M. Tuyen, The split feasibility problem with multiple output sets in Hilbert spaces, Optim. Lett., 14 (2020), 2335–2353. https://doi.org/10.1007/s11590-020-01555-6 doi: 10.1007/s11590-020-01555-6
    [47] W. Takahashi, The split feasibility problem and the shrinking projection in Banach spaces, J. Nonlinear Convex Anal., 16 (2015), 1449–1459.
    [48] W. Takahashi, The split common null point problem in Banach spaces, Arch. Math. (Basel), 104 (2015), 357–365. https://doi.org/10.1007/s00013-015-0738-5 doi: 10.1007/s00013-015-0738-5
    [49] S. Takahashi, W. Takahashi, The split common null point problem and the shrinking projection method in Banach spaces, Optimization 65 (2016), 281–287. https://doi.org/10.1080/02331934.2015.1020943 doi: 10.1080/02331934.2015.1020943
    [50] D. V. Thong, D. V. Hieu, An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 19 (2017), 3029–3051. https://doi.org/10.1007/s11784-017-0464-7 doi: 10.1007/s11784-017-0464-7
    [51] T. M. Tuyen, P. Sunthrayuth, N. M. Trang, An inertial self-adaptive algorithm for the generalized split common null point problem in Hilbert spaces, Rend. Circ. Mat. Palermo, II. Ser., 71 (2022), 537–557. https://doi.org/10.1007/s12215-021-00640-8 doi: 10.1007/s12215-021-00640-8
    [52] Z. B. Wang, P. Sunthrayuth, A. Adamu, P. Cholamjiak, Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities, Optimization, 2023. https://doi.org/10.1080/02331934.2023.2187663 doi: 10.1080/02331934.2023.2187663
    [53] H. K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22 (2006), 2021–2034. https://doi.org/10.1088/0266-5611/22/6/007 doi: 10.1088/0266-5611/22/6/007
    [54] H. K. Xu, Iterative methods for split feasibility problem in infinite dimensional Hilbert spaces, Inverse Probl., 26 (2010), 105018. https://doi.org/10.1088/0266-5611/26/10/105018 doi: 10.1088/0266-5611/26/10/105018
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(121) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog