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1. Introduction

Throughout this paper, H denotes a real Hilbert space with inner product (-, -) and the induced || - ||,
I the identity operator on H, N the set of all natural numbers and R the set of all real numbers. For a
self-operator T on H, F(T) denotes the set of all fixed points of 7.

Let H, and H, be real Hilbert spaces and let 7~ : H; — H, be bounded linear operator. Let
{U j};.:1 :Hy — H, and {T;}/_, : H, — H, be two finite families of operators, where ¢, r € N. The split
common fixed point problem (SCFPP) is formulated as finding a point x* € H; such that

x" €N’ F(U;) such that 7x" € N_ F(T)). (1.1)
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In particular, if # = » = 1, the SCFPP (1.1) reduces to finding a point x* € H; such that
x* € F(U) such that 7 x" € F(T). (1.2)

The above problem is usually called the two-set SCFPP.

In recent years, the SCFPP (1.1) and the two-set SCFPP (1.2) have been studied and extended by
many authors, see for instance [15,20,23,27,36-40,47-49]. It is known that the SCFPP includes the
multiple-set split feasibility problem and split feasibility problem as a special case. In fact, let {C j};':l
and {Q;}!_, be two finite families of nonempty closed convex subsets in H; and #,, respectively. Let
Uj = Pc; and T; = Pg,; then SCFPP (1.1) becomes the multiple-set split feasibility problem (MSSFP)
as follows:

find x* € N'_,C; such that 7x" € N[_, Q. (1.3)

When ¢ = r = 1 the MSSFP (1.3) is reduced to the split feasibility problem (SFP) which is described
as finding a point x* € H satisfying the following property

x" € C such that 7x" € Q. (1.4)

The SFP was first introduced by Censor and Elfving [22] with the aim of modeling certain inverse
problems. It has turned out to also play an important role in, for example, medical image reconstruction
and signal processing (see [2,4, 15,17,21]). Since then, several iterative algorithms for solving (1.4)
have been presented and analyzed. See, for instance [1,5, 14-16, 18, 19, 23, 24, 27] and references
therein.

The CQ algorithm has been extended by several authors to solve the multiple-set split convex
feasibility problem. See, for instance, the papers by Censor and Segal [25], Elfving, Kopf and
Bortfeld [23], Masad and Reich [35], and by Xu [53,54].

In 2020, Reich and Tuyen [45] proposed and analyzied the following split feasibility problem with
multiple output sets in Hilbert spaces: let H, H;,i = 1,2,...,m be real Hilbert spaces. Let 7; : H —

‘H;, i = 1,2,...,m, be bounded linear operators. Furthermore, let C and Q; be nonempty, closed and
convex subsets of H and H;,i = 1,2, ..., m, respectively. Find an element u", such that:
u' € QP = Cn (ML, T771(Q) # 0 (1.5)

thatis, u’ e Cand Tu' € Q;, foralli=1,2,...,m.
To solve problem (1.5), Reich et al. [46] proposed the following iterative methods: for any uy, vy €
C, let {u,} and {v,} be two sequence generated by:

Un+1 :PC

U, — VZ 7:*(1 - PQ;)ﬂun} » (16)

i=1

Vn+l = a’nf(vn) + (1 - an)PC

V= Y T - PQ,.mvn} , (1.7)

i=1

where f : C — C is a strict k-contraction with k € [0, 1), {y,} € (0,00) and {@,} C (0, 1). They
established the weak and strong convergence of iterative methods (1.6) and (1.7), respectively.
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In 2021, Reich and Tuyen [44] considered the following split common null point problem with
multiple output sets in Hilbert spaces: let H,H;,i = 1,2,..., N, be real Hilbert spaces and let 7; :
H — H;,i=1,2,...,N, be bounded linear operators. Let B : H — 2% i =1,2,..., N be maximal
monotone operators. Given H, H; and 77 as defined above, the split common null point problem with
multiple output sets is to find a point u" such that

u' € Q:=87'0)n (N, 771(B7(0)) # 0. (1.8)

To solve problem (1.8), Reich and Tuyen [44] proposed the following iterative method:

Algorithm 1.1. Forany uy € H, Let Hy = H, Ty = I'*, By = B, and let {u,} be the sequence generated

by:
N
Vo = B[t = T (I = T2 T, |
Upsl = clv:nof(un) + (1 —ay)vy, 120,
where {a,} C (0,1), and {B;,} and {r;,},i = 0,1,...,N, are sequences of positive real numbers, such

I =T TP
T (=00 YTt P46
{pin} C lc,d] € (0,2) and {6,,} is a sequence of positive real numbers for each i =0,1,...,N, and
[+ H — H is a strict contraction mapping H into itself with the contraction coefficient k € [0, 1).

where

that {6;,} C [a,b] C (0,1) and Zﬁoﬁm =1 foreachn > 0, and 7;, = ,o,-,,l|

They established the strong convergence of the sequence {u,} generated by Algorithm 1.1 which is
a solution of the Problem (1.8)

Alvarez and Attouch [7] applied the following inertial technique to develop an inertial proximal
method for finding the zero of a monotone operator, i.e.,

find x € H such that 0 € G(x). (1.9

where G : H — 2" is a set-valued monotone operator. Given x,_;, x, € H and two parameters
6,€10,1), 4, >0, find x,,; € H such that

0¢€ /lnG(-xn+1) t Xyl — Xp — Qn(-xn - xn—l)- (110)
Here, the inertia is induced by the term 6,(x, — x,,_;). The equation (1.10) may be thought as coming
from the implicit discretization of the second-other differential system
2

d d
0¢ d—;(t) +pd—);(t) +G(x(0) ae. t> 0, (1.11)

where p > 0 is a damping or a friction parameter. This point of view inspired various numerical
methods related to the inertial terminology which has a nice convergence property [6-8,28,29,33] by
incorporating second order information and helps in speeding up the convergence speed of an
algorithm (see, e.g., [3,7,9-13,51,52] and the references therein).
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Recently, Thong and Hieu [50] introduced an inertial algorithm to solve split common fixed point
problem (1.1). The algorithm is of the form

Xp, X1 € 7-{la
Yn = Xp + a’n(xn - xn—l)’ (112)
Xnet = (1= Bayn +Ba Xy wiU; (I + Sicy neyT(Ti = DT ) .

Under approximate conditions, they show that the sequence {x,} generated by (1.12) converges
weakly to some solution of SCFPP (1.1).

It was shown in [43, Section 4] by example that one-step inertial extrapolation w, = x, + 6(x, —
X,—1), 8 € [0, 1) may fail to provide acceleration. It was remarked in [32, Chapter 4] that the use
of inertial of more than two points x,, x,,_; could provide acceleration. For example, the following
two-step inertial extrapolation

Yn = Xp + Q(Xn - xn—l) + 5(xn—1 - xn—Z) (113)

with 6 > 0 and ¢ < 0 can provide acceleration. The failure of one-step inertial acceleration of ADMM
was also discussed in [42, Section 3] and adaptive acceleration for ADMM was proposed instead.
Polyak [41] also discussed that the multi-step inertial methods can boost the speed of optimization
methods even though neither the convergence nor the rate result of such multi-step inertial methods
was established in [41]. Some results on multi-step inertial methods have recently be studied in [26].
Our Contributions. Motivated by [44, 50], in this paper, we consider the following split common
null point problem with multiple output sets in Hilbert spaces: Let H; and H, be real Hilbert spaces.
Let {U j};=1 : H, — H, be a finite family of quasi-nonexpansive operators and B; : H, — 2% i =
1,2,...,t. be maximal monotone operators and {‘7’,~}§:1 : H; — H, be a bounded linear operator. The
split common null point problem with multiple output set is to find a point x* € HH; such that

X e F(U) N (N, 771(8710) # 0. (1.14)

Let T be the solution set of (1.14). We propose a two-step inertial extrapolation algorithm with self-
adaptive step sizes for solving problem (1.14) and give the weak convergence result of our problem in
real Hilbert spaces. We give numerical computations to show the efficiency of our proposed method.

2. Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert spaces . We know that for each
point u* € H, there is a unique element Pcu* € C, such that:

|* — Pcu®|| = inf ||u” — v|]. 2.1
veC

We recall that the mapping P¢ : H — C defined by (2.1) is said to be metric projection of H onto
C. Moreover, we have (see, for instance, Section 3 in [31]):

u = Pcu*,v—Pcu’y <0, Yu" e H, veC. (2.2)

Definition 2.1. Let 7 : H — H be an operator with F(T) # (. Then
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o T :H — H is called nonexpansive if
| Tu—-Tv|| <|lu—=v|, YuveH, (2.3)

o T : H — H is quasi-nonexpansive if
| Tu—v||<|lu=v|l, YveF(T), ueH. 2.4)

We denote by F(T') the set of fixed points of mapping T'; thatis, F(T) = {u* € C : Tu* = u*}. Given
an operator & : H — 2% its domain, range, and graph are defined as follows:

DE) = WweH:Eu) +0},
RE) = UEW) :u* € DE)}

and
GE) ={W'V)YeHXH: :u € DE), v e Eu")}.
The inverse operator & ! of & is defined by:
u* € &'(v") if and only if v* € E(u”).

Recall that the operator & is said to be monotone if, for each u*, v* € D(E), we have (f —g,u"—v*) >
0 for all f € Eu*) and g € E(v*). We denote by 77 the identity mapping on /. A monotone operator
& is said to be maximal monotone if there is no proper monotone extension of & or, equivalently, by
Minty’s theorem, if R(I" + A&) = H, for all A > 0. If & is maximal monotone, then we can define, for
each A > 0, a nonexpansive single-valued operator J¢ : R(Z H 1 28) — D(E) by

JP =T+ 287"
This operator is called the resolvent of &. It is easy to see that &'(0) = F (Jf), for all 4 > 0.

Lemma 2.2. [45] Suppose that & : D(E) ¢ H — 2" is a monotone operator. Then, we have the
Jfollowing statements:

(i) Forr > s >0, we have:
llu = J&ull < 2llu = JZull,

for all elements u € RI™ + rE) N RIT™M + 5E).
(ii) For all numbers r > 0 and for all points u,v € R(IH + rE), we have:

(u—v, J;gu - va) > ||Jf;u — vallz.
(iii) For all numbers r > 0 and for all points u,v € RI™ + rE), we have:
(@M = 78— (T = Iy, u—vy > [T = IEu - T - P
(iv) If S = &1(0) £ 0, then for all elements u* € S and u € RI™M + rE), we have:

& 2 2 E. 112
& — | < llu = "I = llu — JEul .
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Lemma 2.3. [30] Suppose that T is a nonexpansive mapping from a closed and convex subset of a
Hilbert space H into H. Then, the mapping I'* — T is demiclosed on C; that is, for any {u,} C C, such
that u, — u € C and the sequence (I — T)(u,) = v, we have (I = T)(u) = v.

Lemma 2.4. [34] Given an integer N > 1. Assume that for eachi = 1,...,N, T; : H — H is a

k;-demicontractive operator such that ﬂfi F(T;) # 0. Assume that {w,-}fi | Is a finite sequence of positive
numbers such that Zﬁil w; = 1. Setting U = Zﬁl w;T;, then the following results hold:

(i) F(U) = ﬁf\ilF(T,-).
(ii) U is A-demicontractive operator, where A = max{k;|i = 1,...,N}.
(iii) (x—Ux,x—z) > % 2511 willx — Tix|* for all x € H and z € ﬂfilF(Ti).

Lemma 2.5. Let x,y,z € H and a,3 € R. Then

I+ a)x = (@ =By =B’ = 1+l = (@ =B = BllzllP + (1 + @) = B)llx =yl
+B(1 + @)llx 2l = Bla ~ By - 2.

3. Main result

We give the following assumptions in order to obtain our convergence analysis.

Assumptions 3.1. We assume that the inertial parameters 6 € [0, %), p € (0,1)and 6 € (—00,0]
satisfies the following conditions.

(a)
0<6< +£;
(b)
max{lzfpp _ (-0, %[p(zm -0 1)]} <6<0:
(c)

Ro-DE +6H+Q2—-p)O—-086)+p—-2560—-1<0.

Now, we present our proposed method and our convergence analysis as follows:

Algorithm 3.2. Two-Step Inertial for Split Common Null Point Problem
Step 1. Choose o € (—00,0] and 6 € [0, 1/2) such that Assumption 3.1 is fulfilled. Pick x_y, xo, x| €

H, and setn = 1.
Step 2. Given x,,_,, x,_1 and x,,, compute x,., as follows

{%:%+ﬂ%—%ﬂ+&M4—Mﬂ, (3.1)

Xoar = (1= )y +p Ty wiU; (T = By SiaTin T (T = TENT) Y

where {6, ,} and {r;,}, i = 1,2,...t, are sequences of positive real numbers, such {6;,} C [a,b] C (0, 1)
and Y'_, 6;, = 1, for each n > 1 and

ol - STyl
TNT AT = TPyl + 6

(3.2)

Tin =
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where {p;,} C [c,d] C (0,2) and {6;,} are sequences of positive real numbers for each i = 1,2,...,1,

and {U j};.:1 is a finite family of quasi-nonexpansive operators.

Step 3. Set n < n+ 1 and go to Step 2.

Lemma 3.3. Fort € N, let {B}}_, : H, — 2% pe a finite family maximal monotone operators. Let
{T:iY_, : Hi — H,, be a finite family of bounded linear operators. Define the operator V : H; — H,
by

t
V=T =3 6, T (7 - J2)T, (3.3)
i=1

where 1y, is as defined in (3.2), {0;,}._, € (0,1) and Y1 6in = 1. Then we have the following results:
(1)

t H. B; 4

(1" — T2 )Tl
IV =2l <l =2l = D 8ipin(2 = pin) —— ——Z
S I (1% = T2 Tl + 6,

(2) x € F(V)ifand only if Tix € N_,F(J2), fori=1,2,...,t.

Proof. (1) Given a point z € 7, it follows from the convexity of the function || - ||* that:

2
t
WVx—zP = |lx- Z SinTin T ("2 = J2NTix — 2
i=1
¢ 2
= | D] Sinlx = Tin T (A" = IE)Tix = 2)
i=1
t
< DSl =T, T (I = I8 Tix - 2l (3.4)

i=1
Using JrB (7:z) = Tiz and Lemma 2.2(iii), for each i = 1,2, ..., ¢, we see that
llx = 73, 77 (7% = TP Tix — 2
= llx =2l = 20T (T8 = I Tix, x = 2) + 7 1T (72 = T2 Tl
= llx =2l = 270, ((T7" = T2 Tox, Tix = Tiz) + 1, | T7 (X7 = T2 Tl
= by —2lP = 27, (7 = I Tix = (7 = J7)Tiz, Tox = Tiz)
+2 1T (I — JEOT P
< =2l = 20l = IEOToxlP + 77,177 (T7% = J2)Toxl + 6;,)
1T = T3 T
17T = IPYT X + 0

= |lx = 2P = pin2 = pin) (3.5

Hence, from (3.4) and (3.5), we get

t H. B, 4
(1% — T2 Tl
V=P < lbr = 2P = > 61pin(2 = pin)————" :
S I (1% = T2)TilP + 6,
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(2) It is obvious that if 7;x € N_| F (J,Zf;) then x € F(V). We show the converse, let x € F(V) and
ze€T;! (F(Jf;)) we have

' 07 — I )Tl
Ix =zl =IVx =z < llx =z’ - ; Oinpin(2 —,Di,n)”Ti*U(H2 - Jffﬁ,’)"/”ixllz o (3.6)
Since p;,, C (0,2), we obtain
I -JP)Tx=0, Vi=12,...,1
That is, 7;x € N/_, F(J7").
O
Lemma 34. for t,r € N, let {B,-}ﬁz1 : H, — H, be maximal monotone operators such that

Ni_ F (Jf;) # 0 and { U‘,}S.:] : Hy — H, be a finite family of quasi-nonexpansive operators such that
N FU) # 0. Assume that {I — U]-};:1 and {I - Jfffl}le are demiclosed at zero. Let
{Ti}i_, : Hi = Ha, be bounded linear operators suppose Y # 0. Let S : H, — H, be defined by

r t
Sx = wiUj| T = > 8T (I = J2)T; | x,
j=1 i=1

where {1;,}, is as defined in (3.2), {Wf}.ri=1 and {6;,},_, are in (0, 1) with 3"_, w; = 1 and Y 0in = 1.
Assume that the following conditions are satisfied

.....

(A2) max;-yz,. fsup,{6i,}} = K < co.
Then the following hold:

(a) The operator S is quasi-nonexpansive.
(b) F(S)="T.
(c) I —S is demiclosed at zero.

Proof. From the definition of V we can rewrite the operator S as
Sx = Z w;U;Vx.
=1
We show the following

(1) {U;VY},, is a finite family of quasi-nonexpansive operator,
() N_ F(U;V) =T,
(i) foreach j=1,2,...,rthen I — U;V is demiclosed at zero.

By Lemma 3.3, V is quasi-nonexpansive. Therefore, for each j = 1,2,...,r the operator U;V is
quasi-nonexpansive. Next, we show that for each j = 1,2,...,r, then

F(U,V)= F(U;) N F(V).
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Indeed, it suffices to show that foreach j = 1,2,...,r F(U;V) C F(U;)" F(V).Letp € F(U;V). It
is enough to show that p € F'(V). Now, taking z € F(U;) N F(V); we have
lp-zF = IU;Vp—za <IVp -2l
I — T2 Toxl
T (A7 = TENT il + 61

IA

t
lp = 2IP = > 8inpia(2 = pi)
i=1
This implies that
(12 — JET
|77 = JENT P + 6,

Thatis J; (7;p) = Tip, Y i=1,2,...,t This implies that 7;p € N'_ F(J5"). Thus, p € F(V).
Therefore, F(U;) N F(V) = F(U;V), ¥Yj=1,...,r. We now show that

2 0inPin(2 = pin)
i=1

T = {pen_ F(U; such that T;p € N_ F(J7)}
= N FU,V).
By Lemma 3.3, we have
T = {xen FU)ITx e FU))
= {xen_ F(Ujlx e F(V))
= N F(U)NFV)
= N F(U,V).

Finally, we show that for each j = 1,..r, 7 — U,V is demiclosed at zero. Let {x,} C H, be a sequence
such that x, — z € H; and U;Vx, — x, = 0 we have

0 < llx, = 2ll = U;Vx, — zll < llx, = U;Vxll = 0.

This implies that
1%, = 2l = 1U;Vx, = 2> = 0.

By Lemma 3.3, we have

WU Vx, =2 < IVx, -zl
t H B; 4
(7% — JPYT x|
< =2 = Ginpin(2 = pin) : (3.7)
Z.; 1T = JENT X + 6,
This implies that
S a2 - pu e IT e v, -
i,npi,n _pi,n P K S || X — <1 - iVXp — 2| -
< 1T (12 — T2 )T x| + 6., !
Since {0;,} C [a,b] C (0, 1), {pin} C [c,d] C (0,2), and (3.7) implies
(72 — T2T i,
: — 0, as n — oo, (3.8)

177 (1% =TT, + 6,
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Y i = 0,1,2...¢t. It follows from the boundedness of the sequence {x,} that
L :=maxi—o ;. y{sup{l|7; (L Hy _ g5 YT ix,|I?}} < 0. Thus from Condition (A2), It follows that

Tin

(172 = TPl N (I = JPOT il
1T (I — JENT i, + 6, L+K '

Combining this with (3.8), we deduce that
I = TP Tixall = 0 (3.9)
Vi=0,1,...,N, Lemma 2.2(i) and Condition (A1) now imply that
1T = TENT ol < 20778 = T2 T, (3.10)
Vi=0,1,...,N. Thus using (3.9) and (3.10), we are able to deduce that
1T = I2YT il = 0, (3.11)
Vi=0,1,...,N.
From ||Vx, — x,|| = || Z?:o (Si,,ﬂ',-,,f/"l.*(IW2 - JrB )7 ix,||, the assumptions on {6;,} and {7;,} and (3.10),
it follows that
VX = xull = 0.
On the other hand
NUVxn = Vol < IU;Vxy = x4l + IV, — x4l = 0. (3.12)

Since x, — z, we have Vx, — z and by the demiclosedness of U; we have z € F(U;). Since, for
eachi=1,2,...,N, 7;is a bounded linear operator, it follows that 7;x,, — 7;z. Thus by Lemma 2.3
and (3.11) implies that Tz € F(J7') Vi = 1,...,¢ that is Tz € N'_,F(J?'). By Lemma 3.3 we get
z € F(V). Therefore, z € F(U;) N F(V) = F(U;V).

By Claim (i) and Lemma 2.4, we obtain Sx = }’_; w;U;Vx is quasi-nonexpansive and F(S) =
m?le(UjV) =T.

Finally, we show that 7 — S is demiclosed at zero. Indeed, Let {x,} C H, be a sequence such that
X, — z € H; and ||x,, — Sx,|]| = 0. Let p € F(S) by Lemma 2.4, we have

1 t
= S 30= p) 2 5 ) I = UVl

=1
This imples that, for each j = 1,...,7 we have
llx, = U;Vx,|l = 0 as n — oo.

By the demiclosedness of 7 — U;V we have z € F(U,V). Therefore z € ﬂ;le(UjV) = F(S). m|
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Theorem 3.5. For t,r € N. Let {B;}!_, : H, — H, be a finite family of maximal monotone operators
such that 0!_| F (JZ) # 0 and (U j};zl : Hy — H, be a finite family of quasi-nonexpansive operators
such that ﬂgle(Uj) # 0. Assume that {1 — Uj};:1 and {I—]?"}f=1 are demiclosed at zero. Let T; : H, —
H,,i=1,2,...,N be bounded linear operators. Suppose (' # (0. Let {x,} be a sequence generated by

Algorithm 3.2. and suppose that Assumptions (3.1) (a)-(c) are fulfilled. Then {x,} converges weakly to
an element of Y.

Proof. LetS = Z;zl w;U; (I - 6,-,,,Ti,,,7'i*(f Ho _ ]rB )7‘,-) , then the sequence {x,} can be rewritten
as follows

Xpr1 = (L= p)yn + pS yn. (3.13)

By Lemma 3.3, we have that S is quasi-nonexpansive. Let z € T, from (3.13), we get

o1 =2l = 1L = P —2) + pSyu = DI
= (1 -p)lly. — 2P +plISy. — 2> = p(1 = P)llyn — Syull®
< lyw = 2P = p(1 = P)llyn = Syull*. (3.14)
Observe that
Yn—2 = Xzt Q(Xn - xn—l) + é‘()Cn—l - xn—Z) —Z

= (I+0)(x,—2) —(0—0)(x4-1 — 2) — (X2 — 2)
Hence by Lemma 2.5, we have

(1 + 0)(xy — 2) = (0 = 6) (X1 — 2) — 6(Xpz — DI
(1 +Olx, — 2> = (0 = Olixar — 2lI* = Sllxs—r — 2l
+(1 +6)(O = 8)lIx, — x,_1]* + 5(L + O)llx,, — x,0l
=8(0 = 8)lIx-1 — xamall”. (3.15)

2
”yn - Z”

Note also that

2<0(xn+1 - Xn), Xn — xn—1>

29<xn+1 — Xns Xp — xn—l)

< 200ll1xn+1 = xallllXn = X1l
= 29||xn+1 - xn”llxn - xn—lll’
and so,
_29<xn+1 — Xns Xp — xn—l) = _29||Xn+1 - xn””xn - xn—1||~ (316)
Also,
26<xn+1 = Xns Xp—1 — xn—2> = 2<6(xn+1 - xn)a Xn-1 — xn—2>
< 2|6”|xn+l - xn””xn—l - xn—2”a
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which implies that
=206 Xn41 = Xy Xp—1 = Xp—2) = =2[0|[| X041 = Xnlll[Xn-1 — Xn2l|- (3.17)
Similarly, we have
266{xn-1 = Xn, Xu-1 = Xp2) < 21610/, = X1 [ll1X0-1 = Xn2ll,
and thus
266(x = X1, Xn-1 = Xp—2) 2 =2[6101x, — X1l 01 — Xn2ll. (3.18)

By (3.16)—(3.18) and Cauchy-Schwartz inequality one has

1201 = Yl = Xs1 = G+ 00 — Xm1) + 6(Xnmt — X))
= a1 — X — 0%, — Xm1) = 601 — X2
= et = Xall® = 200001 = X X0 — X1 ) — 20( K41 = Xy Xyt — Xp2)
67112, — Xutl® + 260X — X1y Xumt — Xno2) + 671Xt — Xpoall?
> o1 — XallP = 2601%001 = Xallllxn — X1l = 200001 = XallllXot — Xamall
+0% (1%, — Xt 1P = 2161011x5 — XXt — Xnoall + 21Xt — Xpoall?
> IXpe1 = Xall® = Ollxns1 — Xall* = Ollx, — Xt I = 1011201 — Xl
—[61l1X5-1 = Xpoall® + 62113, — X i lIF = 161611x, — 21|
—161611%,-1 — Xpal* + 6% 1%t — Xl
= (1 =0l = O)llxur1 — Xall> + (6" — 6 = 610l — Xpr I
+(6% — |01 = 1610)]1%-1 — Xp—all*. (3.19)
Observe that
2 1 2
ISy, — yall” = ;llxnn = yall™ (3.20)

Putting (3.20) in (3.14), we get

IA

Iy, — 2l = p(1 = P)ISy, — yall®
l1-p 2
1%041 = yall®. (3.21)

2
[lns1 = 2l

2
||yn - Z“ -

Combining (3.15) and (3.19) in (3.21) with noting that 6 < 0 we obtain

Paer =22 = (1 +O)xs — 2P = 0 = )lxus — 2I2 = 8llxn2 — 21
+(1 +6)(8 = Ol = xuct [P + 61 + O)l[xn = xnall® = 58 = )1t — XoalP
(1-p) (1-p)
S (1—|6|—9)||xn+1—xn||2—Tp(e2—e—|6|9)||xn—xn_l||2
(1-p)

(6% = 161 = 1610)1126,-1 = 22l
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(1 + Oy = 2> = (0 = 8)llx1 = 2l* = Slloa2 = 2l* + 6(1 + O)llx, — X2l

+|(1+6)(0-9) - (1/.%10)(92 —0- |5|9)] 1%, = X1 I®

[5(9 5+ 4 p)

-

—= (& 161 - I5|9)] [P

161 = Ollxns1 = 2l

I+ 9)||xn —2” = (0 = Ollxas — 2lI* = 6llx, 2 — 2l

+|(1+6)(6-20) - (1’+p)(92 0+ 59)] lIx, — x4

IA

[5(0 5+ ”)( &+ 8+ 60) | 1xu1 — ool
( (3.22)
By rearranging we get
1 _
et — 2P = 611, — 2P = Sll s — 2P + (Tp)a 6= Ol — 512
1 _
<l = 2l = Bl 1 — 2l = 612 — 2l + L1 + 6 = B)llxy — 502
o
l _
+|a +9)(9—5)—M(02—20+59+5+ 1
o
(1 ,0) _ 2
—[6(6-9) + ( + 8+ 00) | ||x—1 — xu=2]|". (3.23)
o
Define
- 2 2 (1 _P) 2
0y = Uy =3 = 1 =3 = 2 =+ EL20 5= 0, =,
Let us show that Y, > 0,Vn > 1. Now
(1=p)
T = =l =l = = 2 =+ S0 45 O, =P
> [l — 2P = 26015 — 5112 = 26015 — 2l = Sll s — 2P

(1 +0— Q)HX,Z - -xn—lllz
(1-p)
P

+(1—;0)
P

(1= 20)llx, — 2> +

(1+6-6)- 29] 1% = Xt l? = Sllxz — 2P, (3.24)

Since § < 1/2,6 < 0, 12%0'2 —(1-60) <dand 0 £ 9 < 1—p it follows from (3.24) that T, > 0.
Furthermore, we drive from (3.23)

(1+9)(9—5)—(1’%”)(92—29+59+5+1)

2
”xn - xn—l”

Tn+1 - Tn <
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1 _
- [5(9 o+ LTP 2 st 50) s — P
P
_ (1I-p) >
= —|(1+60)O@-0)— ——0O" -20+60+5+1)
P
X (11201 = ool = Il = %0111
1 _
H1+00-6- P @ 2915046+ 1)
Jo,
1 _
50 -8) - LS 4 6+ 60)lnr - xall?
P
= qilllxXe—1 = X02ll® = 1%, = X171 = @2llXs1 — x00ll, (3.25)
where
L 1-p) 9
g =—[0+60)@—-06)——@ -20+0+5+1)
P
and
1 _
G o= —[(1+0)06-8-T"P @ 2046045+ 1)
P
1 _
-850 - 6) — (—'O)((s2 + 6+ 601Xt — Xpoal* (3.26)
P

By our assumption, it holds that

01
oTP20+ D -(@-Dl<6. (3.27)

As aresult g; > 0. Also g, > 0 by Assumption 3.1 (c). Then by (3.25) we have
Tos1 + qillx, — Xt |IP <0 + qullxXn-1 — Xnall® = qallxn-1 = Xnall*. (3.28)
Letting T, := Y, + q1llx,—1 — X,_o|[>. Then Y, > 0, Vn > 1. Also, it follows from (3.28) that
Tpet < Ty (3.29)

These facts imply that the sequence {T,} is decreasing and bounded from below and thus lim Y,

n—oo

exists. Consequently, we get from (3.28) and the squeeze theorem that

Iim g1 — Xnal* = 0. (3.30)
Hence
lim [lx, - Xnal? = 0. (3.3D
As aresult
IXne1 = yull = X1 = X0 = O = Xnm1) = (X
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< ||xn+1 - xn” + Hllxn - xn—l” + |6|||-xn—l - xn—2|| -0

as n — oo. By lim||x,; — x,|| = O, one has
n—0oo

”-xn _yn” < ”xn - xn+1|| + ||xn+1 _yn” - O’ asn — oo.

By (3.31) and the existence of limY,, we have that lim I, exists and hence {,} is bounded. Now,

n—0oo n—oo

since lim||x,.1 — x,|| = 0, we have from the definition of Y, that
Y}Lrgo[llxn =zl = Ollx,-1 — 2l” = Sllxa—z — zII*] (3.32)

exists. Using the boundedness of {7}, we obtain from (3.24) that {x,} is bounded. Consequently {y,}
is bounded. From (3.8), we obtain

P =Py = yull < Mlyw = 2l = Ipsr — 2l
This implies that

lim [|Sy, =yl =0. (3.33)

Finally, we show that the sequence {x,} converges weakly to x* € Y. Indeed, since {x,} is bounded
we assume that there exists a subsequence {x,;} of {x,} such that x,, — x* € H. Since ||x, — y,l| = 0,
we also have y,, — x*. Then by the demiclosedness of I — S, we obtain x* € F(S) = T.

Now, we show that {x,} has unique weak limit point in Y. Suppose that {x,,,} is another subsequence
of {x,} such that x,,, — v* as j — oco. Observe that

20X, X" = V'Y = |1, = VP = llx, = XFF = V1P + (1] (3.34)
20Xt X = V) = (X = VP = s — X71P = VP + D117
and
22Xy X = V) = |00 — VP = [20ma — X117 = VI + [P
Therefore
2(=0%,-1, X = V) = —Ollx,-1 — V'II* + Ollx,-1 — X°IF + OIVIIF - Ollx7|. (3.35)
and
2U=6xy0, X" = V) = =6llxumr = VP + Sllxusa — x| + SV = SlIx7IP. (3.36)

Addition of (3.34)—(3.36) gives

2x, — 0x,_1 — X0, X" — V") (3.37)

2 2 2
= (I, = V1P = Bllxay = V'IP = 6llxaz = v7IP)
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- (len — XN = 6l s = X1 = Sllon2 — x*llz) + (=6 =)(Ill = VI, (3.38)

According to (3.32), we get

}Lrgo[llxn — XIP = Ollx,-y — x| = Ollxpa — x°IIP] (3.39)
exists and
,}Lrglo[llxn — VI = Ollxey = VEIP = Ollxuen — VI (3.40)

exists. This implies from (3.37) that lim(x,, — 0x,_; — 0x,_, x* — V") exists. Consequently,

W= -, x" —v') = lim (Xn; = OXn,_, = BXn, > xF =)

J—oo0
= lim{(x, | — O0x,_1{ — 0Xx,_p, X — V"
n—1 n—1 n-2
n—-oo
. * *
= lim{x,; — 0x,,, = BXin;,, X — V")
j—)OO

= (X'—0x"=Bx",x" =V).

Hence
(1-0-=08)|x*=v|*=0.

Since 6 < 0 < 1 — 6, we obtain that x* = v*. Therefore, the sequence {x,} converges weakly to
x* € T. This completes the proof. O

4. Numerical examples

In this section, we give a numerical description to illustrate how our proposed algorithm can be
implemented in the setting of the real Hilbert space R. Furthermore, we shall show the effect of the
double inertia in the fast convergence of the sequence generated by our proposed Algorithm 3.2. First,
we give the set of parameters that satisfy the conditions given in assumption 3.1. To this end, fix p = %
and take
1 1 1 1

0= 0 =———and

0=~ 0000 T 100 ™ ~ 1000

Clearly, these parameters satisfy the conditions given in assumption 3.1. Next, we define the
operators to be used in the implementation of Algorithm 3.2. In Algorithm 3.2, fixt = N = r = 3. Set
H =H,=H;=R.Let6;, = 3, pin =0, =3, r,, =3andw; = 1, where i, j € {1,2,3}and n > 1. Let
B;, T;, U; : R — R be defined by

X

B,-x = ZiX, then Jf’ X = T,
o rin

Tix=ix, Ujx=jx

Then, X
Ry q 2i r; 2
T — J2YTix = ——, d 7,==
¢ ) T = g A0 T =3

Q2290
Q237,07 + 2(1 + 2ir,,
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With this, we are ready to implement our proposed Algorithm 3.2 on MATLAB. Choosing xy =
1, x; = =2 and x, = 0.5, and setting maximum number of iterations to 150 or 1071°, as our stopping
criteria, we varied the double inertial parameters as given above. We obtained the following successive
approximations:

Table 1. Results of the numerical simulations.

No. Iter Inertia Para. |x,.1 — x,]|

=1
120 4 1.11E-16
0 =-=
5
0=
80 4 1.11E-16
0 =-——
1000
=1
107 3 1.11E-16
6 o
10
0=1
88 3 1.11E-16
0 =-——
1000
0=
95 6 1.11E-16
0 =-—
100
=1
116 8 1.11E-16
9 =700
— 0=1/4,6=-1/5
—-- ©=1/4,6=—1/1000
0.8 1
por = 06 N
>
|
" I
X044 |
!
!
024 |
|
|
0.0 L 1% : ; - ' ; ;
p 20 40 60 80 100 120

n

Figure 1. Graph of the iterates of Algorithm 3.2 when 6 = 1, 6 =-1 and 6 =-1g5;.
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— ©6=1/5,6=-1/10
—-- ©=1/5,6=—1/1000

0.2 1

0.1 1

—————

0.0 A ; ;

0 20 40 60 80 100
n

Figure 2. Graph of the iterates of Algorithm 3.2 when 6 = £, 6 =-1& and § =-55.

0.35 — ©0=1/6,6=—1/100
’ —-- ©=1/6,6= —1/1000

0.05 4 k

0 20 40 60 80
n

Figure 3. Graph of the iterates of Algorithm 3.2 when 0 = %, 0 :—llm and o :—ﬁ.

5. Discussion

From the numerical simulations presented in Table 1 and Figures 1-3, we saw that in this example,
the best choice for the double inertial parameters is 6 = % and 6 = —ﬁ. Furthermore, we observed
that as 6 decreases and 6 approaches 0, the number of iterations required to satisfy the stopping

criteria increases.

AIMS Mathematics Volume 8, Issue 9, 20201-20222.
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