Research article Special Issues

A novel approach towards Heronian mean operators in multiple attribute decision making under the environment of bipolar complex fuzzy information

  • Received: 01 September 2022 Revised: 01 October 2022 Accepted: 10 October 2022 Published: 26 October 2022
  • MSC : 03E72, 90B50, 90C31

  • One of the most effective and impressive approaches to tackle uncertainty is the theory of bipolar complex fuzzy set (BCFS). The theory of BCFS modified the theory of fuzzy set (FS), bipolar FS (BFS), and complex FS. Further, the Heronian mean (HM) and generalized HM (GHM) give the aggregation operators (AOs), which have the benefits of taking into account the interrelatedness among the parameters. Up till now, in the prevailing literature, these operators are not introduced in the setting of BCFS. Thus, in this article, our goal is to introduce HM and GHM operators under a bipolar complex fuzzy setting. Firstly, we initiate the bipolar complex fuzzy generalized Heronian mean (BCFGHM) operator. Then, a few of its particular cases by changing the values of the parameter to show its supremacy. We also initiate the bipolar complex fuzzy weighted generalized Heronian mean (BCFWGHM) operator. Secondly, we interpret a method called the "multiple attribute decision making" (MADM) procedure by employing the initiated operators. Next, we provide a descriptive example (selection of the finest renewable energy generation project) to portray the applicability and usefulness of the initiated MADM procedure. Finally, to demonstrate the usefulness of the propounded operators and MADM procedure we compare our initiated work with several present operators and MADM techniques.

    Citation: Tahir Mahmood, Ubaid Ur Rehman, Muhammad Naeem. A novel approach towards Heronian mean operators in multiple attribute decision making under the environment of bipolar complex fuzzy information[J]. AIMS Mathematics, 2023, 8(1): 1848-1870. doi: 10.3934/math.2023095

    Related Papers:

  • One of the most effective and impressive approaches to tackle uncertainty is the theory of bipolar complex fuzzy set (BCFS). The theory of BCFS modified the theory of fuzzy set (FS), bipolar FS (BFS), and complex FS. Further, the Heronian mean (HM) and generalized HM (GHM) give the aggregation operators (AOs), which have the benefits of taking into account the interrelatedness among the parameters. Up till now, in the prevailing literature, these operators are not introduced in the setting of BCFS. Thus, in this article, our goal is to introduce HM and GHM operators under a bipolar complex fuzzy setting. Firstly, we initiate the bipolar complex fuzzy generalized Heronian mean (BCFGHM) operator. Then, a few of its particular cases by changing the values of the parameter to show its supremacy. We also initiate the bipolar complex fuzzy weighted generalized Heronian mean (BCFWGHM) operator. Secondly, we interpret a method called the "multiple attribute decision making" (MADM) procedure by employing the initiated operators. Next, we provide a descriptive example (selection of the finest renewable energy generation project) to portray the applicability and usefulness of the initiated MADM procedure. Finally, to demonstrate the usefulness of the propounded operators and MADM procedure we compare our initiated work with several present operators and MADM techniques.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] A. Mardani, M. Nilashi, E. K. Zavadskas, S. R. Awang, H. Zare, N. M. Jamal, Decision making methods based on fuzzy aggregation operators: Three decades review from 1986 to 2017, Int. J. Inf. Technol. Decis. Making, 17 (2018), 391–466. https://doi.org/10.1142/S021962201830001X doi: 10.1142/S021962201830001X
    [3] J. M. Merigó, M. Casanovas, Fuzzy generalized hybrid aggregation operators and its application in fuzzy decision making, Int. J. Fuzzy Syst., 12 (2010).
    [4] M. Casanovas, J. M. Merigo, Fuzzy aggregation operators in decision making with Dempster–Shafer belief structure, Expert Syst. Appl., 39 (2012), 7138–7149. https://doi.org/10.1016/j.eswa.2012.01.030 doi: 10.1016/j.eswa.2012.01.030
    [5] T. T. Ngan, T. M. Tuan, L. H. Son, N. H. Minh, N. Dey, Decision making based on fuzzy aggregation operators for medical diagnosis from dental X-ray images, J. Med. Syst., 40 (2016), 280. https://doi.org/10.1007/s10916-016-0634-y doi: 10.1007/s10916-016-0634-y
    [6] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, Ind. Fuzzy Control Intellige, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115 doi: 10.1109/IJCF.1994.375115
    [7] C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process, J. Ambient Intell. Humanized. Comput., 10 (2019), 3533–3549. https://doi.org/10.1007/s12652-018-1076-9 doi: 10.1007/s12652-018-1076-9
    [8] G. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making, Int. J. Fuzzy Syst., 20 (2018), 1–12. https://doi.org/10.1007/s40815-017-0338-6 doi: 10.1007/s40815-017-0338-6
    [9] C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision making, Soft Comput., 24 (2020), 3631–3646. https://doi.org/10.1007/s00500-019-04130-z doi: 10.1007/s00500-019-04130-z
    [10] M. Akram, Bipolar fuzzy graphs, Inf. Sci., 181 (2011), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037 doi: 10.1016/j.ins.2011.07.037
    [11] S. Samanta, M. Pal, Irregular bipolar fuzzy graphs, Comput. Sci., 2012.
    [12] Y. B. Jun, J. Kavikumar, G. Muhiuddin, Bipolar fuzzy finite state machines, Bull. Malaysian Math. Sci. Soc., 34 (2011), 181–188.
    [13] M. A. Alghamdi, N. O. Alshehri, M. Akram, Multi-criteria decision-making methods in bipolar fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057–2064. https://doi.org/10.1007/s40815-018-0499-y doi: 10.1007/s40815-018-0499-y
    [14] B. Alsolame, N. O. Alshehri, Extension of VIKOR method for MCDM under bipolar fuzzy set, Int. J. Anal. Appl., 18 (2020), 989–997. https://doi.org/10.28924/2291-8639-18-2020-989 doi: 10.28924/2291-8639-18-2020-989
    [15] J. G. Lee, K. Hur, Bipolar fuzzy relations, Mathematics, 7 (2019), 1044. https://doi.org/10.3390/math7111044 doi: 10.3390/math7111044
    [16] Y. Han, Z. Lu, Z. Du, Q. Luo, S. Chen, A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis, Comput. Meth. Prog. Bio., 158 (2018), 1–10. https://doi.org/10.1016/j.cmpb.2018.02.004 doi: 10.1016/j.cmpb.2018.02.004
    [17] M. K. Kang, J. G. Kang, Bipolar fuzzy set theory applied to sub-semigroups with operators in semigroups, Pure Appl. Math., 19 (2012), 23–35. https://doi.org/10.7468/jksmeb.2012.19.1.23 doi: 10.7468/jksmeb.2012.19.1.23
    [18] M. Riaz, S. T. Tehrim, Multi-attribute group decision making based on cubic bipolar fuzzy information using averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 2473–2494. https://doi.org/10.3233/JIFS-182751 doi: 10.3233/JIFS-182751
    [19] T. Mahmood, A novel approach towards bipolar soft sets and their applications. J. Math., 2020 (2020), 4690808. https://doi.org/10.1155/2020/4690808 doi: 10.1155/2020/4690808
    [20] M. Aslam, S. Abdullah, K. Ullah, Bipolar fuzzy soft sets and its applications in decision making problem, J. Intell. Fuzzy Syst., 27 (2014), 729–742. https://doi.org/10.3233/IFS-131031 doi: 10.3233/IFS-131031
    [21] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [22] D. E. Tamir, L. Jin, A. Kandel, A new interpretation of complex membership grade, Int. J. Intell. Syst., 26 (2011), 285–312. https://doi.org/10.1002/int.20454 doi: 10.1002/int.20454
    [23] L. Bi, S. Dai, B. Hu, S. Li, Complex fuzzy arithmetic aggregation operators, J. Intell. Fuzzy Syst., 36 (2019), 2765–2771. https://doi.org/10.3233/JIFS-18568 doi: 10.3233/JIFS-18568
    [24] M. Akram A. Bashir, Complex fuzzy ordered weighted quadratic averaging operators, Granular Comput., 6 (2021), 523–538. https://doi.org/10.1007/s41066-020-00213-7 doi: 10.1007/s41066-020-00213-7
    [25] L. Bi, S. Dai, B. Hu, Complex fuzzy geometric aggregation operators, Symmetry, 10 (2018), 251. https://doi.org/10.3390/sym10070251 doi: 10.3390/sym10070251
    [26] S. Li, X. Han, L. Bi, B. Hu, S. Dai, Complex fuzzy aggregation operations with complex weights, J. Intell. Fuzzy Syst., 40 (2021), 10999–11005. https://doi.org/10.3233/JIFS-202100 doi: 10.3233/JIFS-202100
    [27] A. U. M. Alkouri, A. R. Salleh, Linguistic variable, hedges and several distances on complex fuzzy sets, J. Intell. Fuzzy Syst., 26 (2014), 2527–2535. https://doi.org/10.3233/IFS-130923 doi: 10.3233/IFS-130923
    [28] D. Moses, O. Degani, H. N. Teodorescu, M. Friedman, A. Kandel, Linguistic coordinate transformations for complex fuzzy sets, Int. Fuzzy Syst. Conf. Proc., 3 (1999), 6430858. https://doi.org/10.1109/FUZZY.1999.790097 doi: 10.1109/FUZZY.1999.790097
    [29] D. E. Tamir, A. Kandel, Axiomatic theory of complex fuzzy logic and complex fuzzy classes, Int. J. Comput. Commun. Control, 6 (2011), 3. http://dx.doi.org/10.15837/ijccc.2011.3.2135 doi: 10.15837/ijccc.2011.3.2135
    [30] A. Luqman, M. Akram, A. N. Al-Kenani, J. C. R. Alcantud, A study on hypergraph representations of complex fuzzy information, Symmetry, 11 (2019), 1381. https://doi.org/10.3390/sym11111381 doi: 10.3390/sym11111381
    [31] M. Akram, A. Sattar, F. Karaaslan, S. Samanta, Extension of competition graphs under complex fuzzy environment, Complex Intell. Syst., 7 (2021), 539–558. https://doi.org/10.1007/s40747-020-00217-5 doi: 10.1007/s40747-020-00217-5
    [32] S. Hameed, M. Akram, N. Mustafa, S. Samanta, Extension of threshold graphs under complex fuzzy environment, Int. J. Appl. Comput. Math., 7 (2021), 1–19. https://doi.org/10.1007/s40819-021-01138-8 doi: 10.1007/s40819-021-01138-8
    [33] T. Mahmood, U. Ur Rehman, Z. Ali, T. Mahmood, Hybrid vector similarity measures based on complex hesitant fuzzy sets and their applications to pattern recognition and medical diagnosis, J. Intell. Fuzzy Syst., 40 (2021), 625–646. https://doi.org/10.3233/JIFS-200418 doi: 10.3233/JIFS-200418
    [34] M. Akram, S. Naz, A novel decision-making approach under complex Pythagorean fuzzy environment, Math. Comput. Appl., 24 (2019), 73. https://doi.org/10.3390/mca24030073 doi: 10.3390/mca24030073
    [35] T. Mahmood, U. Ur Rehman, A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures, Int. J. Intell. Syst., 37 (2022), 535–567. https://doi.org/10.1002/int.22639 doi: 10.1002/int.22639
    [36] T. Mahmood, U. Ur Rehman, A method to multi-attribute decision making technique based on Dombi aggregation operators under bipolar complex fuzzy information, Comput. Appl. Math., 41 (2022), 1–23. https://doi.org/10.1007/s40314-021-01735-9 doi: 10.1007/s40314-021-01735-9
    [37] T. Mahmood, U. Ur Rehman. J. Ahmmad, G. Santos-García, Bipolar complex fuzzy Hamacher aggregation operators and their applications in multi-attribute decision making, Mathematics, 10 (2022), 23. https://doi.org/10.3390/math10010023 doi: 10.3390/math10010023
    [38] T. Mahmood, U. Ur Rehman, Z. Ali, M. Aslam, R. Chinram, Identification and classification of aggregation operators using bipolar complex fuzzy settings and their application in decision support systems, Mathematics, 10 (2022), 1726. https://doi.org/10.3390/math10101726 doi: 10.3390/math10101726
    [39] T. Mahmood, U. Ur Rehman, Z. Ali, M. Aslam, Bonferroni mean operators based on bipolar complex fuzzy setting and their applications in multi-attribute decision making, AIMS Math., 7 (2022), 17166–17197. https://doi.org/10.3934/math.2022945 doi: 10.3934/math.2022945
    [40] G. Beliakov, A. Pradera, T. Calvo, Aggregation functions: A guide for practitioners, Springer, 2007. https://doi.org/10.1007/978-3-540-73721-6
    [41] P. D. Liu, The research note of 2-dimension uncertain linguistic variables, Shandong Univ. Financ. Econ. Pers. Commun., 9 (2012), 20.
    [42] D. Yu, Y. Wu, Interval-valued intuitionistic fuzzy Heronian mean operators and their application in multi-criteria decision making, Afr. J. Bus. Manag., 6 (2012), 4158–4168. https://doi.org/10.5897/AJBM11.2267 doi: 10.5897/AJBM11.2267
    [43] P. Liu, Z. Liu, X. Zhang, Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making, Appl. Math. Comput., 230 (2014), 570–586. https://doi.org/10.1016/j.amc.2013.12.133 doi: 10.1016/j.amc.2013.12.133
    [44] G. Wei, M. Lu, H. Gao, Picture fuzzy heronian mean aggregation operators in multiple attribute decision making, Int. J. Knowl. Based Intell. Eng. Syst., 22 (2018), 167–175. https://doi.org/10.3233/KES-180382 doi: 10.3233/KES-180382
    [45] D. Yu, Intuitionistic fuzzy geometric Heronian mean aggregation operators, Appl. Soft Comput., 13 (2013), 1235–1246. https://doi.org/10.1016/j.asoc.2012.09.021 doi: 10.1016/j.asoc.2012.09.021
    [46] M. R. Seikh, U. Mandal, Multiple attribute decision-making based on 3, 4-quasirung fuzzy sets, Granular Comput., 7 (2022), 965–978. https://doi.org/10.1007/s41066-021-00308-9 doi: 10.1007/s41066-021-00308-9
    [47] M. R. Seikh, U. Mandal, Multiple attribute group decision making based on quasirung orthopair fuzzy sets: Application to electric vehicle charging station site selection problem, Eng. Appl. Artif. Intell., 115 (2022), 105299. https://doi.org/10.1016/j.engappai.2022.105299 doi: 10.1016/j.engappai.2022.105299
    [48] M. R. Seikh, U. Mandal, Q-rung orthopair fuzzy Frank aggregation operators and its application in multiple attribute decision-making with unknown attribute weights, Granular Comput., 7 (2022), 709–730. https://doi.org/10.1007/s41066-021-00290-2 doi: 10.1007/s41066-021-00290-2
    [49] U. Ur Rehman, T. Mahmood, Picture fuzzy N-Soft sets and their applications in decision-making problems, Fuzzy Inf. Eng., 13 (2021), 335–367. https://doi.org/10.1080/16168658.2021.1943187 doi: 10.1080/16168658.2021.1943187
    [50] U. Ur Rehman, T. Mahmood, Z. Ali, T. Panityakul, A novel approach of complex dual hesitant fuzzy sets and their applications in pattern recognition and medical diagnosis, J. Math., 2021 (2021), 6611782. https://doi.org/10.1155/2021/6611782 doi: 10.1155/2021/6611782
    [51] T. Mahmood, U. Ur Rehman, Z. Ali, Exponential and non-Exponential based generalized similarity measures for complex hesitant fuzzy sets with applications, Fuzzy Inf. Eng., 12 (2020), 38–70. https://doi.org/10.1080/16168658.2020.1779013 doi: 10.1080/16168658.2020.1779013
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1344) PDF downloads(107) Cited by(7)

Article outline

Figures and Tables

Figures(1)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog