Research article

Variance-constrained robust $ H_{\infty} $ state estimation for discrete time-varying uncertain neural networks with uniform quantization

  • Received: 27 November 2021 Revised: 20 April 2022 Accepted: 29 April 2022 Published: 30 May 2022
  • MSC : 92B20

  • In this paper, we consider the robust $ H_{\infty} $ state estimation (SE) problem for a class of discrete time-varying uncertain neural networks (DTVUNNs) with uniform quantization and time-delay under variance constraints. In order to reflect the actual situation for the dynamic system, the constant time-delay is considered. In addition, the measurement output is first quantized by a uniform quantizer and then transmitted through a communication channel. The main purpose is to design a time-varying finite-horizon state estimator such that, for both the uniform quantization and time-delay, some sufficient criteria are obtained for the estimation error (EE) system to satisfy the error variance boundedness and the $ H_{\infty} $ performance constraint. With the help of stochastic analysis technique, a new $ H_{\infty} $ SE algorithm without resorting the augmentation method is proposed for DTVUNNs with uniform quantization. Finally, a simulation example is given to illustrate the feasibility and validity of the proposed variance-constrained robust $ H_{\infty} $ SE method.

    Citation: Baoyan Sun, Jun Hu, Yan Gao. Variance-constrained robust $ H_{\infty} $ state estimation for discrete time-varying uncertain neural networks with uniform quantization[J]. AIMS Mathematics, 2022, 7(8): 14227-14248. doi: 10.3934/math.2022784

    Related Papers:

  • In this paper, we consider the robust $ H_{\infty} $ state estimation (SE) problem for a class of discrete time-varying uncertain neural networks (DTVUNNs) with uniform quantization and time-delay under variance constraints. In order to reflect the actual situation for the dynamic system, the constant time-delay is considered. In addition, the measurement output is first quantized by a uniform quantizer and then transmitted through a communication channel. The main purpose is to design a time-varying finite-horizon state estimator such that, for both the uniform quantization and time-delay, some sufficient criteria are obtained for the estimation error (EE) system to satisfy the error variance boundedness and the $ H_{\infty} $ performance constraint. With the help of stochastic analysis technique, a new $ H_{\infty} $ SE algorithm without resorting the augmentation method is proposed for DTVUNNs with uniform quantization. Finally, a simulation example is given to illustrate the feasibility and validity of the proposed variance-constrained robust $ H_{\infty} $ SE method.



    加载中


    [1] V. A. Demin, D. V. Nekhaev, I. A. Surazhevsky, K. E. Nikiruy, A. V. Emelyanov, S. N. Nikolaev, et al., Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network, Neural Netw., 134 (2021), 64–75. https://doi.org/10.1016/j.neunet.2020.11.005 doi: 10.1016/j.neunet.2020.11.005
    [2] N. Garcia-Pedrajas, D. Ortiz-Boyer, C. Hervas-Martinez, An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization, Neural Netw., 19 (2006), 514–528. https://doi.org/10.1016/j.neunet.2005.08.014 doi: 10.1016/j.neunet.2005.08.014
    [3] D. Maximov, V. I. Goncharenko, Y. S. Legovich, Multi-valued neural networks I: A multi-valued associative memory, Neural Comput. Appl., 33 (2021), 10189–10198. https://doi.org/10.1007/s00521-021-05781-6 doi: 10.1007/s00521-021-05781-6
    [4] Y. Liu, Z. Wang, X. Liu, State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. Lett. A, 372 (2008), 7147–7155. https://doi.org/10.1016/j.physleta.2008.10.045 doi: 10.1016/j.physleta.2008.10.045
    [5] R. Sasirekha, R. Rakkiyappan, J. Cao, Y. Wan, $H_{\infty}$ state estimation of discrete-time markov jump neural networks with general transition probabilities and output quantization, J. Differ. Equ. Appl., 23 (2017), 1824–1852. https://doi.org/10.1080/10236198.2017.1368501 doi: 10.1080/10236198.2017.1368501
    [6] R. Sakthivel, R. Anbuvithya, K. Mathiyalagan, P. Prakash, Combined $H_{\infty}$ and passivity state estimation of memristive neural networks with random gain fluctuations, Neurocomputing, 168 (2015), 1111–1120. https://doi.org/10.1016/j.neucom.2015.05.012 doi: 10.1016/j.neucom.2015.05.012
    [7] Y. Gao, J. Hu, D. Chen, J. Du, Variance-constrained resilient $H_{\infty}$ state estimation for time-varying neural networks with randomly varying nonlinearities and missing measurements, Adv. Differ. Equ., 2019 (2019). https://doi.org/10.1186/s13662-019-2298-7
    [8] Y. Liu, B. Shen, H. Shu, Finite-time resilient $H_{\infty}$ state estimation for discrete-time delayed neural networks under dynamic event-triggered mechanism, Neural Netw., 121 (2020), 356–365. https://doi.org/10.1016/j.neunet.2019.09.006 doi: 10.1016/j.neunet.2019.09.006
    [9] Z. Wang, Y. Liu, X. Liu, Y. Shi, Robust state estimation for discrete-time stochastic neural networks with probabilistic measurement delays, Neurocomputing, 74 (2010), 256–264. https://doi.org/10.1016/j.neucom.2010.03.013 doi: 10.1016/j.neucom.2010.03.013
    [10] J. Hu, C. Jia, H. Yu, H. Liu, Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints, IEEE-CAA J. Automatica Sin., 9 (2022), 941–944. Doi: 10.1109/JAS.2022.105581 doi: 10.1109/JAS.2022.105581
    [11] L. Liu, L. Ma, J. Zhang, Y. Bo, Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks, Int. J. Syst. Sci., 52 (2021), 1192–1205. https://doi.org/10.1080/00207721.2021.1872118 doi: 10.1080/00207721.2021.1872118
    [12] J. Mao, Y. Sun, X. Yi, H. Liu, D. Ding, Recursive filtering of networked nonlinear systems: A survey, Int. J. Syst. Sci., 52 (2021), 1110–1128. https://doi.org/10.1093/bjsw/bcab096 doi: 10.1093/bjsw/bcab096
    [13] J. Hu, C. Jia, H. Liu, X. Yi, Y. Liu, A survey on state estimation of complex dynamical networks, Int. J. Syst. Sci., 52 (2021), 3351–3367. https://doi.org/10.1080/00207721.2021.1995528 doi: 10.1080/00207721.2021.1995528
    [14] S. Shi, Z. Fei, T. Wang, Y. Xu, Filtering for switched T-S fuzzy systems with persistent dwell time, IEEE T. Cybern., 49 (2019), 1923–1931. https://doi.org/10.1109/TCYB.2018.2816982 doi: 10.1109/TCYB.2018.2816982
    [15] Y. Li, M. Yuan, M. Chadli, Z. Wang, D. Zhao, Unknown input functional observer design for discrete time interval type-2 Takagi-Sugeno fuzzy systems, IEEE Trans. Fuzzy Systems, (2022). https://doi.org/10.1109/TFUZZ.2022.3156735
    [16] Y. Wu, Y. Guo, M. Toyoda, Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 2910–2924. https://doi.org/10.1109/TNNLS.2020.3008960 doi: 10.1109/TNNLS.2020.3008960
    [17] J. Hu, H. Zhang, H. Liu, X. Yu, A survey on sliding mode control for networked control systems, Int. J. Syst. Sci., 52 (2021), 1129–1147. https://doi.org/10.1080/00207721.2021.1885082 doi: 10.1080/00207721.2021.1885082
    [18] K. Zhu, J. Hu, Y. Liu, N. D. Alotaibi, F. E. Alsaadi, On $\ell_{2}$-$\ell_{\infty}$ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems, Int. J. Syst. Sci., 52 (2021), 2961–2976. https://doi.org/10.1080/00207721.2021.1914768 doi: 10.1080/00207721.2021.1914768
    [19] L. Zou, Z. Wang, J. Hu, Y. Liu, X. Liu, Communication-protocol-based analysis and synthesis of networked systems: progress, prospects and challenges, Int. J. Syst. Sci., 52 (2021), 3013–3034. https://doi.org/10.1080/00207721.2021.1917721 doi: 10.1080/00207721.2021.1917721
    [20] Z. H. Pang, C. B. Zheng, C. Li, G. P. Liu, Q. L. Han, Cloud-based time-varying formation predictive control of multi-agent systems with random communication constraints and quantized signals, IEEE Trans. Circuits Syst. II-Express Briefs, 69 (2022), 1282–1286. https://doi.org/10.1109/TCSII.2021.3106694 doi: 10.1109/TCSII.2021.3106694
    [21] Y. A. Wang, B. Shen, L. Zou, Recursive fault estimation with energy harvesting sensors and uniform quantization effects, IEEE-CAA J. Automatica Sin., 9 (2022), 926–929. Doi: 10.1109/JAS.2022.105572 doi: 10.1109/JAS.2022.105572
    [22] J. Cheng, Y. Wang, J. H. Park, J. Cao, K. Shi, Static output feedback quantized control for fuzzy Markovian switching singularly perturbed systems with deception attacks, IEEE Trans. Fuzzy Syst., 30 (2022), 1036–1047. https://doi.org/10.1109/TFUZZ.2021.3052104 doi: 10.1109/TFUZZ.2021.3052104
    [23] R. Rakkiyappan, K. Maheswari, G. Velmurugan, J. H. Park, Event-triggered $H_{\infty}$ state estimation for semi-Markov jumping discrete-time neural networks with quantization, Neural Netw., 105 (2018), 236–248. Doi: 10.1016/j.neunet.2018.05.007 doi: 10.1016/j.neunet.2018.05.007
    [24] R. Sasirekha, R. Rakkiyappan, J. Cao, Y. Wan, $H_{\infty}$ state estimation of discrete-time Markov jump neural networks with general transition probabilities and output quantization, J. Differ. Equ. Appl., 23 (2017), 1824–1852. https://doi.org/10.1080/10236198.2017.1368501 doi: 10.1080/10236198.2017.1368501
    [25] H. Wang, R. Dong, A. Xue, Y. Peng, Event-triggered $L_{2}$-$L_{\infty}$ state estimation for discrete-time neural networks with sensor saturations and data quantization, J. Frankl. Inst.-Eng. Appl. Math., 356 (2019), 10216–10240. https://doi.org/10.1016/j.jfranklin.2018.01.038 doi: 10.1016/j.jfranklin.2018.01.038
    [26] J. Zhang, Z. Wang, X. Liu, $H_{\infty}$ state estimation for discrete-time delayed neural networks with randomly occurring quantizations and missing measurements, Neurocomputing, 148 (2015), 388–396. https://doi.org/10.1016/j.neucom.2014.06.017 doi: 10.1016/j.neucom.2014.06.017
    [27] W. Zhang, S. Yang, C. Li, W. Zhang, X. Yang, Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control, Neural Netw., 104 (2018), 93–103. https://doi.org/10.1016/j.neunet.2018.04.010 doi: 10.1016/j.neunet.2018.04.010
    [28] M. Luo, S. Zhong, R. Wang, W. Kang, Robust stability analysis for discrete-time stochastic neural networks systems with time-varying delays, Appl. Math. Comput., 209 (2009), 305–313. https://doi.org/10.1016/j.amc.2008.12.084 doi: 10.1016/j.amc.2008.12.084
    [29] Q. Zhu, T. Huang, $H_{\infty}$ control of stochastic networked control systems with time-varying delays: the event-triggered sampling case, Int. J. Robust Nonlinear Control, 31 (2021), 9767–9781. https://doi.org/10.1002/rnc.5798 doi: 10.1002/rnc.5798
    [30] Q. Li, B. Shen, Z. Wang, T. Huang, J. Luo, Synchronization control for a class of discrete time-delay complex dynamical networks: a dynamic event-triggered approach, IEEE T. Cybern., 49 (2019), 1979–1986. https://doi.org/10.1109/TCYB.2018.2818941 doi: 10.1109/TCYB.2018.2818941
    [31] Z. Pang, W. C. Luo, G. P Liu, Q. L. Han, Observer-based incremental predictive control of networked multi-agent systems with random delays and packet dropouts, IEEE Trans. Circuits Syst. II-Express Briefs, 68 (2021), 426–430. https://doi.org/10.1109/TCSII.2020.2999126 doi: 10.1109/TCSII.2020.2999126
    [32] L. Ma, Z. Wang, Y. Liu, F. E. Alsaadi, Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology, Int. J. Robust Nonlinear Control, 29 (2019), 2941–2959. https://doi.org/10.1002/rnc.4535 doi: 10.1002/rnc.4535
    [33] Y. Liu, Z. Wang, X. Liu, State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. Lett. A, 372 (2008), 7147–7155. https://doi.org/10.1016/j.physleta.2008.10.045 doi: 10.1016/j.physleta.2008.10.045
    [34] M. Hua, H. Tan, J. Fei, State estimation for uncertain discrete-time stochastic neural networks with Markovian jump parameters and time-varying delays, Int. J. Mach. Learn. Cybern., 8 (2017), 823–835. https://doi.org/10.1007/s13042-015-0373-2 doi: 10.1007/s13042-015-0373-2
    [35] K. Mathiyalagan, J. H. Park, R. Sakthivel, Novel results on robust finite-time passivity for discrete-time delayed neural networks, Neurocomputing, 177 (2016), 585–593. https://doi.org/10.1016/j.neucom.2015.10.125
    [36] Y. Wang, A. Arumugam, Y. Liu, F. E. Alsaadi, Finite-time event-triggered non-fragile state estimation for discrete-time delayed neural networks with randomly occurring sensor nonlinearity and energy constraints, Neurocomputing, 384 (2020), 115–129. https://doi.org/10.1016/j.neucom.2019.12.038 doi: 10.1016/j.neucom.2019.12.038
    [37] Y. Yu, H. Dong, Z. Wang, W. Ren, F. E. Alsaadi, Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties, Neurocomputing, 182 (2016), 18–24. https://doi.org/10.1016/j.neucom.2015.11.079 doi: 10.1016/j.neucom.2015.11.079
    [38] M. S. Mahmoud, F. M. Al-Sunni, Global stability results of discrete recurrent neural networks with interval delays, IMA J. Math. Control Inf., 29 (2012), 199–213. https://doi.org/10.1038/sj.bdj.2012.787 doi: 10.1038/sj.bdj.2012.787
    [39] B. Rahman, Y. N. Kyrychko, K. B. Blyuss, Dynamics of unidirectionally-coupled ring neural network with discrete and distributed delays, J. Math. Biol., 80 (2020), 1617–1653. https://doi.org/10.1007/s00285-020-01475-0 doi: 10.1007/s00285-020-01475-0
    [40] L. Liu, X. Chen, State estimation of quaternion-valued neural networks with leakage time delay and mixed two additive time-varying delays, Neural Process. Lett., 51 (2020), 2155–2178. https://doi.org/10.1007/s11063-019-10178-7 doi: 10.1007/s11063-019-10178-7
    [41] Y. Yu, H. Dong, Z. Wang, J. Li, Delay-distribution-dependent non-fragile state estimation for discrete-time neural networks under event-triggered mechanism, Neural Comput. Appl., 31 (2019), 7245–7256. https://doi.org/10.1007/s00521-018-3516-z doi: 10.1007/s00521-018-3516-z
    [42] H. Dong, N. Hou, Z. Wang, W. Ren, Variance-constrained state estimation for complex networks with randomly varying topologies, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 2757–2768. https://doi.org/10.1109/TNNLS.2017.2700331 doi: 10.1109/TNNLS.2017.2700331
    [43] H. Dong, Z. Wang, D. W. C. Ho, H. Gao, Variance-constrained $H_{\infty}$ filtering for a class of nonlinear time-varying systems with multiple missing measurements: The finite-horizon case, IEEE Trans. Signal Process., 58 (2010), 2534–2543. https://doi.org/10.1109/TSP.2010.2042489 doi: 10.1109/TSP.2010.2042489
    [44] B. Shen, Z. Wang, H. Shu, G. Wei, $H_{\infty}$ filtering for uncertain time-varying systems with multiple randomly occurred nonlinearities and successive packet dropouts, Int. J. Robust Nonlinear Control, 21 (2011), 1693–1709. https://doi.org/10.1002/rnc.1662 doi: 10.1002/rnc.1662
    [45] I. R. Petersen, C. V. Hollot, A Riccati equation approach to the stabilization of uncertain linear systems, Automatica, 22 (1986), 397–411. https://doi.org/10.1016/0005-1098(86)90045-2 doi: 10.1016/0005-1098(86)90045-2
    [46] R. Li, X. Gao, J. Cao, Non-fragile state estimation for delayed fractional-order memristive neural networks, Appl. Math. Comput., 340 (2019), 221–233. https://doi.org/10.1016/j.amc.2018.08.031 doi: 10.1016/j.amc.2018.08.031
    [47] G. Sangeetha, K. Mathiyalagan, State estimation results for genetic regulatory networks with Levy-type noise, Chin. J. Phys., 68 (2020), 191–203. https://doi.org/10.1016/j.cjph.2020.09.007 doi: 10.1016/j.cjph.2020.09.007
    [48] K. Mathiyalagan, A. Shree Nidhi, T. Renugadevi, Boundary stabilization and state estimation of ODE-transport PDE with in-domain coupling, J. Frankl. Inst., 359 (2022), 1605–1625. https://doi.org/10.1016/j.jfranklin.2021.11.028 doi: 10.1016/j.jfranklin.2021.11.028
    [49] L. Zou, Z. Wang, D. H. Zhou, Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission, Automatica, 120 (2020), 109154. https://doi.org/10.1016/j.automatica.2020.109154 doi: 10.1016/j.automatica.2020.109154
    [50] D. Ding, Z. Wang, Q. L. Han, A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks, IEEE Trans. Autom. Control, 65 (2020), 1792–1799. https://doi.org/10.1109/TAC.2019.2934389 doi: 10.1109/TAC.2019.2934389
    [51] X. Ge, Q. L. Han, Z. Wang, A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks, IEEE T. Cybern., 49 (2019), 1148–1159. https://doi.org/10.1109/TCYB.2017.2789296 doi: 10.1109/TCYB.2017.2789296
    [52] E. Tian, Z. Wang, L. Zou, D. Yue, Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Int. J. Robust Nonlinear Control, 29 (2019), 1484–1498. https://doi.org/10.1002/rnc.4447 doi: 10.1002/rnc.4447
    [53] X. Ge, Q. L. Han, Z. Wang, A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks, IEEE T. Cybern., 49 (2019), 171–183. https://doi.org/10.1097/01.BMSAS.0000616184.98668.71 doi: 10.1097/01.BMSAS.0000616184.98668.71
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1582) PDF downloads(123) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog