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Abstract: In this paper, we consider the robust H∞ state estimation (SE) problem for a class of
discrete time-varying uncertain neural networks (DTVUNNs) with uniform quantization and time-
delay under variance constraints. In order to reflect the actual situation for the dynamic system, the
constant time-delay is considered. In addition, the measurement output is first quantized by a uniform
quantizer and then transmitted through a communication channel. The main purpose is to design a
time-varying finite-horizon state estimator such that, for both the uniform quantization and time-delay,
some sufficient criteria are obtained for the estimation error (EE) system to satisfy the error variance
boundedness and the H∞ performance constraint. With the help of stochastic analysis technique, a
new H∞ SE algorithm without resorting the augmentation method is proposed for DTVUNNs with
uniform quantization. Finally, a simulation example is given to illustrate the feasibility and validity of
the proposed variance-constrained robust H∞ SE method.
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1. Introduction

In the past decades, there has been a surge of research on state estimation (SE) problems of
neural networks (NNs) due to their successful applications in a variety of areas [1–3]. In general, the
state information of interconnected neurons is very important for better understanding of the internal
structure and dynamic behavior of NNs [4]. In many applications, notice that the neuron state of
NNs is usually not fully available, hence the SE of NNs has recently attracted the increasing research
interest by many scholars, see e.g. [5–7]. For example, in [8], based on Lyapunov stability theory, the
finite-time resilient H∞ SE problem has been studied for discrete-time delayed NNs. Subsequently,
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novel robust H∞ SE method has been presented in [9] for uncertain discrete-time stochastic NNs
with probabilistic measurement delays, and a sufficient condition has been given to ensure the robust
mean square exponential stability for dynamic estimation error (EE) system. However, it is worth
noting that many reported methods are only suitable for time-invariant situations [10–13], which may
lead to the limitations in applications. In addition, the research on uncertainty needs to be further
developed [14–16]. Therefore, it is of very great significance to study the SE of discrete time-varying
uncertain neural networks (DTVUNNs).

In the research of discrete-time NNs, due to the limited network bandwidth and channel
communication effect [17–19], the measurement output is usually quantized before the further
transmission. The quantized control techniques can not only fully reduce channel congestion, but
also improve the utilization of the transmission capacity of the network [20–22]. Therefore, many
results have been proposed to analyze the dynamical behaviours of discrete-time NNs with quantization
[23–25]. For instance, by constructing the Lyapunov-Krasovskii functionals (LKFs), the H∞ SE
problem has been investigated in [26] for discrete-time NNs with randomly occurring quantization, and
the sufficient conditions have been given to ensure the existence of the desired estimator. Moreover,
two different control strategies have been designed in [27], in which a new stochastic exponential
synchronization method has been proposed for time-varying delayed NNs with and without logarithmic
effect. However, it should be noted that few methods can be available for handling the SE problem for
DTVUNNs with quantization impact, not to mention the online application requirements.

As it is known to all, the time delay is often encountered, which is usually one of the major sources
of oscillation and instability [28–32]. So far, the discrete and distributed delays in [33] have been
addressed, where the new techniques have been proposed to tackle the effects induced by Markovian
jumping parameters and mode-dependent mixed time-delays. In addition, for the time-varying delay
in the state equation and measurement equation, the delay-dependent conditions have been obtained in
terms of linear matrix inequalities to estimate the neuron state such that the EE system is asymptotically
stable [34]. As a result, a large number of work have been done regarding the dynamical behaviors
of delayed NNs, and the achievement has been obtained on examining the impact from various time-
delays such as constant, discrete or distributed delays [35–40]. For instance, the event-triggered SE
problem has been proposed in [41] for uncertain NNs, where the main purpose is to design a non-fragile
state estimator that the state EE system is globally asymptotically stable in the mean square. Recently,
the novel variance-constrained H∞ SE methods have been proposed in [42] and [43] for time-varying
systems with random varying topologies and multiple missing measurements, respectively. Based on
the existing results, we make the first attempt to deal with the variance-constrained H∞ SE problem for
DTVUNNs with uniform quantization.

According to the above discussions, the purpose is to design a time-varying finite-horizon state
estimator, in which both the EE variance constraint and the prescribed H∞ performance index are
guaranteed. In particular, the parameter uncertainty and uniform quantization are considered in order
to reflect the real situation of dynamical systems. By solving a series of recursive linear matrix
inequalities (RLMIs), the sufficient conditions have been obtained for the EE system satisfying the
upper bound of the covariance and the given H∞ performance constraint. The main contributions and
novelties of the paper can be listed as follows: (1) compared with the exiting results, the H∞ SE problem
is studied for DTVUNNs with uniform quantization and time-delay under the variance constraint for
the first time; (2) the usual literatures regarding the SE problem of time-invariant or time-varying NNs
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adopt the augmented method, but we analyze the EE system with the same order of original NNs,
which might reduce the computational burden and complexity; and (3) the newly developed estimation
algorithm can ensure both the H∞ performance criterion and error variance constraint, which can
provide wider application domain, moreover, it has time-varying characteristics suitable for online
application.

Notation The symbols of this paper are standard. N+ represents the set of positive integers. Rn and
Rn×m represent the n-dimensional Euclidean space and all n×m dimensional real matrices, respectively.
Matrix AT and vector xT represent the transpose of matrix A and vector x, respectively. I and 0 denote
the identity matrix and zero matrix of proper dimensions, respectively. E{x} stands for the expectation
operator. The superscript T denotes the matrix transposition and an asterisk ∗ is the term induced
by symmetry in symmetric block matrices. Let X > 0 denote a positive definite matrix. We use
diag{S 1, S 2, · · · , S n} to stand for a block-diagonal matrix.

2. Problem formulation and preliminaries

In this paper, we consider the following class of n-neurons DTVUNNs with time-delay and
disturbances:

xk+1 = (Ak + ∆Ak)xk + Adkxk−d + Bk f (xk) + ωk,

yk = Ekxk + υk,

zk = Gkxk,

xk = ϕk, (k = −d,−d + 1, · · · , 0), (2.1)

where xk =
[
x1,k x2,k · · · xn,k

]T
∈ Rn is the neural state vector, yk =

[
y1,k y2,k · · · ym,k

]T
∈

Rm represents the measurement output of the NN, zk ∈ R
r stands for the controlled output, Ak =

diag{a1,k, a2,k, · · · , an,k} is a self-feedback diagonal matrix, Adk, Ek and Gk are known matrices with
compatible dimensions, f (xk) =

[
f1(x1,k) f2(x2,k) · · · fn(xn,k)

]T
is the nonlinear activation function.

Bk =
[
bi j,k

]
n×n

is the connection weight matrix, d is a positive integer representing the constant delay,
ωk and υk are zero mean Gaussian white noises with covariances Qk > 0 and Rk > 0, respectively. ϕk

is the initial condition. ∆Ak describes the parameter uncertainty satisfying

∆Ak = HkFkNk, (2.2)

where Hk and Nk are known matrices of proper dimensions, the unknown matrix Fk satisfies the
following condition

FT
k Fk ≤ I, ∀k ∈ N+. (2.3)

The activation function f (·) with f (0) = 0 satisfies the following sector-bounded condition

[ f (s) − U1ks]T [ f (s) − U2ks] ≤ 0, ∀s ∈ Rn,

where U1k and U2k are real matrices of appropriate dimensions and Uk = U1k − U2k is a symmetric
positive definite matrix (PDM).
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Let the quantized measurement be

yq
k ,

[
yq

1,k yq
2,k · · · yq

m,k

]T
,

where yq
j,k is the quantized measurement of the jth sensor, the signal would be quantized by an uniform

quantizer L(·) when it is transmitted via the network. yq
k can be rewritten as

yq
k = L(yk) =

[
εR( y1,k

ε
) εR( y2,k

ε
) · · · εR( ym,k

ε
)
]T
,

in which ε denotes the quantizing level, y j,k denotes the jth element of the signal yk, the function R(·)
rounds a number to the nearest integer. Let ∆k = yq

k − yk be the quantization error. It is not difficult to
find ‖∆k‖∞ ≤

ε
2 .

Based on the above descriptions, the following finite-horizon time-varying state estimator is
constructed

x̂k+1 = Ak x̂k + Adk x̂k−d + Bk f (x̂k) + Kk(y
q
k − Ek x̂k),

ẑk = Gk x̂k, (2.4)

where x̂k ∈ R
n is the SE of xk and Kk is the estimator gain matrix (EGM) to be designed.

Let the EE be ek = xk − x̂k and the estimated error of controlled output be z̃k = zk − ẑk. Next, the
dynamics of the EE can be acquired in the following way from (2.1) and (2.4)

ek+1 = (Ak + ∆Ak − KkEk)ek + ∆Ak x̂k + Adkek−d + Bk f̄ (ek) + ωk − Kk∆k − Kkυk,

z̃k = Gkek, (2.5)

where f̄ (ek) = f (xk) − f (x̂k) and ek−d = xk−d − x̂k−d.
Next, the covariance matrix Pk is described as:

Pk = E{ekeT
k }. (2.6)

The main purpose is to design an H∞ SE algorithm against the uniform quantization, and the EE
system satisfies the following requirements.

1) For a given disturbance attenuation level γ > 0, let the matrices Uφ > 0 and Uϕ > 0 be given.
The EE z̃k satisfies the following constraint:

E

N−1∑
k=0

(‖z̃k‖
2 − γ2‖νk‖

2
Uφ

)

 − γ2E{eT
0Uϕe0} < 0, (2.7)

where ‖νk‖
2
Uφ

= νT
kUφνk.

2) The EE covariance satisfies the following performance criterion:

E{ekeT
k } ≤ Φk, (2.8)

where Φk(0 ≤ k < N) is a series of admissible estimation precision demand corresponding to the actual
situation.

At the end of this section, in order to facilitate the subsequent processing, the following Lemmas
are introduced as in [44].
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Lemma 1. [45] Let S , W, T and P be real matrices of proper dimensions, P and W satisfy P = PT

and WWT ≤ I. Then P + S WT + T T WT S T < 0 holds if and only if there exists ε > 0, such that

P + εS S T + ε−1T T T < 0.

Lemma 2. Setting ek = xk − x̂k, the sector-bounded condition is equivalent to
ek

f (ek + x̂k)
1


T 

R1k R2k −R2k f (x̂k)
RT

2k I − f (x̂k)
− f T (x̂k)RT

2k − f T (x̂k) f T (x̂k) f (x̂k)




ek

f (ek + x̂k)
1

 ≤ 0, (2.9)

where

R1k =
UT

1kU2k + UT
2kU1k

2
, R2k = −

UT
1k + UT

2k

2
.

Moreover, if the activation function f (s) satisfies the sector-bounded condition, we can get:

f (s)T f (s) ≤
{

2
2ρ − ρ2 − 1

tr(UT
2kU2k) +

2ρ2

2ρ − ρ2 − 1
tr(UT

1kU1k)
}
‖s‖, ρ ∈ (0, 1). (2.10)

Remark 1. The first result of Lemma 2 is derived based on [44]. In order to find the upper bound
of nonlinear activation function, we deduce the second result, and the second result of Lemma 2
is mainly applied to find the upper bound of error covariance. It should be pointed out that, in
almost all the existing literature, the original system is often transformed into a certain higher order
one by augmenting the system state and measurement, and then the estimator is constructed for the
augmented system. Different from the existing approaches, in this paper, we design the time-varying
estimator directly for the original system (2.1) without resorting the augmentation of system state and
measurement, and the order of the estimator can be reduced significantly which would lead to the much
less computational burden. In this way, the problem that the EE system satisfies the H∞ performance
constraint and the error covariance has an upper bound can be solved.

3. Main results

In this section, let us deal with the H∞ performance analysis problem of the EE system (2.5) and
the EE covariance constraint.

3.1. H∞ performance analysis

Theorem 1. Consider the DTVUNNs (2.1) with uniform quantization. Let the scalar γ > 0, the
matricesUφ > 0 andUϕ > 0, and state EGM Kk in (2.4) be given. If S 0 < γ

2Uϕ, there are a series of
PDMs {S k}1≤k≤N+1 and Ti satisfying the following RLMI:

Ω =



Ω11 Ω12 R2k f (x̂k) 0 0 0 0
∗ Ω22 f (x̂k) 0 0 0 0
∗ ∗ Ω33 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77


< 0, (3.1)
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where

Ω11 = 7AT
k S k+1Ak + 8ET

k KT
k S k+1KkEk + 8∆AT

k S k+1∆Ak − S k + GT
k Gk + Tk − R1k,

Ω12 = AT
k S k+1Bk − R2k,

Ω22 = 7BT
k S k+1Bk − I,

Ω33 = 8x̂T
k ∆AT

k S k+1∆Ak x̂k +
mε2

4
λ + 8 f T (x̂k)BT

k S k+1Bk f (x̂k) − f T (x̂k) f (x̂k),

Ω44 = 8AT
dkS k+1Adk − Tk−d,

Ω55 = 8KT
k S k+1Kk − λI,

Ω66 = KT
k S k+1Kk − γ

2Uφ,

Ω77 = S k+1 − γ
2Uφ,

it can be shown that the H∞ performance defined in (2.7) within finite-horizon holds for all nonzero νk.

Proof. Define

Vk = eT
k S kek +

k−1∑
i=k−d

eT
i Tiei,

where S k > 0 and Ti > 0 are the matrices to be determined. According to the EE system (2.5), we get
the following result

E{∆Vk} = E{Vk+1 − Vk}

= E{eT
k AT

k S k+1Akek + eT
k ET

k KT
k S k+1KkEkek + eT

k ∆AT
k S k+1∆Akek + x̂T

k ∆AT
k S k+1∆Ak x̂k

+eT
k−dAT

dkS k+1Adkek−d + f T (ek + x̂k)BT
k S k+1Bk f (ek + x̂k) + f T (x̂k)BT

k S k+1Bk f (x̂k)
+ωT

k S k+1ωk + ∆T
k KT

k S k+1Kk∆k + υT
k KT

k S k+1Kkυk + 2eT
k AT

k S k+1∆Akek

+2eT
k AT

k S k+1∆Ak x̂k + 2eT
k AT

k S k+1Adkek−d + 2eT
k AT

k S k+1Bk f (ek + x̂k)
−2eT

k AT
k S k+1Bk f (x̂k) − 2eT

k AT
k S k+1Kk∆k − 2eT

k AT
k S k+1KkEkek

+2eT
k ∆AT

k S k+1∆Ak x̂k + 2eT
k ∆AT

k S k+1Adkek−d + 2eT
k ∆AT

k S k+1Bk f (ek + x̂k)
−2eT

k ∆AT
k S k+1Bk f (x̂k) − 2eT

k ∆AT
k S k+1Kk∆k − 2eT

k ∆AT
k S k+1KkEkek

+2x̂T
k ∆AT

k S k+1Adkek−d + 2x̂T
k ∆AT

k S k+1Bk f (ek + x̂k) − 2x̂T
k ∆AT

k S k+1Bk f (x̂k)
−2x̂T

k ∆AT
k S k+1Kk∆k − 2x̂T

k ∆AT
k S k+1KkEkek + 2eT

k−dAT
dkS k+1Bk f (ek + x̂k)

−2eT
k−dAT

dkS k+1Bk f (x̂k) − 2eT
k−dAT

dkS k+1Kk∆k − 2eT
k−dAT

dkS k+1KkEkek

−2 f T (ek + x̂k)BT
k S k+1Bk f (x̂k) − 2 f T (ek + x̂k)BT

k S k+1Kk∆k

−2 f T (ek + x̂k)BT
k S k+1KkEkek + 2 f T (x̂k)BT

k S k+1Kk∆k + 2 f T (x̂k)BT
k S k+1KkEkek

+2∆T
k KT

k S k+1KkEkek − eT
k S kek + eT

k Tkek − eT
k−dTk−dek−d}. (3.2)

According to the inequality 2xT Py ≤ xT Px + yT Py (P > 0), it is not difficult to obtain

E{∆Vk} ≤ E{7eT
k AT

k S k+1Akek + 8eT
k ET

k KT
k S k+1KkEkek + 8eT

k ∆AT
k S k+1∆Akek + 8x̂T

k ∆AT
k S k+1∆Ak x̂k

+8 f T (x̂k)BT
k S k+1Bk f (x̂k) + 8eT

k−dAT
dkS k+1Adkek−d + 7 f T (ek + x̂k)BT

k S k+1Bk f (ek + x̂k)
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+8∆T
k KT

k S k+1Kk∆k + υT
k KT

k S k+1Kkυk + ωT
k S k+1ωk + eT

k Tkek − eT
k−dTk−dek−d

−eT
k S kek + 2eT

k AT
k S k+1Bk f (ek + x̂k)}.

Adding the zero term z̃T
k z̃k − γ

2νT
kUφνk − z̃T

k z̃k + γ2νT
kUφνk to E{∆Vk} leads to

E{∆Vk} =

{[
ēT

k νT
k

]
Ω̃

[
ēk

νk

]
− z̃T

k z̃k + γ2νT
kUφνk

}
,

where

ēk =
[
eT

k f T (ek + x̂k) 1 eT
k−d ∆T

k

]T
,

νk =
[
υT

k ωT
k

]T
,

Ω̃ =



Ω̃11 Ω̃12 0 0 0 0 0
∗ Ω̃22 0 0 0 0 0
∗ ∗ Ω̃33 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0
∗ ∗ ∗ ∗ Ω̃55 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77


,

Ω̃11 = 7AT
k S k+1Ak + 8ET

k KT
k S k+1KkEk + 8∆AT

k S k+1∆Ak − S k + GT
k Gk + Tk,

Ω̃12 = AT
k S k+1Bk,

Ω̃22 = 7BT
k S k+1Bk,

Ω̃33 = 8x̂T
k ∆AT

k S k+1∆Ak x̂k + 8 f T (x̂k)BT
k S k+1Bk f (x̂k),

Ω̃55 = 8KT
k S k+1Kk, (3.3)

moreover, Ω44, Ω66 and Ω77 are already given below (3.1).
Based on Lemma 2, we can obtain

E{∆Vk} ≤ E

{[
ēT

k νT
k

]
Ω̃

[
ēk

νk

]
− z̃T

k z̃k + γ2νT
kUφνk −

[
eT

k R1kek + 2eT
k R2k f (ek + x̂k)

−2eT
k R2k f (x̂k) + f T (ek + x̂k) f (ek + x̂k) + f T (x̂k) f (x̂k) − 2 f T (ek + x̂k) f (x̂k)

+λ(∆T
k ∆k −

mε2

4
)
]}

= E

{[
ēT

k νT
k

]
Ω

[
ēk

νk

]
− z̃T

k z̃k + γ2νT
kUφνk

}
, (3.4)

where Ω is described in (3.1).
Summarizing both sides of (3.4) regarding k from 0 to N − 1, we can easily get

N−1∑
k=0

E{∆Vk} = E{eT
NS NeN − eT

0 S 0e0}

≤ E

N−1∑
k=0

[
ēT

k νT
k

]
Ω

[
ēk

νk

] − E
N−1∑

k=0

(
z̃T

k z̃k − γ
2νT

kUφνk

). (3.5)
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Consequently, we have the following inequality

J = E

N−1∑
k=0

(‖z̃k‖
2 − γ2‖νk‖

2
Uφ

)

 − γ2E{e0Uϕe0}

≤ −E{eT
NS NeN − eT

0 S 0e0} − γ
2E{e0Uϕe0} + E

N−1∑
k=0

[
ēT

k νT
k

]
Ω

[
ēk

νk

]
= E

N−1∑
k=0

[
ēT

k νT
k

]
Ω

[
ēk

νk

]
+ eT

0 (S 0 − γ
2Uϕ)e0

 − E{eT
NS NeN}. (3.6)

According to Ω < 0, S N > 0 and the initial condition S 0 < γ2Uϕ, one has J < 0. The proof is now
complete. �

3.2. Analysis of covariance constraint

In this subsection, a sufficient criterion is given to ensure the boundedness of Pk.

Theorem 2. Consider the DTVUNNs (2.1) with uniform quantization, suppose that the EGM Kk in
(2.4) is given. Under the initial condition Z0 = P0, if there exists a set of PDMs {Zk}1≤k≤N+1 satisfying
the following condition:

Zk+1 ≥ Φ(Zk), (3.7)

where

Φ(Zk) = 7AkZkAT
k + 7KkEkZkET

k KT
k + 7∆AkZk∆AT

k + 7∆Ak x̂k x̂T
k ∆AT

k + 7AdkZk−dAT
dk

+7htr(Zk)BkBT
k +

7mε2

4
KkKT

k + KkRkKT
k + Qk,

h =
2

2ρ − ρ2 − 1
tr(UT

2kU2k) +
2ρ2

2ρ − ρ2 − 1
tr(UT

1kU1k), (3.8)

then we have Zk ≥ Pk (∀k ∈ 1, 2, · · · ,N + 1).

Proof. According to (2.6), the state covariance Pk can be calculated as follows:

Pk+1 = E{ek+1eT
k+1}

= E{AkekeT
k AT

k + KkEkekeT
k ET

k KT
k + ∆AkekeT

k ∆AT
k + ∆Ak x̂k x̂T

k ∆AT
k + Adkek−deT

k−dAT
dk

+Bk f̄ (ek) f̄ T (ek)BT
k + ωkω

T
k + Kk∆k∆

T
k KT

k + Kkυkυ
T
k KT

k + AkekeT
k ∆AT

k + Akek x̂T
k ∆AT

k

+AkekeT
k−dAT

dk + Akek f̄ T (ek)BT
k − Akek∆

T
k KT

k − AkekeT
k ET

k KT
k + ∆AkekeT

k AT
k

+∆Akek x̂T
k ∆AT

k − ∆AkekeT
k ET

k KT
k + ∆AkekeT

k−dAT
dk + ∆Akek f̄ T (ek)BT

k − ∆Akek∆
T
k KT

k

+∆Ak x̂keT
k AT

k + ∆Ak x̂keT
k ∆AT

k + ∆Ak x̂keT
k−dAT

dk + ∆Ak x̂k f̄ T (ek)BT
k − ∆Ak x̂k∆

T
k KT

k

−∆Ak x̂keT
k ET

k KT
k + Adkek−deT

k AT
k − Adkek−deT

k ET
k KT

k + Adkek−deT
k ∆AT

k + Adkek−d x̂T
k ∆AT

k

+Adkek−d f̄ T (ek)BT
k − Adkek−d∆T

k KT
k + Bk f̄ (ek)eT

k AT
k − Bk f̄ (ek)eT

k ET
k KT

k + Bk f̄ (ek)eT
k ∆AT

k

+Bk f̄ (ek)x̂T
k ∆AT

k + Bk f̄ (ek)eT
k−dAT

dk − Bk f̄ (ek)∆T
k KT

k − Kk∆keT
k AT

k + Kk∆keT
k ET

k KT
k
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−Kk∆keT
k ∆AT

k − Kk∆k x̂T
k ∆AT

k − Kk∆keT
k−dAT

dk − Kk∆k f̄ T (ek)BT
k − KkEkekeT

k AT
k

−KkEkekeT
k ∆AT

k − KkEkek x̂T
k ∆AT

k − KkEkekeT
k−dAT

dk − KkEkek f̄ T (ek)BT
k

+KkEkek∆
T
k KT

k }.

Next, it is straightforward to obtain that

Pk+1 ≤ E{7AkekeT
k AT

k + 7KkEkekeT
k ET

k KT
k + 7∆AkekeT

k ∆AT
k + 7∆Ak x̂k x̂T

k ∆AT
k + 7Adkek−deT

k−dAT
dk

+7Bk f̄ (ek) f̄ T (ek)BT
k +

7mε2

4
KkKT

k + KkRkKT
k + Qk}.

From (2.10), we can easily get

E{ f̄ (ek) f̄ T (ek)} ≤ E{tr( f̄ (ek) f̄ T (ek))}I = E{ f̄ T (ek) f̄ (ek)}I ≤ hE{eT
k ek}I,

where h is defined in (3.8). Next, we have

Pk+1 ≤ E{7AkekeT
k AT

k + 7KkEkekeT
k ET

k KT
k + 7∆AkekeT

k ∆AT
k + 7∆Ak x̂k x̂T

k ∆AT
k + 7Adkek−deT

k−dAT
dk

+7hBkeT
k ekBT

k +
7mε2

4
KkKT

k + KkRkKT
k + Qk}. (3.9)

According to the characteristics of the trace, we can get

E{eT
k ek} = E{tr(ekeT

k )} = tr(Pk). (3.10)

Combining (3.9) with (3.10) results in

Pk+1 ≤ 7AkPkAT
k + 7KkEkPkET

k KT
k + 7∆AkPk∆AT

k + 7∆Ak x̂k x̂T
k ∆AT

k + 7AdkPk−dAT
dk

+7htr(Pk)BkBT
k +

7mε2

4
KkKT

k + KkRkKT
k + Qk

= Φ(Pk).

Noting Z0 ≥ P0 and letting Zk ≥ Pk, we can obtain the following inequality

Φ(Zk) ≥ Φ(Pk) ≥ Pk+1. (3.11)

After that, from (3.7) and (3.11), we arrive at

Zk+1 ≥ Φ(Zk) ≥ Φ(Pk) ≥ Pk+1. (3.12)

Therefore, the proof of this theorem is complete. �

On the basis of the above theorems, the prescribed H∞ performance index and the covariance
constraint of the EE can be ensured by solving certain matrix inequalities.

Theorem 3. Consider the DTVUNNs (2.1) and assume that the EGM Kk is given. For give a scalar
γ > 0, matricesUϕ > 0 andUφ > 0, under the initial conditions S 0 ≤ γ

2Uϕ and Z0 = P0, if there exist
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two sets of PDMs {S k}1≤k≤N+1 and {Zk}1≤k≤N+1 satisfying the following matrix inequalities:

Θ11 Θ12 0 Θ14 Θ15 0 0
∗ Θ22 0 Θ24 0 Θ26 0
∗ ∗ Θ33 0 0 0 Θ37

∗ ∗ ∗ Θ44 0 0 Θ47

∗ ∗ ∗ ∗ Θ55 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0
∗ ∗ ∗ ∗ ∗ ∗ Θ77


< 0, (3.13)


Ψ11 Ψ12 Ψ13 Ψ14

∗ Ψ22 0 0
∗ ∗ Ψ33 0
∗ ∗ ∗ Ψ44

 < 0, (3.14)

where

Θ11 = GT
k Gk − S k − R1k + Tk,

Θ22 =

[
−I f (x̂k)
∗ Π33

]
,

Θ33 = diag{−Tk−d,−λI},

Θ44 = diag{−γ2Uφ,−γ
2Uφ,−S −1

k+1},

Θ55 = diag{−S −1
k+1,−S −1

k+1,−S −1
k+1},

Θ66 = diag{−S −1
k+1,−S −1

k+1,−S −1
k+1},

Θ77 = diag{−S −1
k+1,−S −1

k+1,−S −1
k+1,−S −1

k+1},

Θ12 =
[
−R2k R2k f (x̂k)

]
,

Θ14 =
[
0 0 AT

k

]
,

Θ15 =
[√

6AT
k 2

√
2∆AT

k 2
√

2ET
k KT

k

]
,

Θ24 =

[
0 0 BT

k
0 0 0

]
,

Θ26 =

[√
6BT

k 0 0
0 2

√
2x̂T

k ∆AT
k 2

√
2 f T (x̂k)BT

k

]
,

Θ37 =

[
2
√

2AT
dk 0 0 0

0 2
√

2KT
k 0 0

]
,

Θ47 =


0 0 KT

k 0
0 0 0 I
0 0 0 0

 ,
Π33 = − f T (x̂k) f (x̂k) +

mε2

4
λ,

Ψ11 = −Zk+1 + 7htr(Zk)BkBT
k + Qk,

Ψ12 =
[√

7AkZk
√

7∆AkZk

]
,
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Ψ13 =
[√

7KkEkZk
√

7∆Ak x̂k

]
,

Ψ14 =
[√

7AdkZk−d
ε
2

√
7mKk KkRk

]
,

Ψ22 = diag{−Zk,−Zk},

Ψ33 = diag{−Zk,−I},

Ψ44 = diag{−Zk−d,−I,−Rk},

then, both the EE covariance constraint and the H∞ performance index can be satisfied simultaneously.

Proof. According to the initial conditions, both the H∞ performance index and EE covariance
constraints are analyzed, the inequality (3.13) implies (3.1) and (3.14) implies (3.8). Therefore, the
H∞ performance index and covariance constraint are guaranteed meanwhile. �

4. Design of the estimation algorithm

In this section, the sufficient condition of the design method is proposed regarding the discrete
finite-horizon time-varying state estimator.

Theorem 4. Let the attenuation level γ > 0, matrices Uφ > 0, Uϕ > 0 and a set of pre-defined
variance upper bound matrices {Φk}0≤k≤N be given. Under the initial conditionsS 0 − γ

2Uϕ ≤0,
E{e0eT

0 } =Z0 ≤ Φ0,
(4.1)

if there exist the positive scalars {ε1,k, ε2,k, ε3,k, ε4,k}1≤k≤N+1, PDMs {S k}1≤k≤N+1, {Zk}1≤k≤N+1 and matrices
{Kk}0≤k≤N with appropriate dimensions satisfying the following RLMIs:

Υ11 Θ12 0 Θ14 Υ15 0 0 0
∗ Θ22 0 Θ24 0 Υ26 0 Υ28

∗ ∗ Θ33 0 0 0 Θ37 0
∗ ∗ ∗ Υ44 0 0 Θ47 0
∗ ∗ ∗ ∗ Υ55 0 0 Υ58

∗ ∗ ∗ ∗ ∗ Υ66 0 Υ68

∗ ∗ ∗ ∗ ∗ ∗ Υ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ88


< 0, (4.2)



Λ11 Λ12 Λ13 Ψ14 0 0
∗ Ψ22 0 0 WT

k,1 0
∗ ∗ Ψ33 0 0 WT

k,2
∗ ∗ ∗ Ψ44 0 0
∗ ∗ ∗ ∗ −ε3,kI 0
∗ ∗ ∗ ∗ ∗ −ε4,kI


< 0, (4.3)

Zk+1 − Φk+1 ≤ 0, (4.4)

with the following updating rule:

S̄ k+1 = S −1
k+1,
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where

Υ11 = GT
k Gk − S k − R1k + Tk + ε1,kNT

k Nk,

Υ15 =
[√

6AT
k 0 2

√
2ET

k KT
k

]
,

Υ26 =

[√
6BT

k 0 0
0 0 2

√
2 f T (x̂k)BT

k

]
,

Υ28 =

[
0 0 0
0 0 x̂T

k NT
k

]
,

Υ58 =


0 0 0
0 0 0

2
√

2Hk 0 0

 ,
Υ68 =


0 0 0
0 2

√
2Hk 0

0 0 0

 ,
Υ44 = diag{−γ2Uφ,−γ

2Uφ,−S̄ k+1},

Υ55 = diag{−S̄ k+1,−S̄ k+1,−S̄ k+1},

Υ66 = diag{−S̄ k+1,−S̄ k+1,−S̄ k+1},

Υ77 = diag{−S̄ k+1,−S̄ k+1,−S̄ k+1,−S̄ k+1},

Υ88 = diag{−ε1,kI,−ε2,kI,−ε2,kI},

Λ11 = −Zk+1 + 7htr(Zk)BkBT
k + Qk + ε3,kHkHT

k + +ε4,kHkHT
k ,

Λ12 =
[√

7AkZk 0
]
,

Λ13 =
[√

7KkEkZk 0
]
,

Hk,1 =
[
0 0 2

√
2HT

k

]
,

Hk,2 =
[
0 2

√
2HT

k 0
]
,

NT
k,2 =

[
0 Nk x̂k

]
,

Wk,1 =
[
0
√

7NkZk

]
,

Wk,2 =
[
0
√

7Nk x̂k

]
,

and other items are represented in Theorems 1–3, it is concluded that both the H∞ performance index
and EE covariance constraints are ensured.

Proof. For convenient to tackle the parameter uncertainty, we rewrite (3.13) as below

Θ11 Θ12 0 Θ14 Θ0
15 0 0

∗ Θ22 0 Θ24 0 Θ0
26 0

∗ ∗ Θ33 0 0 0 Θ37

∗ ∗ ∗ Θ44 0 0 Θ47

∗ ∗ ∗ ∗ Θ55 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0
∗ ∗ ∗ ∗ ∗ ∗ Θ77


+ N̄k,1FkH̄k,1 + (N̄k,1FkH̄k,1)T + N̄k,2FkH̄k,2
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+(N̄k,2FkH̄k,2)T < 0,

where

Θ0
15 =

[√
6AT

k 0 2
√

2ET
k KT

k

]
,

Θ0
26 =

[√
6BT

k 0 0
0 0 2

√
2 f T (x̂k)BT

k

]
,

N̄T
k,1 =

[
NT

k 0 0 0 0 0 0
]
, H̄k,1 =

[
0 0 0 0 Hk,1 0 0

]
,

N̄T
k,2 =

[
0 NT

k,2 0 0 0 0 0
]
, H̄k,2 =

[
0 0 0 0 0 Hk,2 0

]
.

It follows from Lemma 1 that

Θ11 Θ12 0 Θ14 Θ0
15 0 0

∗ Θ22 0 Θ24 0 Θ0
26 0

∗ ∗ Θ33 0 0 0 Θ37

∗ ∗ ∗ Θ44 0 0 Θ47

∗ ∗ ∗ ∗ Θ55 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0
∗ ∗ ∗ ∗ ∗ ∗ Θ77


+ ε1,kN̄k,1N̄T

k,1 + ε−1
1,kH̄T

k,1H̄k,1 + ε2,kN̄k,2N̄T
k,2

+ε−1
2,kH̄T

k,2H̄k,2 < 0.

Similarly, (3.14) can be rewritten as
Ψ11 Ψ0

12 Ψ0
13 Ψ14

∗ Ψ22 0 0
∗ ∗ Ψ33 0
∗ ∗ ∗ Ψ44

 + Ñk,1FkH̃k,1 + (Ñk,1FkH̃k,1)T + Ñk,1FkH̃k,2 + (Ñk,1FkH̃k,2)T < 0,

where

Ψ0
12 =

[√
7AdkZk 0

]
,

Ψ0
13 =

[√
7KkEkZk 0

]
,

ÑT
k,1 =

[
HT

k 0 0 0
]
, H̃k,1 =

[
0 Wk,1 0 0

]
,

H̃k,2 =
[
0 0 Wk,2 0

]
.

Then, it follows from Lemma 1 that
Ψ11 Ψ0

12 Ψ0
13 Ψ14

∗ Ψ22 0 0
∗ ∗ Ψ33 0
∗ ∗ ∗ Ψ44

 + ε3,kÑk,1ÑT
k,1 + ε−1

3,kH̃T
k,1H̃k,1 + ε4,kÑk,2ÑT

k,2 + ε−1
4,kH̃T

k,2H̃k,2 < 0.

So we conclude that (4.2) implies (3.13). Similarly, inequality (4.3) implies (3.14). Therefore, the EE
system (2.5) satisfies the EE covariance constraint and H∞ performance index. �
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Remark 2. As a matter of fact, there has been increasing research interest on handling the quantization
impacts because the digital computers have been widely used in control systems. Accordingly, many
methods have been proposed to tackle the quantization effects, such as logarithmic quantization effects
and uniform quantization effects. In this paper, we make one the first attempt to deal with the SE
problem of DTVUNNs with the uniform quantization, where two combined performance indices have
been introduced to meet the actual requirements. For instance, different from the SE approach in
[46], the variance-constrained H∞ SE method proposed in this paper has the advantage to reveal the
influences from time-delay and uniform quantization on the performance of the estimation algorithm.
In particular, the important features of the newly developed method are the time-varying characteristic
and without resorting the state augmentation method.

Remark 3. So far, we have developed a new finite-horizon state estimation algorithm, in which both
the EE variance constraint and the prescribed H∞ performance index are guaranteed. Accordingly,
in Theorem 4, the EGM of the variance-constrained H∞ estimator subject to uniform quantization is
obtained by solving RLMIs (4.2)–(4.4), and this recursive process is particularly useful for real-time
implementation due to its time-varying characteristic and low order feature. One the one hand, for the
techniques used, we propose the RLMIs for the purpose of computational convenience. In addition,
sufficient conditions are established to guarantee the prescribed H∞ performance requirement and
error variance constraints. On the other hand, we point out that our main results can be extended to
handle related problem with the communication resource constraints, and the results will appear in the
near future.

The H∞ state estimator design algorithm of DTVUNNs can be summarized as follows.
Step 1. Give the H∞ performance index γ, the initial states of xk and its estimate x̂k, the PDMsUφ and
Uϕ, select the matrices {Z0, S 0} satisfying the initial conditions (4.1).
Step 2. By solving the RLMIs (4.2)–(4.4) to obtain the matrices {Zk+1, S k+1}, and the EGM {Kk} at the
sampling instant k.
Step 3. Setting k = k + 1, if k < N, then return to Step 2, else go to Step 4.
Step 4. Stop.

5. An illustrative example

In this section, the validity of the theoretical results is verified by numerical simulation.
For DTVUNNs (2.1), we consider the following system parameters:

Ak =

[
−0.068sin(3.13k) 0

0 0.020

]
, Bk =

[
0.13sin(1.25k) 0.22

0.31 0.11

]
, Ek =

[
−0.2sin(1.3k) −0.28

]
,

Gk =
[
0.42 −0.16

]
, Adk =

[
0.1sin(0.3k) −0.17

0.35 −0.23

]
, Hk =

[
−0.24 −0.31
−0.31 0.12

]
,

Nk =
[
−0.23 0.15

]
, U1k =

[
0.02 0.34
0.34 0.51

]
, U2k =

[
0.21 0.05
0.05 0.43

]
, ρ = 0.13, d = 3.

Moreover, the activation function is taken as follows:

f (xk) =

[
0.1tanh(x1,k) + 0.01x1,k

0.02x2,k + 0.1tanh(0.03x2,k)

]
,
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where xk =
[
x1,k x2,k

]T
is the neuron state vector of the NNs. Let the disturbance attenuation level

be γ = 0.32 and N = 90, the connection weight matrices be Uφ = 0.1, upper bound matrices be
{Φk}0≤k≤N = diag{0.35, 0.35}, and covariances be Qk = diag{0.04, 0.06} and Rk = 0.01. After that the
matrix inequalities (4.2)–(4.4) can be resolved.

Set the initial state xk,0 =
[
−0.56 −0.15

]T
, x̂k,0 =

[
−2.35 −0.11

]T
and xk−d = 0, (k = 1, 2, 3).

According to the above proposed SE method, the simulation results are obtained in Figures 1–4. Figure
1 depicts the output z1,k and its estimated value ẑ1,k. Figure 2 represents the output z2,k and its estimation
ẑ2,k. Figure 3 shows the trajectory of output EE z̃k. Figure 4 shows the trajectory of the actual covariance
and the upper bound of the covariance. The simulation results show that the EE is relatively small and
verify the feasibility as well as practicability of the presented SE method.

By solving the RLMIs and based on the Matlab toolbox, the EGM Kk can be listed in Tablle 1 as
follows:

Table 1. Estimator Gain Matrix.

k Kk

1 K1 =
[
1.0151 0.9112

]T

2 K2 =
[
1.0668 1.0230

]T

3 K3 =
[
0.9848 1.1010

]T

...
...

Remark 4. The robust H∞ SE problem has not been thoroughly handled for DTVUNNs with uniform
quantization, especially for the SE problem under different performance requirements of time-varying
uncertain NNs. Hence, we make great effort to discuss the robust H∞ SE problem for time-varying
uncertain NNs with uniform quantization under variance constraint. Moreover, we propose a new
estimation method with strong advantages in time-varying characteristic and low order feature,
which might reduce the computational burden. For the implementation issue, we firstly give the H∞
performance index γ, the initial states of xk and its estimate x̂k, the PDMs Uφ and Uϕ, and select the
matrices {Z0, S 0} satisfying the initial conditions (4.1). Secondly, by solving the RLMIs (4.2)–(4.4), we
obtain the matrices {Zk+1, S k+1}, and the EGM {Kk} at the sampling instant k. Thirdly, setting k = k + 1,
if k < N, then go back, otherwise the estimation problem is solvable.
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Figure 1. The controlled output z1,k and its estimation.
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Figure 2. The controlled output z2,k and its estimation.
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Figure 4. The upper bound of error variance and actual error variance.

Remark 5. In this paper, we have addressed the variance-constrained robust H∞ SE problem for
DTVUNNs. In terms of stochastic analysis technique and matrix theory, a novel variance-constrained
robust SE algorithm has been proposed, which can guarantee the error variance boundedness and
the H∞ performance requirement. In order to improve transmission efficiency, uniform quantization is
introduced in the process of signal transmission through the network. For more details, the input signal
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is equally divided by the uniform quantization, i.e., their quantization intervals are same. The signals
under the uniform quantization are limited to the interval [−M,M], where M is determined by the
type of the sensor. Compared with other existing literatures, a new H∞ SE algorithm without resorting
the augmentation method has been proposed for DTVUNNs with uniform quantization, which can
greatly reduce the amount of computation. From the engineering viewpoint, the proposed SE method
under variance constraint has time-varying characteristics. It is not only suitable for dealing with the
estimation problem of time-varying NNs, but also suitable for online application. For the techniques
used, we propose the RLMIs for the computational convenience.

6. Conclusions

This paper has addressed the robust H∞ SE problem for DTVUNNs with uniform quantization
and time-delay under variance constraints. A time-varying finite-horizon state estimator has been
constructed such that, in the presence of uniform quantization and time-delay, some sufficient criteria
have been obtained for the EE system to satisfy the error variance boundedness and the prescribed
H∞ performance requirement. A novel time-varying H∞ SE algorithm has been proposed by using
the Matlab toolbox and matrix theory, where the gain matrix of the SE has been obtained by solving
RLMIs. Finally, a simulation example has been given to illustrate the feasibility of the SE method
proposed in this paper. This paper has investigated the variance-constrained robust H∞ SE problem for
DTVUNNs with uniform quantization, but there are still many topics worth studying. It can be also
extended to deal with the in-domain coupling and the Levy-type noise as in [47, 48], and the related
methods can be expected in the subsequent study. In addition, the variance-constrained state estimation
problem based on event-triggering mechanism is discussed in the future [49–53].
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