Research article

Almost primes in generalized Piatetski-Shapiro sequences

  • Received: 09 April 2022 Revised: 18 May 2022 Accepted: 25 May 2022 Published: 27 May 2022
  • MSC : 11B83, 11L07

  • We consider a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences, which is of the form $\left( \left\lfloor{\alpha n^c + \beta}\right\rfloor \right)_{n = 1}^{\infty} $ with real numbers $ \alpha {\geqslant} 1, c > 1 $ and $ \beta $. In this paper, we prove that there are infinitely many $ R $-almost primes in sequences $ \left(\lfloor \alpha n^c + \beta \rfloor\right)_{n = 1}^{\infty} $ if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.

    Citation: Jinyun Qi, Zhefeng Xu. Almost primes in generalized Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780

    Related Papers:

  • We consider a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences, which is of the form $\left( \left\lfloor{\alpha n^c + \beta}\right\rfloor \right)_{n = 1}^{\infty} $ with real numbers $ \alpha {\geqslant} 1, c > 1 $ and $ \beta $. In this paper, we prove that there are infinitely many $ R $-almost primes in sequences $ \left(\lfloor \alpha n^c + \beta \rfloor\right)_{n = 1}^{\infty} $ if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.



    加载中


    [1] R. C. Baker, W. D. Banks, V. Z. Guo, A. M Yeager, Piatetski-Shapiro primes from almost primes, Monatsh. Math., 174 (2014), 357–370. https://doi.org/10.1007/s00605-013-0552-8 doi: 10.1007/s00605-013-0552-8
    [2] G. Greaves, Sieves in number theory, Springer-Verlag, Berlin, 43 (2001).
    [3] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, Cambridge University Press, Cambridge, 126 (1991).
    [4] V. Z. Guo, Almost primes in Piatetski-Shapiro sequences, AIMS Math., 6 (2021), 9536–9546. https://doi.org/10.3934/math.2021554 doi: 10.3934/math.2021554
    [5] I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\left\lfloor{f(n)}\right\rfloor$, Mat. Sb., 33 (1953), 559–566. https://doi.org/10.2307/2508708 doi: 10.2307/2508708
    [6] J. Rivat, J. Wu, Prime numbers of the form $\left\lfloor{n^c}\right\rfloor$, Glasg. Math. J., 43 (2001), 237–254. https://doi.org/10.1017/S0017089501020080 doi: 10.1017/S0017089501020080
    [7] O. Robert, P. Sargos, A third derivative test for mean values of exponential sums with application to lattice point problems, Acta Arith., 106 (2003), 27–39. https://doi.org/10.4064/aa106-1-2 doi: 10.4064/aa106-1-2
    [8] J. D. Vaaler, Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc., 12 (1985), 183–216. https://doi.org/10.1090/S0273-0979-1985-15349-2 doi: 10.1090/S0273-0979-1985-15349-2
    [9] I. M. Vinogradov, A new estimate of a certain sum containing primes (Russian), Rec. Math., 2 (1937), 783–792.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1672) PDF downloads(107) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog