Research article

Notes on Hong's conjecture on nonsingularity of power LCM matrices

  • Received: 17 January 2022 Revised: 08 March 2022 Accepted: 10 March 2022 Published: 23 March 2022
  • MSC : Primary 11C20; Secondary 11A05, 15B36

  • Let $ a, n $ be positive integers and $ S = \{x_1, ..., x_n\} $ be a set of $ n $ distinct positive integers. The set $ S $ is said to be gcd (resp. lcm) closed if $ \gcd(x_i, x_j)\in S $ (resp. $ [x_i, x_j]\in S $) for all integers $ i, j $ with $ 1\le i, j\le n $. We denote by $ (S^a) $ (resp. $ [S^a] $) the $ n\times n $ matrix having the $ a $th power of the greatest common divisor (resp. the least common multiple) of $ x_i $ and $ x_j $ as its $ (i, j) $-entry. In this paper, we mainly show that for any positive integer $ a $ with $ a\ge 2 $, the power LCM matrix $ [S^a] $ defined on a certain class of gcd-closed (resp. lcm-closed) sets $ S $ is nonsingular. This provides evidences to a conjecture raised by Shaofang Hong in 2002.

    Citation: Guangyan Zhu, Kaimin Cheng, Wei Zhao. Notes on Hong's conjecture on nonsingularity of power LCM matrices[J]. AIMS Mathematics, 2022, 7(6): 10276-10285. doi: 10.3934/math.2022572

    Related Papers:

  • Let $ a, n $ be positive integers and $ S = \{x_1, ..., x_n\} $ be a set of $ n $ distinct positive integers. The set $ S $ is said to be gcd (resp. lcm) closed if $ \gcd(x_i, x_j)\in S $ (resp. $ [x_i, x_j]\in S $) for all integers $ i, j $ with $ 1\le i, j\le n $. We denote by $ (S^a) $ (resp. $ [S^a] $) the $ n\times n $ matrix having the $ a $th power of the greatest common divisor (resp. the least common multiple) of $ x_i $ and $ x_j $ as its $ (i, j) $-entry. In this paper, we mainly show that for any positive integer $ a $ with $ a\ge 2 $, the power LCM matrix $ [S^a] $ defined on a certain class of gcd-closed (resp. lcm-closed) sets $ S $ is nonsingular. This provides evidences to a conjecture raised by Shaofang Hong in 2002.



    加载中


    [1] K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl., 174 (1992), 65–74. https://doi.org/10.1016/0024-3795(92)90042-9 doi: 10.1016/0024-3795(92)90042-9
    [2] K. Bourque, S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl., 216 (1995), 267–275. https://doi.org/10.1016/0024-3795(93)00154-R doi: 10.1016/0024-3795(93)00154-R
    [3] W. Cao, On Hong's conjecture for power LCM matrices, Czech. Math. J., 57 (2007), 253–268. https://doi.org/10.1007/s10587-007-0059-3 doi: 10.1007/s10587-007-0059-3
    [4] S. Hong, LCM matrices on an $r$-fold gcd-closed set (Chinese), Journal of Sichuan University (Natural Science Edition), 33 (1996), 650–657.
    [5] S. Hong, On LCM matrices on gcd-closed sets, Se. Asian B. Math., 22 (1998), 381–384.
    [6] S. Hong, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra, 218 (1999), 216–228. https://doi.org/10.1006/jabr.1998.7844 doi: 10.1006/jabr.1998.7844
    [7] S. Hong, Gcd-closed sets and determinants of matrices associated with arithmetical functions, Acta Arith., 101 (2002), 321–332. https://doi.org/10.4064/aa101-4-2 doi: 10.4064/aa101-4-2
    [8] S. Hong, Notes on power LCM matrices, Acta Arith., 111 (2004), 165–177. https://doi.org/10.4064/aa111-2-5 doi: 10.4064/aa111-2-5
    [9] S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions, J. Algebra, 281 (2004), 1–14. https://doi.org/10.1016/j.jalgebra.2004.07.026 doi: 10.1016/j.jalgebra.2004.07.026
    [10] S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions on lcm-closed sets, Linear Algebra Appl., 416 (2006), 124–134. https://doi.org/10.1016/j.laa.2005.10.009 doi: 10.1016/j.laa.2005.10.009
    [11] S. Hong, K. Shum, Q. Sun, On nonsingular power LCM matrices, Algebr. Colloq., 13 (2006), 689–704. https://doi.org/10.1142/S1005386706000642 doi: 10.1142/S1005386706000642
    [12] P. Haukkanen, J. Wang, J. Sillanp$\ddot{a}\ddot{a}$, On Smith's determinant, Linear Algebra Appl., 258 (1997), 251–269. https://doi.org/S0024-3795(96)00192-9
    [13] I. Korkee, M. Mattila, P. Haukkanen, A lattice-theoretic approach to the Bourque-Ligh conjecture, Linear Multilinear A., 67 (2019), 2471–2487. https://doi.org/10.1080/03081087.2018.1494695 doi: 10.1080/03081087.2018.1494695
    [14] M. Li, Notes on Hong's conjectures of real number power LCM matrices, J. Algebra, 315 (2007), 654–664. https://doi.org/10.1016/j.jalgebra.2007.05.005 doi: 10.1016/j.jalgebra.2007.05.005
    [15] H. Smith, On the value of a certain arithmetical determinant, P. Lond. Math. Soc., 7 (1875), 208–213. https://doi.org/10.1112/plms/s1-7.1.208 doi: 10.1112/plms/s1-7.1.208
    [16] J. Wan, S. Hu, Q. Tan, New results on nonsingular power LCM matrices, Electron. J. Linear Al., 27 (2014), 652–669. https://doi.org/10.13001/1081-3810.1927 doi: 10.13001/1081-3810.1927
    [17] G. Zhu, On the divisibility among power GCD and power LCM matrices on gcd-closed sets, Int. J. Number Theory, in press. https://doi.org/10.1142/S1793042122500701
    [18] G. Zhu, On a certain determinant for a U.F.D., Colloq. Math., unpublished work.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1339) PDF downloads(74) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog