In this paper, we introduce and investigate two new subclasses of the function class $ \Sigma $ of bi-univalent functions of complex order defined in the open unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $ |a_2| $ and $ |a_3| $ for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.
Citation: Gangadharan Murugusundaramoorthy, Luminiţa-Ioana Cotîrlă. Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial[J]. AIMS Mathematics, 2022, 7(5): 8733-8750. doi: 10.3934/math.2022488
In this paper, we introduce and investigate two new subclasses of the function class $ \Sigma $ of bi-univalent functions of complex order defined in the open unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $ |a_2| $ and $ |a_3| $ for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.
[1] | E. A. Adegani, A. Zireh, M. Jafari, Coefficient estimates for a new subclass of analytic and bi-univalent functions by Hadamard product, Bol. Soc. Paran. Mat., 39 (2021), 87–104. https://doi.org/10.5269/bspm.39164 doi: 10.5269/bspm.39164 |
[2] | R. M. Ali, S. K. Leo, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett., 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012 |
[3] | D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476–485. https://doi.org/10.4153/CJM-1970-055-8 doi: 10.4153/CJM-1970-055-8 |
[4] | D. A. Brannan, J. G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Academic Press, London, 1980. |
[5] | D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31 (1986), 70–77. https://doi.org/10.2307/3615823 doi: 10.2307/3615823 |
[6] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. https://doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2 |
[7] | S. Bulut, Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination, Stud. Univ. Babes-Bolyai Math., 65 (2020), 57–66. |
[8] | B. C. Carlson, D. B. Shafer, Starlike and prestarlike Hypergeometric functions, J. Math. Anal., 15, (1984), 737–745. |
[9] | J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. https://doi.org/10.1016/S0377-0427(98)00235-0 doi: 10.1016/S0377-0427(98)00235-0 |
[10] | J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transforms Spec. Funct., 14 (2003), 7–18. https://doi.org/10.1080/10652460304543 doi: 10.1080/10652460304543 |
[11] | E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60. https://doi.org/10.3901/JME.2013.06.060 doi: 10.3901/JME.2013.06.060 |
[12] | M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85–89. https://doi.org/10.1524/zkri.1933.85.1.89 doi: 10.1524/zkri.1933.85.1.89 |
[13] | B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048 |
[14] | A. W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, FL, USA, 1983, Volumes Ⅰ and Ⅱ. |
[15] | T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), 15–26. |
[16] | Yu. E. Hohlov, Convolution operators that preserve univalent functions, Ukrain. Mat. Zh., 37 (1985), 220–226. https://doi.org/10.1007/BF01059717 doi: 10.1007/BF01059717 |
[17] | Yu. E. Hohlov, Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 7 (1984), 25–27. |
[18] | M. V. Kukushkin, On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space, Fractal Fract., 5 (2021), 77. https://doi.org/10.3390/fractalfract5030077 doi: 10.3390/fractalfract5030077 |
[19] | A. Y. Lashin, Coefficient Estimates for Two Subclasses of Analytic and Bi-Univalent Functions, Ukr. Math. J., 70 (2019), 1484–1492. https://doi.org/10.1007/s11253-019-01582-2 doi: 10.1007/s11253-019-01582-2 |
[20] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1 doi: 10.1090/S0002-9939-1967-0206255-1 |
[21] | R. J. Libera, Some classes of regular univalent functions, Proc.Amer.Math. Soc., 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2 doi: 10.1090/S0002-9939-1965-0178131-2 |
[22] | X. F. Li, A. P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7 (2012), 1495–1504. |
[23] | W. C. Ma, D. Minda, A unified treatment of some special classes of functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992,157–169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994. |
[24] | B. Muckenhoupt, Mean Convergence of Jacobi Series, Proc. Am. Math. Soc., 23 (1969), 306–310. https://doi.org/10.1090/S0002-9939-1969-0247360-5 doi: 10.1090/S0002-9939-1969-0247360-5 |
[25] | G. Murugusundaramoorthy, H.O. Guney, K. Vijaya, Coefficient bounds for certain suclasses of Bi-prestarlike functions associated with the Gegenbauer polynomial, Adv. Stud. Contemp. Math., 32 (2022), 5–15. |
[26] | E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z<1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676 |
[27] | M. Obradovic, T. Yaguchi, H. Saitoh, On some conditions for univalence and starlikeness in the unit disc, Rend. Math. Ser. VII., 12 (1992), 869–877. |
[28] | C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. |
[29] | T. Panigarhi, G. Murugusundaramoorthy, Coefficient bounds for Bi- univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16 (2013), 91–100. https://doi.org/10.14419/gjma.v1i2.937 doi: 10.14419/gjma.v1i2.937 |
[30] | H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal., 2 (2013), 67–73. |
[31] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009 |
[32] | H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), 56–71. https://doi.org/10.2298/AADM0701056S doi: 10.2298/AADM0701056S |
[33] | V. Kiryakova, Criteria for univalence of the Dziok–Srivastava and the Srivastava–Wright operators in the class A, Appl. Math. Comput., 218 (2011), 883–892. https://doi.org/10.1016/j.amc.2011.01.076 doi: 10.1016/j.amc.2011.01.076 |
[34] | H. M. Srivastava, M. Kamali, A. Urdaletova, A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Mathematics, 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144 doi: 10.3934/math.2022144 |
[35] | H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (2021), 1–14. |
[36] | H. M. Srivastava, A. K. Wanas, G. Murugusundaramoorthy, A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials, Surveys Math. Appl., 16 (2021), 193–205. |
[37] | H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 1873–1879. |
[38] | H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. |
[39] | H. M. Srivastava, A. K. Wanas, H..Gney, New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the $\lambda-$ Pseudo-Starlike Functions. Iran J. Sci. Technol. Trans. Sci., 45 (2021), 1799–1804. |
[40] | H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1–12. |
[41] | H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493–503. https://doi.org/10.1002/ijch.201800133 doi: 10.1002/ijch.201800133 |
[42] | H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM) 112 (2018), 1157–1168. https://doi.org/10.1007/s13398-017-0416-5 doi: 10.1007/s13398-017-0416-5 |
[43] | H. M. Srivastava, S. Altinkaya, S. Yalcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503–516. https://doi.org/10.2298/FIL1802503S doi: 10.2298/FIL1802503S |
[44] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Wiley, New York., 1985. |
[45] | H. M. Srivastava, D. Raducanu, P. A. Zaprawa, Certain subclass of analytic functions defined by means of differential subordination, Filomat, 30 (2016), 3743–3757. https://doi.org/10.2298/FIL1614743S doi: 10.2298/FIL1614743S |
[46] | H. M. Srivastava, Certain $q$-polynomial expansions for functions of several variables. Ⅰ and Ⅱ, IMA J. Appl. Math., 30 (1983), 205–209. https://doi.org/10.1507/endocrj1954.30.205 doi: 10.1507/endocrj1954.30.205 |
[47] | A. Cătaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using $p, q-$derivative operator and a p, q-wright type hypergeometric function, Symmetry, 13 (2021), 2143. |
[48] | G. I. Oros, L. I. Cotîrlă, Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions, Mathematics 10 (2022), 129. https://doi.org/10.3390/math10010129 doi: 10.3390/math10010129 |
[49] | V. D. Breaz, A. Cătaş, L.I. Cotîrlă, On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, An. St. Univ. Ovidius Constanta, 2022. |
[50] | T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981. |
[51] | Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013 doi: 10.1016/j.aml.2011.11.013 |
[52] | Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034 |
[53] | P. Zaprawa, On the Fekete-Szeg$\ddot{o}$ problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. |