Research article

Low-cost adaptive fuzzy neural prescribed performance control of strict-feedback systems considering full-state and input constraints

  • Received: 30 November 2021 Revised: 03 February 2022 Accepted: 08 February 2022 Published: 25 February 2022
  • MSC : 93B52, 93C95, 93D05

  • A low-cost adaptive neural prescribed performance control (LAFN-PPC) scheme of strict-feedback systems considering asymmetric full-state and input constraints is developed in this paper. In the controller design procedure, one-to-one nonlinear transformation technique is employed to handle the full-state constraints and prescribed performance requirement. The Nussbaum gain technique is introduced for solving the unknown control direction and the input constraint nonlinearity simultaneously. Furthermore, a fuzzy wavelet neural network (FWNN) is utilized to approximate the unknown nonlinearities. Compared with traditional approximation-based backstepping schemes, the constructed controller can not only overcome the so-called "explosion of complexity" (EOC) problem through command filter, but also reduce filter errors by error compensation mechanism. Moreover, by constructing a virtual parameter, only one parameter is required to be updated online without considering the order of system and the dimension of system parameters, which significantly reduces the computational cost. Based on the Lyapunov stability theory, the presented controller can ensure that all the closed-loop signals are ultimate boundedness, and all state variables and tracking error are restricted in the prespecified regions. Finally, the simulation results of comparison study verify the effectiveness of the constructed controller.

    Citation: Yankui Song, Bingzao Ge, Yu Xia, Shouan Chen, Cheng Wang, Cong Zhou. Low-cost adaptive fuzzy neural prescribed performance control of strict-feedback systems considering full-state and input constraints[J]. AIMS Mathematics, 2022, 7(5): 8263-8289. doi: 10.3934/math.2022461

    Related Papers:

  • A low-cost adaptive neural prescribed performance control (LAFN-PPC) scheme of strict-feedback systems considering asymmetric full-state and input constraints is developed in this paper. In the controller design procedure, one-to-one nonlinear transformation technique is employed to handle the full-state constraints and prescribed performance requirement. The Nussbaum gain technique is introduced for solving the unknown control direction and the input constraint nonlinearity simultaneously. Furthermore, a fuzzy wavelet neural network (FWNN) is utilized to approximate the unknown nonlinearities. Compared with traditional approximation-based backstepping schemes, the constructed controller can not only overcome the so-called "explosion of complexity" (EOC) problem through command filter, but also reduce filter errors by error compensation mechanism. Moreover, by constructing a virtual parameter, only one parameter is required to be updated online without considering the order of system and the dimension of system parameters, which significantly reduces the computational cost. Based on the Lyapunov stability theory, the presented controller can ensure that all the closed-loop signals are ultimate boundedness, and all state variables and tracking error are restricted in the prespecified regions. Finally, the simulation results of comparison study verify the effectiveness of the constructed controller.



    加载中


    [1] C. M. Kwan, F. L. Lewis, Robust backstepping control of induction motors using neural networks, IEEE T. Neur. Net., 11 (2000), 1178-1187. https://doi.org/10.1109/72.870049 doi: 10.1109/72.870049
    [2] Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, C. W. Wu, Adaptive neural network tracking control for robotic manipulators with dead zone, IEEE T. Neur. Net., 30 (2019), 3611-3620. https://doi.org/10.1109/TNNLS.2018.2869375 doi: 10.1109/TNNLS.2018.2869375
    [3] S. H. Luo, F. L. Lewis, Y. D. Song, R. Garrappa, Dynamical analysis and accelerated optimal stabilization of the fractional-order self-sustained electromechanical seismograph system with fuzzy wavelet neural network, Nonlinear Dyn., 104 (2021), 1389-1404. https://doi.org/10.1007/s11071-021-06330-5 doi: 10.1007/s11071-021-06330-5
    [4] S. G. Gao, H. R. Dong, B. Ning, X. B. Sun, Neural adaptive control for uncertain MIMO systems with constrained input via intercepted adaptation and single learning parameter approach, Nonlinear Dyn., 82 (2015), 1109-1126. https://doi.org/10.1007/s11071-015-2220-0 doi: 10.1007/s11071-015-2220-0
    [5] S. H. Luo, F. L. Lewis, Y. D. Song, H. M. Ouakad, Optimal synchronization of unidirectionally coupled FO chaotic electromechanical devices with the hierarchical neural network, unpublished work.
    [6] Y. X. Li, G. H. Yang, Event-triggered adaptive backstepping control for parametric strict-feedback nonlinear systems, Int. J. Robust Nonlinear Contr., 28 (2018), 976-1000. https://doi.org/10.1002/rnc.3914 doi: 10.1002/rnc.3914
    [7] H. Ma, H. J. Liang, H. J. Ma, Q. Zhou, Nussbaum gain adaptive backstepping control of nonlinear strict-feedback systems with unmodeled dynamics and unknown dead zone, Int. J. Robust Nonlinear Control, 28 (2018), 5326-5343. https://doi.org/10.1002/rnc.4315 doi: 10.1002/rnc.4315
    [8] C. L. Wang, Y. Lin, Multivariable adaptive backstepping control: A norm estimation approach, IEEE T. Automatic Contr., 57 (2012), 989-995. https://doi.org/10.1109/TAC.2011.2167815 doi: 10.1109/TAC.2011.2167815
    [9] D. Swaroop, J. K. Hedrick, P. P. Yip, J. C. Gerdes, Dynamic surface control for a class of nonlinear systems, IEEE T. Automatic Contr., 45 (2000), 1893-1899. https://doi.org/10.1109/TAC.2000.880994 doi: 10.1109/TAC.2000.880994
    [10] S. S. Ge, J. Wang, Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients, IEEE T. Automatic Contr., 48 (2003), 1463-1469. https://doi.org/10.1109/TAC.2003.815049 doi: 10.1109/TAC.2003.815049
    [11] H. Wang, Q. P. Shi, H. Y. Li, Q. Zhou, Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties, IEEE T. Cybernetics, 47 (2017), 3075-3087. https://doi.org/10.1109/TCYB.2016.2607166 doi: 10.1109/TCYB.2016.2607166
    [12] Q. Zhou, L. J. Wang, C. W. Wu, H. Y. Li, Adaptive fuzzy tracking control for a class of pure-feedback nonlinear systems with time-varying delay and unknown dead zone, Fuzzy Sets Syst., 329 (2017), 36-60. https://doi.org/10.1016/j.fss.2016.11.005 doi: 10.1016/j.fss.2016.11.005
    [13] W. He, T. T. Meng, X. Y. He, C. Y. Sun, Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances, IEEE T. Cybernetics, 49 (2019), 1524-1535. https://doi.org/10.1109/TCYB.2018.2808321 doi: 10.1109/TCYB.2018.2808321
    [14] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, Adaptive nonlinear control without overparametrization, Syst. Control Lett., 19 (1992), 177-185. https://doi.org/10.1016/0167-6911(92)90111-5 doi: 10.1016/0167-6911(92)90111-5
    [15] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, Nonlinear and adaptive control design, Wiley, 1995.
    [16] C. Chen, C. Y. Wen, Z. Liu, K. Xie, Y. Zhang, C. L. P. Chen, Adaptive asymptotic control of multivariable systems based on a one-parameter estimation approach, Automatica, 83 (2017), 124-132. https://doi.org/10.1016/j.automatica.2017.03.003 doi: 10.1016/j.automatica.2017.03.003
    [17] K. Zhao, Y. D. Song, W. C. Meng, C. L. P. Chen, L. Chen, Low-cost approximation-based adaptive tracking control of output-constrained nonlinear systems, IEEE T. Neur. Net. Lear. Syst., 32 (2021), 4890-4900. https://doi.org/10.1109/TNNLS.2020.3026078 doi: 10.1109/TNNLS.2020.3026078
    [18] L. Zhao, S. H. Luo, G. C. Yang, R. Z. Dong, Chaos analysis and stability control of the MEMS resonator via the type-2 sequential FNN, Microsyst. Technol., 21 (2020), 173-182. https://doi.org/10.1007/s00542-020-04935-1 doi: 10.1007/s00542-020-04935-1
    [19] S. B. Yang, X. Wang, H. N. Wang, Y. G. Li, Sliding mode control with system constraints for aircraft engines, ISA T., 98 (2020), 1-10. https://doi.org/10.1016/j.isatra.2019.08.020 doi: 10.1016/j.isatra.2019.08.020
    [20] S. H. Luo, F. L. Lewis, Y. D. Song, K. G. Vamvoudakis, Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer, Nonlinear Dyn., 100 (2020), 523-540. https://doi.org/10.1007/s11071-020-05518-5 doi: 10.1007/s11071-020-05518-5
    [21] H. Y. Li, L. Bai, Q. Zhou, R. Q. Lu, L. J. Wang, Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation, IEEE T. Syst. Man Cybernetics, 47 (2017), 2185-2188. https://doi.org/10.1109/TSMC.2016.2635678 doi: 10.1109/TSMC.2016.2635678
    [22] R. B. Li, B. Niu, Z. G. Feng, J. Q. Li, P. Y. Duan, D. Yang, Adaptive neural design frame for uncertain stochastic nonlinear non-lower triangular pure-feedback systems with input constraint, J. Franklin Inst., 356 (2019), 9545-9564. https://doi.org/10.1016/j.jfranklin.2019.09.019 doi: 10.1016/j.jfranklin.2019.09.019
    [23] W. J. Si, X. D. Dong, F. F. Yang, Decentralized adaptive neural control for interconnected stochastic nonlinear delay-time systems with asymmetric saturation actuators and output constraints, J. Franklin Inst., 355 (2018), 54-80. https://doi.org/10.1016/j.jfranklin.2017.11.002 doi: 10.1016/j.jfranklin.2017.11.002
    [24] B. Xu, F. C. Sun, C. G. Yang, D. X. Gao, J. X. Ren, Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping, Int. J. Control, 84 (2011), 1543-1552. https://doi.org/10.1080/00207179.2011.615866 doi: 10.1080/00207179.2011.615866
    [25] J. X. Zhang, S. L. Wang, P. Zhou, L. Zhao, S. B. Li, Novel prescribed performance-tangent barrier Lyapunov function for neural adaptive control of the chaotic PMSM system by backstepping, Int. J. Elec. Power Energy Syst., 121 (2020), 105991. https://doi.org/10.1016/j.ijepes.2020.105991 doi: 10.1016/j.ijepes.2020.105991
    [26] K. P. Tee, S. S. Ge, Control of state-constrained nonlinear systems using Integral Barrier Lyapunov Functionals, 2012 IEEE 51st IEEE Conference on Decision and Control, 2012. https://doi.org/10.1109/CDC.2012.6426196 doi: 10.1109/CDC.2012.6426196
    [27] K. P. Tee, S. S. Ge, E. H. Tay, Barrier Lyapunov Functions for the control of output-constrained nonlinear systems, Automatica, 45 (2009), 918-927. https://doi.org/10.1016/j.automatica.2008.11.017 doi: 10.1016/j.automatica.2008.11.017
    [28] Y. J. Liu, S. C. Tong, C. L. P. Chen, D. J. Li, Adaptive NN control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems, IEEE T. Cybernetics, 47 (2017), 3747-3757. https://doi.org/10.1109/TCYB.2016.2581173 doi: 10.1109/TCYB.2016.2581173
    [29] K. Zhao, Y. D. Song, Z. R. Zhang, Tracking control of MIMO nonlinear systems under full state constraints: A Single-parameter adaptation approach free from feasibility conditions, Automatica, 107 (2019), 52-60. https://doi.org/10.1016/j.automatica.2019.05.032 doi: 10.1016/j.automatica.2019.05.032
    [30] L. H. Kong, X. B. Yu, S. Zhang, Neuro-learning-based adaptive control for state-constrained strict-feedback systems with unknown control direction, ISA Trans., 112 (2021), 12-22. https://doi.org/10.1016/j.isatra.2020.12.001 doi: 10.1016/j.isatra.2020.12.001
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1808) PDF downloads(83) Cited by(1)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog