
AIMS Mathematics, 7(5): 8263–8289. 

DOI: 10.3934/math.2022461 

Received: 30 November 2021 

Revised: 03 February 2022 

Accepted: 08 February 2022 

Published: 25 February 2022 

http://www.aimspress.com/journal/Math 

 

Research article 

Low-cost adaptive fuzzy neural prescribed performance control of 

strict-feedback systems considering full-state and input constraints 

Yankui Song1,2, Bingzao Ge3, Yu Xia1,2, Shouan Chen1,*, Cheng Wang1,2 and Cong Zhou1,2 

1 State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, 

China 
2 College of Mechanical Engineering, Chongqing University, Chongqing 400044, China 
3 Zhejiang Jinfei Kaida Wheel Co., Ltd., Jinhua 321000, China 

* Correspondence: Email: 20190701144@cqu.edu.cn; Tel: +8618685438601. 

Abstract: A low-cost adaptive neural prescribed performance control (LAFN-PPC) scheme of strict-

feedback systems considering asymmetric full-state and input constraints is developed in this paper. 

In the controller design procedure, one-to-one nonlinear transformation technique is employed to 

handle the full-state constraints and prescribed performance requirement. The Nussbaum gain 

technique is introduced for solving the unknown control direction and the input constraint nonlinearity 

simultaneously. Furthermore, a fuzzy wavelet neural network (FWNN) is utilized to approximate the 

unknown nonlinearities. Compared with traditional approximation-based backstepping schemes, the 

constructed controller can not only overcome the so-called “explosion of complexity” (EOC) problem 

through command filter, but also reduce filter errors by error compensation mechanism. Moreover, by 

constructing a virtual parameter, only one parameter is required to be updated online without 

considering the order of system and the dimension of system parameters, which significantly reduces 

the computational cost. Based on the Lyapunov stability theory, the presented controller can ensure 

that all the closed-loop signals are ultimate boundedness, and all state variables and tracking error are 

restricted in the prespecified regions. Finally, the simulation results of comparison study verify the 

effectiveness of the constructed controller. 
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1. Introduction 

The control problems of nonlinear systems have received a great deal of attention, and a 

considerable amount of literatures have been published [1–5]. A two-layer neural networks (NNs) 

based robust control for nonlinear induction motors is proposed in [1]. In [2] the unknown nonlinear 

items in the dynamic model of robotic manipulators are identified by NNs. Dynamic properties and 

optimal stabilization issues of fractional-order (FO) self-sustained electromechanical seismograph 

system is investigated in [3]. A neural adaptive control scheme is raised for a class of uncertain multi-

input/multi-output nonlinear systems [4] and only one learning parameter is updated in the parameter 

identification. And coupled FO chaotic electromechanical devices are studied in [5]. Specifically, an 

adaptive dynamic programming policy is proposed to address the zero-sum differential game issue in 

the optimal neural feedback controller. Obviously, approximation-based adaptive backstepping control 

has been widely utilized in designing controllers for various nonlinear systems [6–8]. However, 

traditional approximation-based adaptive backstepping technique faces two crucial issues that hinder 

its application. The first issue is so-called “EOC” arising from the derivations of virtual control 

input [7]. The second one is a large computational burden caused by high precision approximation 

requirements [8]. 

For the backstepping technique, the design of the control law relies on intermediate state variables 

as virtual control signals. The controller of each subsystem requires the virtual control signal and its 

derivative. The lower-order derivatives of the virtual control signals are likely simple in theory, but the 

higher-order derivatives in higher-order systems are quite complex, which is called the “EOC” problem. 

For handling the “EOC” problem, a first-order filter was used to calculate the virtual control signal 

derivatives in each recursive step [9]. This technique is the so-called dynamic surface control (DSC). 

The utilization of the first-order filter overcomes the EOC problem, but its own characteristics lead to 

the derivative errors of virtual control signal, which will certainly affect the tracking performance of 

the system. Based on this, a modified scheme of the DSC method named command filter based control 

(CFC) method was proposed in [10]. On the one hand, the EOC problem is avoided by substituting a 

first-order filter with a second-order one to obtain the derivatives of the virtual control signal. On the 

other hand, the filter errors are compensated by a constructed error compensation mechanism for 

obtaining better tracking performance of the system. Moreover, constructing an effective error 

compensation mechanism needs to be further studied. 

For the approximation-based control, the NNs or fuzzy logic systems (FLSs) are utilized to 

approximate unknown functions and external disturbances for ensuring better tracking performance [11,12], 

which is also a kind of learning control [13]. In [11] a NNs-based approximator is utilized to solve the 

unmodeled dynamics of the system. FLSs are employed to identify unknown functions existing in 

systems [12]. Iterative learning control schemes are designed to suppress the vibrations in bending and 

twisting of the flexible micro aerial vehicle [13]. The approximation accuracy improves with the 

increase of the number of neural network nodes or fuzzy rules in general, but it also significantly 

increases the number of estimated parameters. Therefore, the burdens of computation required for 

online learning will become very heavy. For decreasing the computational burden of approximation-

based control, a tuning-function is inserted in the controller of strict-feedback systems [14,15], in 

which the number of parameter to be updated is the same as the number of unknown parameters. 

Recently, a kind of one-parameter estimation approach is proposed in [16,17], which needs only one 

parameter to be updated online and can significantly reduce the computational burden. Nevertheless, 
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the mentioned control schemes do not take issues of input constraints, state constraints and prescribed 

performance into account. Therefore, for applying to a broader range of control problems with security, 

reliability and performance consideration in reality, further research is needed. 

In the real world, many physical constraints are generated with security and reliability 

consideration, such as the output of MEMS resonator [18], the state constraint of aircraft engine [19] 

and the input constraint of magnetic-field electromechanical transducer [20]. Obviously, severe 

security matters, performance degradation, and other troubles can be caused without considering these 

constraints. For the issue of input constraint, a considerable amount of literatures have been published 

about it [21–23]. A non-smooth and piecewise input constraint model is described in [21]. Furthermore, 

the model in [22] is a smooth but piecewise function. The input constraint nonlinearity is tackled by 

asymmetric smooth input constraint model in [23]. For the issues of output constraint and state 

constraint, Barrier Lyapunov Function (BLF) is seen as an effective tool, and a significant number of 

typical works have been published including symmetric BLF [24,25] and asymmetric BLF [26,27]. 

However, the aforementioned BLF-based controllers have the following three drawbacks: 1) 

Discontinuous actions exist when constructing asymmetric BLF deals with asymmetric constraints; 2) 

Output/state constraints are achieved indirectly through error constraint, which leads to a more 

conservative initial output and state; 3) It is not allowed to handle both constrained and unconstrained 

systems without changing the controller structure. Although the integral BLF (IBLF)-based approach 

is possible to tackle output/state constraints directly [28], it can only overcome the disadvantages 1) 

and 2). By constructing a novel state transformation nonlinear function in [29,30], all those 

shortcomings can be overcome simultaneously. However, in practical applications, ensuring system 

security and reliability is the foundation, and achieving high performance control of the system is 

surely the ultimate goal. To be the best of our knowledge, no relevant results have been reported which 

can overcome the all above drawbacks and ensure safety reliability and high performance of systems 

simultaneously. 

In this paper, with consideration of security, reliability and high performance, a LAFN-PPC of 

strict-feedback systems considering asymmetric full-state and input constraints is raised. In the 

controller design procedure, the constrained system is transformed into an unconstrained system using 

one-to-one nonlinear state transformation technique. One-to-one nonlinear error transformation 

technique is used to guarantee the prescribed performance. Furthermore, the unknown control direction 

and the input constraint nonlinearity are resolved by Nussbaum gain technique simultaneously. By 

introducing command filter and an error compensation mechanism, the constructed scheme can not 

only overcomes the so-called “EOC” problem, but also reduces filter errors. Moreover, the maximum 

values of the norm of optimal weight vector in FWNN is constructed as a virtual parameter, and the 

only one virtual parameter is estimated instead of the optimal weight vectors (OWVs). Regardless of 

the order of the system and the dimension of the system parameters, only one parameter is required to 

be updated online, which significantly reduces the computational burdens. The major contributions 

comparing with the existing ones are listed as: 

1) In order to ensure the controlled systems with higher security, faster response speed and lower 

tracking error simultaneously, we combine a simple state transformation function with an error 

transformation function. All states and tracking error are always in symmetric or asymmetric 

prescribed bounds. Compared with the BLF-based methods [24–27], the LAFN-PPC can overcome all 

the three drawbacks, because we utilize the state transformation function instead of BLF, by which the 

constrained system is converted to an unconstrained system. In contrast to state transformation based 
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methods [29,30], the tracking error is always remained within the prescribed performance bound by 

using an error transformation function. 

2) By using command filtering to get the virtual control signal derivatives, the “EOC” problem 

of traditional backstepping method is overcome, the filter error caused by command filter is 

compensated by the carefully constructed error compensation mechanism. Compared with [1–5], the 

method we take only requires the reference signal and its first derivative, which greatly reduces the 

amount of calculation and meets many practical engineering requirements. 

3) To significantly improve the computational efficiency of FWNN-based approximator and to 

replace estimating the OWVs in each step of backstepping, we construct the maximum value of the 

norm of OWVs in the FWNN as a virtual parameter. Only one virtual parameter needs to be estimated 

in the FWNN-based approximator, with this one-parameter estimation-based approach, the number of 

parameters updated online is independent of the order of the system and the dimension of OWVs, and 

the computational burden is significantly reduced, while the computational efficiency is significantly 

improved. 

2. System formulation and preliminaries 

2.1. System descriptions 

The considered strict-feedback systems with input constraint nonlinearity are given as 

{

𝑥̇𝑖 = 𝑓𝑖(𝑥̄𝑖, ℓ𝑖) + 𝑥𝑖+1,

𝑥̇𝑛 = 𝑓𝑛(𝑥̄𝑛, ℓ𝑛) + 𝑔𝑢,
𝑦 = 𝑥1

𝑖 = 1,… , 𝑛 − 1
𝑢 = 𝐶(𝑣)       (2.1) 

where 𝑥̄𝑖 = [𝑥1, … , 𝑥𝑖]
𝑇 ∈ 𝑅𝑖 , 1, ,i n= K   and v R   are the states and the system input. y R  

denotes the system output. 𝑥 = [𝑥1, … , 𝑥𝑛]
𝑇 ∈ 𝑅𝑛 are the whole states of the system, ( ),i i if x l , 𝑖 =

1, … , 𝑛  are unknown smooth functions, Specifically, ( ),i i if x l   denote system uncertainties and 

external disturbances, ℓ𝑖  are the unknown constant parameters inseparable from ( ),i i if x l  . g  

denotes the unknown control gain. Here, u  is the actual control signal which is subjected to the input 

constraint nonlinearity 𝐶(𝑣): 𝑅 → 𝑅. And the input constraint nonlinearity will be given later. In this 

paper, 𝑥𝑖(𝑡) are constrained in the open sets (−𝜅̱𝑖, 𝜅̄𝑖), i.e., 𝑥𝑖(𝑡) ∈ 𝛺𝑖. 
As is known that input saturation of actuator is a common problem. The input saturation 

nonlinearity can seriously affect the safety and performance of the system. How to cope with the 

saturation nonlinearity has become an urgent and challenging research issue. In this paper, we take the 

input constraint nonlinearity into account. Mostly, the input constraint nonlinearity [21] can be 

expressed as 

( )

,

,

,

i

i i

i

u v u

u C v v u v u

u v u

− −

− +

+ +

 


= =  




，

，

，

        (2.2) 

where 𝑢+ and 𝑢− are the upper/lower bounds of 𝑢(𝑡). 

To simplify the design of the control, we can define 𝛥(𝑣) = 𝑢 − 𝑐𝑣𝑣, where 𝑐𝑣 is a positive 
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constant. We can rewrite the input constraint model as: 

( ).vu c v v= +             (2.3) 

Based on the above strict-feedback systems, the control object of this paper is to design a LAFN-

PPC for system (2.1) to realize the following purposes: 

(a) All signals of the system are in the sense of uniformly ultimate boundedness. 

(b) The input signal and full state variables can be strictly restricted in asymmetric upper and 

lower bounds. 

(c) The output signal can track the reference signal very well. And the output tracking error can 

be strictly restricted in upper and lower bounds. 

2.2. FWNN 

The FWNN [20] has strong power in function approximation, which consists of a series of fuzzy 

IF-THEN rules as: 

If 1   is 
1

j   and … n   is j

n  , then 𝑓𝑠  is 𝜔𝑗 , 𝑗 = 1,…𝑁𝑠 , where j

i  , 𝑖 = 1, … , 𝑛𝑠 , 𝑗 =

1, … , 𝑁𝑠 , is 𝑗𝑡ℎ  member function for 𝑖𝑡ℎ  input, sn   and sN   represent the number of inputs and 

rulers (fuzzy logical system), respectively. 

The FWNN shown in Figure 1 consists of five lawyers, including an input layer, a fuzzification 

layer, a membership layer, a rule layer, and an output layer. The firing degrees of rulers are defined as 

𝜉̑𝑖 = ∑ (1 +
(𝛧𝑖−𝑐𝑖

𝑗
)
2

𝜔
𝑖
𝑗 )𝑛

𝑗=1 𝑒
−
(𝛧𝑖−𝑐𝑖

𝑗
)
2

𝜔
𝑖
𝑗

, 

𝜉̮𝑖 = ∑ (1 −
(𝛧𝑖−𝑐𝑖

𝑗
)
2

𝜔
𝑖
𝑗 )𝑛

𝑗=1 𝑒
−
(𝛧𝑖−𝑐𝑖

𝑗
)
2

𝜔
𝑖
𝑗

, 

where 1, ,i N= K , 1, ,j n= K , n  and N  denote the number of inputs and rulers (neural network 

system). j

ic  and j

i  represent the center and width of member function. 

 

Figure 1. The schematic diagram of the FWN. 
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The firing degrees are defined as 

( )
1

i i

i N

i i

i

 


 
=

+
=

+
, 1, ,i N= K . 

The FWNN can be described as 

𝑓(𝜃, ℤ) = 𝜃𝑇𝜉(ℤ) + 𝜀(ℤ)         (2.4) 

where 𝑓(𝜃, ℤ)  is a continuous function which is bounded in closed compact set ℧ → 𝑅𝑛 , ℤ =
[𝑍1, 𝑍2, ⋯ , 𝑍𝑁] ∈ ℧ ⊂ 𝑅

𝑛  is the input vector, n   is the input dimension of neural network. 

 1 2, ,
T N

N R   = L   denotes the weight vector, and 1N    is the node number of neuron. and 

𝜉(ℤ) = [𝜉1(ℤ), 𝜉2(ℤ),⋯ , 𝜉𝑁(ℤ)]
𝑇 ∈ 𝑅𝑁 indicates the basic function vector.   is the estimation error. 

And there is a positive constant 
Mi  which satisfies i Mi  , 1, ,i n= K . 

Lemma 1 [20]. Continuous function 𝑓(ℤ) is defined on a compact set ℧. And for 𝜀(ℤ) > 0, there 

is a FWNN satisfying 

𝑠𝑢𝑝
𝑥∈𝛺

|𝑓(ℤ) − 𝑓(ℤ, 𝜃)| ≤ 𝜀(ℤ). 

The optimal parameter 
)

 is equal to 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃∈℧𝜃

[𝑠𝑢𝑝
ℤ∈℧

|𝑓(ℤ) − 𝑓(ℤ, 𝜃)|], where ℧𝜃 is a compact set, 

and   = −
)

% , where 
)

 represents the estimation of  . 

2.3. State transformation 

For resolving physical constraints generated with security and reliability consideration, the 

following state transformation function [29,30] is introduced to achieve asymmetric constraints, 

symmetric constraints and no constraints on states simultaneously in a unified form: 

( )
( )

( )( ) ( )( )
i i i

i

i i i i

x t
s t

x t x t

 

 
=

+ −
       (2.5) 

where i  and i  are positive constants, the initial state ( )0i ix  , 1,2, ,i n= K . It is obvious that 

if the states ( )i ix t → −   or ( )i ix t →  , the transformed states ( )is t →  . Therefore, the state 

transformation function can constrain ( )ix t  within the open sets ( ),i i − , i.e., ( )i ix t  . 

Remark 1. If asymmetric constraints need to be addressed, i.e., let i i   , 1,2, ,i n= K  . Else 

symmetric constraints need to be tackled, i.e., let i i i  = = . Then (2.5) becomes 

( )
( )

( )

2

2 2

i i

i

i i

x t
s t

x t




=

−
.         (2.6) 
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If no constraints need to be handled, let i → + . It is clear that ( ) ( )i is t x t→ , i.e., 

( ) ( )lim
i

i is t x t
 →+

= .         (2.7) 

The above state transformation function can solve the control problems with asymmetric, symmetric 

and no state constraints in a unified form. Furthermore, it can handle above three kinds of control 

problems without changing adaptive laws. Figure 2 shows that the state transformation function can 

constrain ( )ix t   within the open set ( ),i i −   (For the symmetric one: 4i i = =  ; For the 

asymmetric one: 4i = , 6i = ). 

 

Figure 2. The relationship between 
is  and ix  (symmetric and asymmetric form). 

The state transformation function can be rewritten as 

( ) ( )i i ix t s t=
          (2.8) 

where 

( )( ) ( )( )i i i i

i

i i

x t x t 


 

+ −
= . 

Remark 2. i  are also bounded in the sets i , i.e., 0 i i   , and 
( )

2

4

i i

i

i i

 


 

+
= , 1,2, ,i n= K . 

Proof. See Appendix A. Taking the time derivative of the state transformation function (2.5): 

𝑠̇𝑖(𝑡) = 𝜌𝑖𝑥̇𝑖(𝑡)
          (2.9) 

where 

( )( )
( )( ) ( )( )

2

2 2

i i i i i

i

i i i i

x t

x t x t

   


 

+
=

+ −
. 

The constrained system is converted to an unconstrained system as 
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{

𝑠̇𝑖 = 𝜌𝑖𝑓𝑖(𝑥̄𝑖, ℓ𝑖) + 𝜌𝑖𝑥𝑖+1,

𝑠̇𝑛 = 𝜌𝑛𝑓𝑛(𝑥̄𝑛, ℓ𝑛) + 𝜌𝑛𝑔𝑢,
𝑦 = 𝜂1𝑠1

𝑖 = 1,… , 𝑛 − 1
𝑢 = 𝐶(𝑣)

.     (2.10) 

2.4. Error transformation 

For achieving the prescribed performance and guaranteeing the transformed output tracking error 

to converge within the prescribed performance bounds. Firstly, we define transformed output tracking 

error, virtual control errors and the command filters [10] as: 

1 1 1

2,3, ,

c

i i ic

z s

e s

i n





= −


= −
 = K

,           (2.11) 

{
𝛼̇𝑗𝑐 = 𝜔𝛼𝑗𝑐,𝑗

𝛼̇𝑗𝑐,𝑗 = −2𝜛𝜔𝛼𝑗𝑐,𝑗 − 𝜔(𝛼𝑗𝑐 − 𝛼𝑗−1),      (2.12) 

where 1z  is the transformed output tracking error, 
ie  are intermediate tracking errors, ic  are the 

outputs of the command filters, and the virtual control i  are the inputs of the command filters.   

and ( )0,1    are positive design parameters. The initial values satisfy ( ) ( )10 0jc j  −=   and 

( ), 0 0jc j =  for 2,3, ,j n= K . 1c  and its time derivative are calculated as: 

{
𝛼1𝑐 =

𝜅̱1𝜅̄1𝑦𝑟

(𝜅̱1+𝑦𝑟)(𝜅̄1−𝑦𝑟)

𝛼̇1𝑐 =
𝜅̱1𝜅̄1(𝜅̱1𝜅̄1+𝑦𝑟

2)

(𝜅̱1+𝑦𝑟)2(𝜅̄1−𝑦𝑟)2
𝑦̇𝑟 = 𝜌1𝑟𝑦̇𝑟      (2.13) 

where ry  is the reference signal. 

To ensure the transformed output tracking error 1z   strictly converges in the prescribed 

performance region during the whole time, we define 

( ) ( ) ( )1k t z t k t −  
, 0t  ,       (2.14) 

where the design parameters k  and k  are positive constants, and 

( ) ( )0

tt e   −

 = − +h  

is the prescribed performance function, ( ) 00 = , 00    . The parameter h  is also a positive 

constant. 

Remark 3. It is obvious that the transformed output tracking error is the output tracking error of 

unconstrained system and is restricted in the prescribed domain, i.e. ( ) ( ) ( )( )1 ,z t k t k t  −  . 

However, our control objective is that the output tracking error of original constrained system 

1r re x y= −  is restricted in a prescribed domain. The output tracking error is bounded in a set 
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( )( ) ( )( )( )2 2

1 1 1 1 1 1 1 1,re k t k t          − + + . 

Proof. See Appendix B. The error transformation can be defined as: 

𝑧1(𝑡) = 𝜇(𝑡)ϒ(ℤ1(𝑡)), ∀𝑡 ≥ 0
       (2.15) 

where ℤ1(𝑡) is the transformed error and ϒ(ℤ1) is defined as: 

ϒ(ℤ1) =
𝑘̄𝑒ℤ1−𝑘̱𝑒−ℤ1

𝑒ℤ1+𝑒−ℤ1 .         (2.16) 

Remark 4. It is obvious that ( )t   is strictly constrained in symmetric or asymmetric domain 

( ),k k−  showed in Figure 3 (For the symmetric one: 0.5k k= = . For the asymmetric one: 0.5k = ,

0.7k =  ). It means that the error transformation function can deal with the issues considering 

symmetric or asymmetric exponential constraint simultaneously. 

 

Figure 3. The relationship between 𝑧1 and   (symmetric and asymmetric form). 

According to (2.15) and (2.16), one can obtain: 

ℤ1(𝑡) = ϒ
−1 (

𝑧1(𝑡)

𝜇(𝑡)
) =

1

2
𝑙𝑛

ϒ+𝑘̱

𝑘̄−ϒ
      (2.17) 

and 

ℤ̇1(𝑡) = 𝜌 (𝑧̇1(𝑡) −
𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
)       (2.18) 

where 

𝜌 =
[(

1

(ϒ(ℤ1)+𝑘̱)
)+(

1

(𝑘̄−ϒ(ℤ1))
)]

2
𝜇(𝑡). 

We finally define the transformed tracking error as 

𝑒1 = ℤ1(𝑡).          (2.19) 

3. Controller design 

In order to reduce the errors caused by the command filters, we introduce compensation signals 
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i , and the compensation errors can be defined as 
i i iv e = − , 1, ,i n= K . 

FWNN is used to approximate the system uncertainties and external disturbances 𝑓𝑖: 

𝑓𝑖 = 𝜃𝑖
𝑇𝜉𝑖(ℤ) + 𝜀𝑖(ℤ).         (3.1) 

For facilitating adaptive law design, we define 

 
 

2 2

1

max ,

max , ,

i i Mi

n

  

  

 =


= K
, 1, ,i n= K ,       (3.2) 

where 
i  are unknown virtual parameters with 

i  . i  is the ideal constant weight of 𝑖𝑡ℎ NN 

and 
Mi  is the upper bound of approximation error i . 

Assumption 1. The reference trajectory ry  is continuous, and satisfies 

[𝑦𝑟 , 𝑦̇𝑟 , 𝑦̈𝑟]
𝑇 ∈ 𝛯𝑟, 

r  is a known compact set 

{[𝑦𝑟 , 𝑦̇𝑟 , 𝑦̈𝑟]
𝑇: 𝑦𝑑

2 + 𝑦̇𝑑
2 + 𝑦̈𝑑

2 ≤ 𝐵𝑟} ⊂ 𝑅
3. 

rB  is a known positive constant. Furthermore, 
1 1ry −    holds. 

Assumption 2. There are some constants  , g  and g  which satisfied ( )v    and g g g  . 

For solving the unknown gain and input constraint of systems simultaneously, Nussbaum function 

is introduced [10]. Obviously, a Nussbaum-type function ( )N    needs to hold following the 

properties: 

( )

( )

0

0

1
lim sup

1
lim inf

s

s

s

s

N d
s

N d
s

 

 

→+

→+


= +


 = −





.        (3.3) 

In general, ( ) ( )ln 1 cos ln 1 + +  , ( )2 cos    and ( )
2

cos 2e    are commonly used 

Nussbaum-type function, and ( ) ( )2 cosN   =  is employed in this paper. 

Lemma 2 [10]. Let ( )V    and 𝜒(⋅)  be smooth functions defined on )0, ft   with ( ) 0V t   . 

)0, ft t 
, and ( )N   is a smooth Nussbaum-type function. If the following inequality holds: 

𝑉(𝑡) ≤ 𝑐0 + ∫ (𝑔𝑓𝑁(𝜒) + 1)𝜒̇𝑑𝜏
𝑡

0
       (3.4) 

where fg   is a non-zero parameter and 0c   is an appropriate constant, then ( )V t  , 𝜒(𝑡)  and 

( )( )
0

1
t

gN d  + &  must be bounded on )0, ft . 
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Step 1. Taking the time derivative of 
1e  based on (2.17)–(2.19), it has: 

𝑒̇1 = 𝜌 (𝜌1𝑥2 + 𝜌1𝑓1 − 𝜌1𝑟𝑦̇𝑟 −
𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
).      (3.5) 

The error compensation signal is constructed as 

𝜍1̇ = −𝑘1𝜍1 + 𝜌𝜌1𝜂2(𝜍2 + 𝛼2𝑐 − 𝛼1).       (3.6) 

Choosing a Lyapunov function and taking its time derivative, one can obtain 

{
𝑉1 =

1

2
𝑣1
2 +

1

2𝛾
𝜃̃2

𝑉̇1 = 𝑣1 (𝜌 (𝜌1𝜂2(𝑒2 + 𝛼2𝑐) + 𝜌1𝑓1 − 𝜌1𝑟𝑦̇𝑟 −
𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
) − 𝜍1̇) +

1

𝛾
𝜃̃𝜃̇̑

  (3.7) 

where the compensation error 
1 1 1v e = − . 

Using a FWNN to approximate the unknown item 1f , one can obtain: 

𝑉̇1 = 𝑣1 (𝜌 (𝜌1𝜂2(𝑒2 + 𝛼2𝑐) + 𝜌1(𝜃1
𝑇𝜉1 + 𝜀1) − 𝜌1𝑟𝑦̇𝑟 −

𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
) − 𝜍1̇) +

1

𝛾
𝜃̃𝜃̇̑.  (3.8) 

By the Young’s inequality, it has 

2 22 2 2

1 1 1 1 1 1 1 1

2 2 2 2

1 1 1 1 1 1

1

4

1

4

T

M

v v

v v

      

    


 +


  +
 .      (3.9) 

Therefore, we have 

( ) 2 2

1 1 1 1 1 1 1 1 1 1

1 1

2 2

Tv v v       +  +  +
,     (3.10) 

with 

 2 2

1 1 1max , M  =
,          (3.11) 

22 2 2 2

1 1 1 1 0     = + 
.        (3.12) 

Hence, it has 

𝑉̇1 ≤ 𝑣1 (𝜌 (𝜌1𝜂2(𝑒2 + 𝛼2𝑐) − 𝜌1𝑟𝑦̇𝑟 −
𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
) − 𝜍1̇) + 𝜃𝑣1

2𝜁1 +
1

2
+

1

𝛾
𝜃̃𝜃̇̑.  (3.13) 

By substituting compensation signal 1& from (3.6) into (3.13), it has 

𝑉̇1 ≤ 𝑣1 (𝜌𝜌1𝜂2𝑣2 − 𝜌𝜌1𝑟𝑦̇𝑟 − 𝜌
𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
+ 𝑘1𝜍1 + 𝜌𝜌1𝜂2𝛼1) + 𝜃𝑣1

2𝜁1 +
1

2
+

1

𝛾
𝜃̃𝜃̇̑.  (3.14) 

Then, the virtual control law 1  is designed as the following 
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𝛼1 = (−𝑘1𝑒1 − 𝑣1𝜃̑𝜁1 + 𝜌𝜌1𝑟𝑦̇𝑟 + 𝜌
𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
) 𝜌−1𝜌1

−1𝜂2
−1.

   (3.15) 

Substituting the virtual control 1  into (3.14) results in 

𝑉̇1 ≤ −𝑘1𝑣1
2 + 𝑣1(𝜌𝜌1𝜂2𝑣2 − 𝑣1𝜃̑𝜁1) + 𝜃𝑣1

2𝜁1 +
1

2
+

1

𝛾
𝜃̃𝜃.̑̇

    (3.16) 

The adaptive law is given as 

𝜃̇̑ = 𝛾 ∑ 𝑣𝑘
2𝜁𝑘

𝑛
𝑘=1 − 𝜎𝜃.̑

         (3.17) 

By integrating (3.16) and (3.17), we have 

𝑉̇1 ≤ −𝑘1𝑣1
2 + 𝑣1𝜌𝜌1𝜂2𝑣2 +

1

2
+ 𝜃̃ ∑ 𝑣𝑘

2𝜁𝑘
𝑛
𝑘=2 −

𝜎

𝛾
𝜃̃𝜃.̑

     (3.18) 

Note that 

−
𝜎

𝛾
𝜃̃𝜃̑ ≤ −

𝜎

2𝛾
𝜃̃2 +

𝜎

2𝛾
𝜃2.

       (3.19) 

One has 

𝑉̇1 ≤ −𝑘1𝑣1
2 −

𝜎

2𝛾
𝜃̃2 + 𝑣1𝜌𝜌1𝜂2𝑣2 + 𝜃̃ ∑ 𝑣𝑘

2𝜁𝑘
𝑛
𝑘=2 +

𝜎

2𝛾
𝜃2 +

1

2
 .

   (3.20) 

Step 2. Taking the time derivative of 2e , it has: 

𝑒̇2 = 𝜌2𝑥̇2 − 𝛼̇2𝑐 = 𝜌2𝑥3 + 𝜌2𝑓2 − 𝛼̇2𝑐 .

      (3.21) 

The error compensation signal is constructed as 

𝜍2̇ = −𝑘2𝜍2 − 𝜌𝜌1𝜂2𝜍1 + 𝜌2𝜂3(𝜍3 + 𝛼3𝑐 − 𝛼2).

     (3.22) 

Choosing a Lyapunov function and taking its time derivative, one can obtain 

{
𝑉2 = 𝑉1 +

1

2
𝑣2
2

𝑉̇2 = 𝑉̇1 + 𝑣2(𝜌2𝜂3(𝑒3 + 𝛼3𝑐) + 𝜌2𝑓2 − 𝛼̇2𝑐 − 𝜍2̇)    (3.23) 

where the compensation error 2 2 2v e = − . 

By integrating compensation signal 𝜍2̇ and (3.23), it has 

𝑉̇2 ≤ −𝑘1𝑣1
2 −

𝜎

2𝛾
𝜃̃2 + 𝑣2 (

𝜌2𝜂3𝑣3 + 𝜌2𝑓2 + 𝜌𝜌1𝜂2𝑒1
−𝛼̇2𝑐 + 𝑘2𝜍2 + 𝜌2𝜂3𝛼2

) + 𝜃̃ ∑ 𝑣𝑘
2𝜁𝑘

𝑛
𝑘=2 +

𝜎

2𝛾
𝜃2 +

1

2
 . 

(3.24) 

Using a FWNN to approximate the unknown item 2f , one can obtain: 
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𝑉̇2 ≤ −𝑘1𝑣1
2 −

𝜎

2𝛾
𝜃̃2 + 𝜃̃∑𝑣𝑘

2𝜁𝑘

𝑛

𝑘=2

+
𝜎

2𝛾
𝜃2 +

1

2
 

+𝑣2 (
𝜌2𝜂3𝑣3 + 𝜌2(𝜃2

𝑇𝜉2 + 𝜀2)

+𝜌𝜌1𝜂2𝑒1 − 𝛼̇2𝑐 + 𝑘2𝜍2 + 𝜌2𝜂3𝛼2
).     (3.25) 

By the Young’s inequality, it has 

2 22 2

2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

1

4

1

4

T

M

v v

v v

     

   


 +


  +
 .       (3.26) 

Therefore, we have 

( ) 2 2

2 2 2 2 2 2 2 2 2 2

1 1

2 2

Tv v v       +  +  +
,     (3.27) 

with 

 2 2

2 2 2max , M  =
,        (3.28) 

22 2

2 2 2 2 0   = + 
.         (3.29) 

Hence, it has 

𝑉̇2 ≤ −𝑘1𝑣1
2 −

𝜎

2𝛾
𝜃̃2 + 𝜃̃∑𝑣𝑘

2𝜁𝑘

𝑛

𝑘=2

+
𝜎

2𝛾
𝜃2 +

1

2
 

+𝑣2 (
𝜌2𝜂3𝑣3 + 𝜌𝜌1𝜂2𝑒1
−𝛼̇2𝑐 + 𝑘2𝜍2 + 𝜌2𝜂3𝛼2

) + 𝜃𝑣2
2𝜁2 +

1

2
 .

    (3.30) 

Then, the virtual control law 2  is designed as the following 

𝛼2 = (−𝑘2𝑒2 − 𝑣2𝜃̑𝜁2 − 𝜌𝜌1𝜂2𝑒1 + 𝛼̇2𝑐)𝜌2
−1𝜂3

−1 .

    (3.31) 

Substituting the virtual control 2  into (3.30) results in 

𝑉̇2 ≤ −𝑘1𝑣1
2 − 𝑘2𝑣2

2 −
𝜎

2𝛾
𝜃̃2 + 𝑣2𝜌2𝜂3𝑣3 + 𝜃̃ ∑ 𝑣𝑘

2𝜁𝑘
𝑛
𝑘=3 +

𝜎

2𝛾
𝜃2 +

2

2
 .

  (3.32) 

Step i. Taking the time derivative of ie , it has: 

𝑒̇𝑖 = 𝜌𝑖𝑥̇𝑖 − 𝛼̇𝑖𝑐 = 𝜌𝑖𝑥𝑖+1 − 𝛼̇𝑖𝑐 .

        (3.33) 
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The error compensation signal is constructed as 

𝜍𝑖̇ = −𝑘𝑖𝜍𝑖 − 𝜌𝑖−1𝜂𝑖𝜍𝑖−1 + 𝜌𝑖𝜂𝑖+1(𝜍𝑖+1 + 𝛼𝑖+1𝑐 − 𝛼𝑖).

     (3.34) 

Choosing a Lyapunov function and taking its time derivative, one can obtain 

{
𝑉𝑖 = 𝑉𝑖−1 +

1

2
𝑣𝑖
2

𝑉̇𝑖 = 𝑉̇𝑖−1 + 𝑣𝑖(𝜌𝑖𝜂𝑖+1(𝑒𝑖+1 + 𝛼𝑖+1𝑐) + 𝜌𝑖𝑓𝑖 − 𝛼̇𝑖𝑐 − 𝜍𝑖̇)   (3.35) 

where the compensation error 
i i iv e = − . 

By integrating compensation signal 𝜍𝑖̇ and (3.35), it has 

𝑉̇𝑖 ≤ −∑𝑘𝑘𝑣𝑘
2

𝑖−1

𝑘=1

−
𝜎

2𝛾
𝜃̃2 + 𝜃̃∑𝑣𝑘

2𝜁𝑘

𝑛

𝑘=𝑖

+
𝜎

2𝛾
𝜃2 +

𝑖 − 1

2
 

+𝑣𝑖 (
𝜌𝑖𝜂𝑖+1𝑣𝑖+1 + 𝜌𝑖𝑓𝑖 − 𝛼̇𝑖𝑐
+𝑘𝑖𝜍𝑖 + 𝜌𝑖−1𝜂𝑖𝑒𝑖−1 + 𝜌𝑖𝜂𝑖+1𝛼𝑖

) .

       (3.36) 

Using a FWNN to approximate the unknown item if , one can obtain: 

𝑉̇𝑖 ≤ −∑𝑘𝑘𝑣𝑘
2

𝑖−1

𝑘=1

−
𝜎

2𝛾
𝜃̃2 + 𝜃̃∑𝑣𝑘

2𝜁𝑘

𝑛

𝑘=𝑖

+
𝜎

2𝛾
𝜃2 +

𝑖 − 1

2
 

+𝑣𝑖 (
𝜌𝑖𝜂𝑖+1𝑣𝑖+1 + 𝜌𝑖(𝜃𝑖

𝑇𝜉𝑖 + 𝜀𝑖)

−𝛼̇𝑖𝑐 + 𝑘𝑖𝜍𝑖 + 𝜌𝑖−1𝜂𝑖𝑒𝑖−1
+𝜌𝑖𝜂𝑖+1𝛼𝑖

) .

       (3.37) 

By the Young’s inequality, it has 

2 22 2

2 2 2

1

4

1

4

T

i i i i i i i i

i i i i i Mi

v v

v v

     

   


 +


  +
  .      (3.38) 

Therefore, we have 

( ) 2 21 1

2 2

T

i i i i i i i i i iv v v       +  +  +
,      (3.39) 

with 

 2 2max ,i i Mi  =
,          (3.40) 

22 2 0i i i i   = + 
.         (3.41) 

Hence, it has 
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1 11
2 2 2 2 2

1 1

1

1

1 1

2 2 2 2

i i i ici n

i k k k k i i i i i i i i

k k i

i i i

v
i

V k v v v k e v

 
 
        

 
 

+ +−

− −

= =

+

− 
−  

 − − + + + + + + + + 
 + 

 

&

% %&
.

 (3.42) 

Then, the virtual control law i  is designed as the following 

𝛼𝑖 = (−𝑘𝑖𝑒𝑖 − 𝑣𝑖𝜃̑𝜁𝑖 − 𝜌𝑖−1𝜂𝑖𝑒𝑖−1 + 𝛼̇𝑖𝑐)𝜌𝑖
−1𝜂𝑖+1

−1  .

      (3.43) 

Substituting the virtual control i  into (3.42) results in 

𝑉̇𝑖 ≤ −∑ 𝑘𝑘𝑣𝑘
2𝑖

𝑘=1 −
𝜎

2𝛾
𝜃̃2 + 𝜃̃ ∑ 𝑣𝑘

2𝜁𝑘
𝑛
𝑘=𝑖+1 +

𝜎

2𝛾
𝜃2 +

𝑖

2
+ 𝑣𝑖𝜌𝑖𝜂𝑖+1𝑣𝑖+1 .

  (3.44) 

Step n. Taking the time derivative of ne , it has: 

𝑒̇𝑛 = 𝜌𝑛𝑥̇𝑛 − 𝛼̇𝑛𝑐 = 𝜌𝑛𝑔𝑢 + 𝜌𝑛𝑓𝑛 − 𝛼̇𝑛𝑐 .

       (3.45) 

The error compensation signal is constructed as 

𝜍𝑛̇ = −𝑘𝑛𝜍𝑛 − 𝜌𝑛−1𝜂𝑛𝜍𝑛−1 .

        (3.46) 

Choosing a Lyapunov function and taking its time derivative, one can obtain 

{
𝑉𝑛 = 𝑉𝑛−1 +

1

2
𝑣𝑛
2

𝑉̇𝑛 = 𝑉̇𝑛−1 + 𝑣𝑛(𝜌𝑛𝑔𝑢 + 𝜌𝑛𝑓𝑛 − 𝛼̇𝑛𝑐 − 𝜍𝑛̇)      (3.47) 

where the compensation error n n nv e = − . 

By integrating compensation signal 𝜍𝑛̇ and (3.47), it has 

𝑉̇𝑛 = 𝑉̇𝑛−1 + 𝑣𝑛(𝜌𝑛𝑔𝑢 + 𝜌𝑛𝑓𝑛 − 𝛼̇𝑛𝑐 + 𝑘𝑛𝜍𝑛 + 𝜌𝑛−1𝜂𝑛𝜍𝑛−1) .

    (3.48) 

Using a FWNN to approximate the unknown item nf , one can obtain: 

𝑉̇𝑛 = 𝑉̇𝑛−1 + 𝑣𝑛(𝜌𝑛𝑔𝑢 + 𝜌𝑛(𝜃𝑛
𝑇𝜉𝑛 + 𝜀𝑛) − 𝛼̇𝑛𝑐 + 𝑘𝑛𝜍𝑛 + 𝜌𝑛−1𝜂𝑛𝜍𝑛−1) .

  (3.49) 

By the Young’s inequality, it has 

2 22 2

2 2 2

1

4

1

4

T

n n n n n n n n

n n n n n Mn

v v

v v

     

   


 +


  +
 .       (3.50) 

Therefore, we have 
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( ) 2 21 1

2 2

T

n n n n n n n n n nv v v       +  +  +
      (3.51) 

with 

 2 2max ,n n Mn  =
,        (3.52) 

22 2 0n n n n   = + 
.        (3.53) 

Hence, it has 

𝑉̇𝑛 ≤ 𝑉̇𝑛−1 + 𝑣𝑛 (𝜌𝑛𝑔𝑐𝑣𝑣 +
1

2
𝜌𝑛
2𝑣𝑛 − 𝛼̇𝑛𝑐 + 𝑘𝑛𝜍𝑛 + 𝜌𝑛−1𝜂𝑛𝜍𝑛−1) + 𝜃𝑣𝑛

2𝜁𝑛 +
1

2
+
1

2
𝑔̄2𝛥̄2 .

 (3.54) 

Then, the control input v  is designed as the following 

𝑣 = 𝑁(𝜒)𝜓𝜌𝑛
−1 ,

          (3.55) 

𝜓 = 𝑘𝑛𝑒𝑛 + 𝑣𝑛𝜃̑𝜁𝑛 + 𝜌𝑛−1𝜂𝑛𝑒𝑛−1 − 𝛼̇𝑛𝑐 +
1

2
𝜌𝑛
2𝑣𝑛 ,

    (3.56) 

𝜒̇ = 𝑣𝑛𝜓 .

 

           (3.57) 

Substituting the virtual control v  into (3.54) results in 

𝑉̇𝑛 ≤ −∑ 𝑘𝑘𝑣𝑘
2𝑛

𝑘=1 + 𝑔𝑐𝑣𝑁(𝜒)𝜒̇ + 𝜒̇ −
𝜎

2𝛾
𝜃̃2 +

𝜎

2𝛾
𝜃2 +

1

2
𝑔̄2𝛥̄2 +

𝑛

2
 .

  (3.58) 

Up to now, the whole construction of LAFN-PPC is completed. 

4. Stability analysis 

For any given positive constant p , consider a closed set 

{
  
 

  
 𝛩1 = {(𝑣1, 𝜃̑): 𝑣1

2 +
1

𝛾
𝜃̃2 ≤ 2𝑝}

𝛩2 = {(𝑣1, 𝑣2, 𝜃̑): ∑ 𝑣𝑘
22

𝑘=1 +
1

𝛾
𝜃̃2 ≤ 2𝑝}

𝛩𝑖 = {(𝑣1, 𝑣2, … , 𝑣𝑖 , 𝜃̑): ∑ 𝑣𝑘
2𝑖

𝑘=1 +
1

𝛾
𝜃̃2 ≤ 2𝑝}

𝛩𝑛 = {(𝑣1, 𝑣2, … , 𝑣𝑛, 𝜃̑): ∑ 𝑣𝑘
2𝑛

𝑘=1 +
1

𝛾
𝜃̃2 ≤ 2𝑝}

.     (4.1) 

Theorem 1. For the strict-feedback systems (2.1) with full-state and input constraints under 

Assumptions 1 and 2, the controllers (3.15), (3.31), (3.43) and (3.55)–(3.57), adaptive law (3.17) and 

compensation signal (3.6), (3.22), (3.34) and (3.46) are constructed. If initial conditions satisfy i , 

1,2, ,i n= K  , ( )(0) ,i i ix   −  , 1,2, ,i n= K  , and ( )1 1(0) ,ry   −  , then the proposed control 
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scheme ensures the achievement of objectives (a)–(c). 

Proof. The Lyapunov function choosing as 

𝑉 =
1

2
∑ 𝑣𝑘

2𝑛
𝑘=1 +

1

2𝛾
𝜃̃2 .

          (4.2) 

From (3.58), we have 

𝑉̇ ≤ −∑ 𝑘𝑘𝑣𝑘
2𝑛

𝑘=1 + 𝑔𝑐𝑣𝑁(𝜒)𝜒̇ + 𝜒̇ −
𝜎

2𝛾
𝜃̃2 +

𝜎

2𝛾
𝜃2 +

1

2
𝑔̄2𝛥̄2 +

𝑛

2
 .

  (4.3) 

To facilitate analysis, the above inequality can be written as 

𝑉̇ ≤ −𝛢𝑉 + 𝛣 + (𝑔𝑐𝑣𝑁(𝜒) + 1)𝜒 ,̇

       (4.4) 

where 

 1min 2 , ,2 ,nk k   K , 

2 2 21
.

2 2 2

n
g





 = +  +  

By computing the integration of the above differentiation inequality at the interval  )0, t , one can 

obtain 

0 ≤ 𝑉 ≤ 𝑉(0)𝑒−𝛢𝑡 +
𝛣

𝛢
(1 − 𝑒−𝛢𝑡) + 𝑒−𝛢𝑡 ∫ (𝑔𝑐𝑣𝑁(𝜒) + 1)𝜒̇𝑒

𝛢𝜏𝑑𝜏 .
𝑡

0

  (4.5) 

From Lemma 2, we can get that V ,   and ∫ (𝑔𝑐𝑣𝑁(𝜒) + 1)𝜒̇𝑑𝜏
𝑡

0
 are bounded at the interval 

 )0, t  . And the result holds even if t →  . Furthermore, let ℂ  be the upper bound of 

𝑒−𝛢𝑡 ∫ (𝑔𝑐𝑣𝑁(𝜒) + 1)𝜒̇𝑒
𝛢𝜏𝑑𝜏

𝑡

0
. The following inequality will holds 

𝑉 ≤ (𝑉(0) −
𝛣

𝛢
) 𝑒−𝛢𝑡 +

𝛣

𝛢
+ ℂ .

       (4.6) 

We denote F  as the set of all bounded functions. According to the above analysis, we can get 

V p . Therefore, we can obtain that 1v , 2v ,L , nv , 
)

, 1 , 2 ,L , n  are bounded. Furthermore, 

ie   are also bounded due to i i iv e = −  . As 𝑒1 = ℤ1(𝑡)  and 1e F   it has ℤ1(𝑡) ∈ 𝐹∞ . It implies 

( )1 ,z t F   and 1 1 1cs z F = +  . Noting (2.9), we obtain 1 F  . From (2.18), it yields 𝜌, 𝜇1(𝑡),

𝜇̇1(𝑡) ∈ 𝐹∞ . With the help of (3.15) and (2.12), we have 1 F    and 𝛼2𝑐, 𝛼̇2𝑐 ∈ 𝐹∞ . Since 

2 2 2 2cs v  = + + , we get 2s F . Noting (2.9), we obtain 2 F  . From (3.31) and (2.12), we get 

2 F   and 𝛼3𝑐, 𝛼̇3𝑐 ∈ 𝐹∞. Similarly, we can easily get 

𝑠3,  𝜌3,  𝛼4𝑐,  𝛼̇4𝑐, ⋯ ,  𝑠𝑛−1,  𝜌𝑛−1,  𝛼𝑛𝑐,  𝛼̇𝑛𝑐, 𝑠𝑛,  𝜌𝑛, 𝑣 ∈ 𝐹∞. 

From (2.8), it yields 𝑥1,  𝑥2, ⋯ , 𝑥𝑛 ∈ 𝐹∞. This finishes the proof. 
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Remark 5. In the proposed low-cost adaptive neural prescribed performance control (LAFN-PPC) 

scheme, we can obtain a satisfactory performance by reasonably adjusting 
ik ,  ,  , i , i , k , 

k , 
0 ,   and h , where 1,2, ,i n= K . The larger 

ik  and smaller  ,   can improve the 

convergence speed and tracking accuracy of the controller. But too large 
ik  and small  ,   values 

can result in large control input, which may be far beyond physical limitations of actuator. The adaptive 

parameters   and   play the part of regulators between controller and control output. To avoid the 

large control input, the values of the parameters 
ik ,  ,  , 1,2, ,i n= K  are limited to a certain 

interval. Meanwhile, i  and i  are used to constrain the states ( )ix t  within the open sets 

( ),i i − , which can be selected according to the actual application requirements. From this it can be 

concluded that the time varying parameter 

( )( )( ) ( )( ) ( )( )( )2 22

i i i i i i i i i ix t x t x t      = + + − . 

The parameters k , k , 
0 ,   and h  are designed to constrain the transformed output tracking 

error within the open set ( ) ( )( ),k t k t − , where 

( ) ( )0

tt e   −

 = − +h . 

0 , h  and   determine the initial error, the error convergence rate and the steady-state error of 

the transformed output tracking error bound, which can be selected according to the performance 

requirements. k  and k  are always within ( 0,1  and can deal with the issues considering 

symmetric or asymmetric transformed output tracking error constraint. 

5. Simulations 

In order to prove the effectiveness and feasibility of our control scheme, this section provides 

comparison simulation cases. Meanwhile, the control schemes based on works in [29,30] are compared 

with our suggested control scheme. 

A rigid manipulator system [30] is given as 

{
𝐽𝐿𝜃̈ + 𝑀𝑔𝑣𝐿 𝑠𝑖𝑛 𝜃 + 𝑇𝐸 = 𝑢

𝑢 = 𝐻(𝑣)
         (5.1) 

where , 𝜃̇ and 𝜃̈ are the position, velocity and acceleration of the link, respectively. M , vg  and 

L  denote the link mass, gravity constant and the distance from the joint to the mass center of the link, 

respectively. ET   indicates the unknown external load. u   is the actual control torque which is 

subjected to the unknown input constraint nonlinearity ( )H v , and v  is system control input signal. 

To facilitate the controller design, we transfer the system (5.1) with new variables. Let 1x = , 

𝑥2 = 𝜃̇. Then the dynamic model of system (5.1) can be expressed as follows: 
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{

𝑥̇1 = 𝑥2
𝑥̇2 = 𝐽𝐿

−1(𝑢 − 𝑀𝑔𝐿 𝑠𝑖𝑛 𝑥1 − 𝑇𝐸)

𝑢 = 𝐻(𝑣)
𝑦 = 𝑥1

.       (5.2) 

To simplify the expression, the dynamic model is rewritten as 

{

𝑥̇1 = 𝑥2
𝑥̇2 = 𝐺𝐿𝑢 + 𝑓𝐿
𝑢 = 𝐻(𝑣) = 𝑐𝑣𝑣 + 𝛥(𝑣)
𝑦 = 𝑥1

         (5.3) 

where 

1sin E
L

L

MgL x T
f

J

− −
= , 1

L LG J −= . 

In the simulation, we set ( )1 1 0f x = , ( )2 1 2, Lf x x f=  and Lg G= . 𝑀 = 0.35 𝐾𝑔, 𝑔𝑣=9.8 m/s2, 

𝐿 = 1.47 𝑚 and 0.1sinET t= . The tracking signal of following cases are set as 0.5sinry t= . 

Case 1. The initial system states and output are ( )  0 0.1,0x =  . And ,(0) (0) (0) 0jc jc j  = = =
)

 , 

1 2(0) (0) 0 = =  . The proposed controller, adaptive laws and error compensation schemes are 

constructed as 

{
 
 

 
 𝛼1 = (−𝑘1𝑒1 + 𝜌𝜌1𝑟𝑦̇𝑟 + 𝜌

𝜇̇(𝑡)𝑧1(𝑡)

𝜇(𝑡)
) 𝜌−1𝜌1

−1𝜂2
−1

𝑣 = 𝑁(𝜒)𝜓𝜌2
−1

𝜓 = 𝑘2𝑒2 + 𝑣2𝜃̑𝜁 + 𝜌𝜌1𝜂2𝑒1 − 𝛼̇𝑛𝑐 +
1

2
𝜌2
2𝑣2

𝜒̇ = 𝑣2𝜓
,     (5.4) 

{
𝜍1̇ = −𝑘1𝜍1 + 𝜌𝜌1𝜂2(𝜍2 + 𝛼2𝑐 − 𝛼1)

𝜍2̇ = −𝑘2𝜍2 − 𝜌𝜌1𝜂2𝜍1
,        (5.5) 

𝜃̇̑ = 𝛾𝑣2
2𝜁2 − 𝜎𝜃 ,̑

         (5.6) 

where the parameters are chosen as 1 50k =  , 2 15k =  , 10 =  , 0.7 =  , 300 =  , 0.95 =  . The 

parameters of FWNN are chosen as: The nodes of neural network is 7, the center 
1

jc  is distributed in 

the field of  3,3− , and its width 
1 1j = . The parameters of full-state constraints, input constraint and 

prescribed performance constraint are set as: 1 1.5 = , 1 1.5 = , 2 3 = , 2 4 = , 30u+ = , 30u− = − , 

0 0.2 = , 0.02 = , 1=h , 1k = , 1k = . 

Case 2. Base on the case 1, we further study the output tracking errors when give different prescribed 

performance. 1re  for 0.02 = , 2re  for 0.016 = , 3re  for 0.012 = , 4re  for 0.008 = , 

5re  for 0.004 = , 6re  for 0.002 = . 

Case 3. Based on the case 2, we set 0.004 =  and d ry y= , two comparative simulation from [29,30] 

are carried out to further show the advantage of our control scheme, which is still based on the rigid 
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manipulator system (5.3). The controller, adaptive laws and first-order filter of work in [29] are given as 

{
 
 

 
 𝛼1 = −𝑐1

𝐹̱1𝐹̄1(𝐹̱1𝐹̄1−𝑥1
2)

(𝐹̱1+𝑥1)2(𝐹̄1−𝑥1)2
𝑧1 +

𝐹̱1𝐹̄1(𝐹̱1𝐹̄1−𝑦𝑑
2)

(𝐹̱1+𝑦𝑑)
2(𝐹̄1−𝑦𝑑)

2 𝑦̇𝑑

𝑢 = −(𝑐2 + 𝜃𝛷)
𝐹̱2𝐹̄2(𝐹̱2𝐹̄2−𝑥2

2)

(𝐹̱2+𝑥2)2(𝐹̄2−𝑥2)2
𝑧2

𝛷 = ‖
𝐹̱1𝐹̄1(𝐹̱1𝐹̄1−𝑥1

2)

(𝐹̱1+𝑥1)2(𝐹̄1−𝑥1)2
‖
2

(1 + 𝜑2) + ‖𝛼̇2𝑓‖
2 ,     (5.7) 

𝜃̇ = 𝛾‖𝑧2‖
2𝛷 − 𝜎𝜃 ,̂

           (5.8) 

𝜀𝛼̇2𝑓 + 𝛼2𝑓 =
𝐹̱2𝐹̄2

(𝐹̱2+𝑥2)(𝐹̄2−𝑥2)
𝛼1 ,

        (5.9) 

where 
1 1 dz x y= −  , 

2 2 2 fz x = −  , ( )0 0 =  , ( )2 0 0f =  , 
1 40c =  , 

2 80c =  , 
1 1.5F =  , 

1 1.5F =  , 

2 3F =  , 
2 4F =  , 15 =  , 0.5 =  , 5 =   and 0.03 =  . Detailed controller design and parameter 

meaning is found in [29]. 

The controller, adaptive laws and first-order filter of works in [30]. are given as 

{
  
 

  
 𝛼1 = −(

𝑘̱1𝑘̄1(𝑘̱1𝑘̄1+𝑥1
2)

(𝑘̱1+𝑥1)2(𝑘̄1−𝑥1)2
)
−1

(𝑘1𝑧1 −
𝑘̱1𝑘̄1(𝑘̱1𝑘̄1+𝑦𝑑

2)

(𝑘̱1+𝑦𝑑)
2(𝑘̄1−𝑦𝑑)

2 𝑦̇𝑑)

𝜇 = 𝑁(𝜁2)𝑣2

𝑣2 = (
𝑘̱2𝑘̄2(𝑘̱2𝑘̄2+𝑥2

2)

(𝑘̱2+𝑥2)2(𝑘̄2−𝑥2)2
)
−1

(𝑘2𝑧2 + 𝑧2𝜃
𝑇𝜙(𝑍) − 𝜓̇2)

𝜁2̇ =
𝑘̱2𝑘̄2(𝑘̱2𝑘̄2+𝑥2

2)

(𝑘̱2+𝑥2)2(𝑘̄2−𝑥2)2
𝑧2𝑣2

,   (5.10) 

𝜃̇ = 𝛤(𝜙(𝑍)𝑧2
2 − 𝜎𝜃) ,

          (5.11) 

𝛿𝜓̇2 + 𝜓2 =
𝑘̱2𝑘̄2

(𝑘̱2+𝑥2)(𝑘̄2−𝑥2)
𝛼1 ,

         (5.12) 

where 1 1 dz x y= −  , 2 2 2z x = −  , ( )2 0 0 =  , ( )2 0 0 =  , 1 50k =  , 2 30k =  , 1 1.5k =  , 
1 1.5k =  , 

2 3k =  , 
2 4k =  , 15 =   and 0.5 =  . ( )Z   is the activation function of neural network, Z   is the 

input of neural network. The parameters of RBF are chosen as: The nodes of neural network is 7, the 

center 
1  is distributed in the field of  0.3,0.3− , and its width 1 0.1 = . Detailed controller design 

and parameter meaning is found in [30]. 

Figures 4–7 reflect the main results of our control scheme. Figure 4 shows that output y  of rigid 

manipulator system can track desired trajectory well without violating the output constraint. Figure 5 

reveals the output tracking error re  is in the region boundary all the times. The actual controls u is 

showed in Figure 6. And the state 
2x  is illustrated in Figure 7. From Figure 8, the proposed control 

scheme tracks the desired signal well with different prescribed performance, and the boundedness of 

prescribed performance is not violated. 
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Figures 9–11 present the comparative results of tracking trajectories, output tracking errors and 

input signals. We can easily find that the results of LAFN-PPC is better than controllers in [29,30]. 

Hence, for strict-feedback systems with purpose of high-precision tracking performance, full-state 

constraints and input constraint, we can conclude that our suggested control scheme has a potential to 

control them. 

 

Figure 4. Output tracking. 

 

Figure 5. Output tracking error. 

 

Figure 6. Trajectory of actual control u . 
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Figure 7. Response of system state 2x . 

 

Figure 8. Output tracking errors for different prescribed performance. 

 

Figure 9. Comparison of output tracking with works in [29,30]. 
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Figure 10. Comparison of output tracking error with works in [29,30]. 

 

Figure 11. Comparison of input signal with works in [29,30]. 

6. Conclusions 

The LAFN-PPC is newly constructed for strict-feedback systems with prescribed output 

performance, full-state constraints and input constraint. The newly constructed command filter based 

adaptive control scheme with an error compensation mechanism can not only overcome the so-called 

“EOC” problem, but also reduce filter errors. By introducing a one-to-one nonlinear state 

transformation function, the full-state constraints are resolved. The prescribed performance can be 

guaranteed by using the one-to-one nonlinear error transformation function. The unknown control 

direction and the input constraint nonlinearity are resolved by introducing the Nussbaum function 

simultaneously. Moreover, the large computational cost is solved by introducing a virtual parameter of 

adaptive laws. Only one parameter needs to be updated online. Future works can focus on command-

filter based optimal control of nonstrict-feedback systems considering performance constraint and 

address how to minimize resources consumption while ensuring performance. 
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Appendix A. 

Proof. According to the state transformation function (2.8), we have 

( )2

i i i i i i

i

i i

x x   


 

− + − +
= .       (A.1) 

ix  are always constrained in the open sets ( ),i i − , i.e., ( )i ix t  . Therefore, we can easily 

obtain that 0i   and 
i take the maximal value at the points ( )0 2i i ix  = −  according to the 

properties of the quadratic function. It is obvious that 0

ix  is in the interval ( ),i i − . Thus, the 

maximal value of 
i  is 

( )
2

4

i i

i

i i

 


 

+
=

, 1,2, ,i n= L .        (A.2) 

This finishes the proof. 

Appendix B. 

Proof. According to (2.5), (2.11), (2.13) and (2.14), we have 

( )( ) ( )( )
1 1 1 1 1

1 1

1 1 1 1 1 1

2 2 2 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2

1 1 1 1

1 1 1 1 1 1 1 1 1 1

2

1 1 1

1 1 1

1 1 1 1

1 1 1 1

r
c

r r

r r

r r

r

x y
s

x x y y

x x y y

y x x y

x y

   


   

       

           

   

       

 

  

− = −
+ − + −

   
= − + − − +   

+ + + − + + + −   

   
= − + −   

+ + + + − −   

−
=

+ ( )( ) ( )( )

( )( )( ) ( )( )( )
( )

2

1 1 1

1 1 1 1 1 1 1

2 2

1 1 1 1
1

1 1 1 1 1 1 1 1 1 1

r

r r

r

r r

x y

y x x y

x y
y x x y

 

    

   

       

−
+

+ + + − −

 
= + − 

+ + + + − −  . (B.1) 

1x  and 
ry  are constrained in the open sets ( ),i i − . Thus, 

1 1 10 ry   +  + , 

1 1 1 10 x   +  + , 
1 1 1 10 x   −  +  and 

1 1 10 ry   −  + . One obtains 

( )( )( ) ( )( ) ( )

( ) ( ) ( )

2 2

1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 2

1 1 1 1 1 1

3 3 2

1 1 1 1 1 1

0
r ry x x y

   

       

     

     

 +
+ + + + − −

 + =
+ + +

.   (B.2) 
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The transformed output tracking error 1 1 1cz s = −  strictly converges in the prescribed performance 

region ( ) ( ) ( )1k t z t k t −   . Hence, it has 

( )( ) ( )( )
2 2

1 1 1 1

1

1 1 1 1

r

k t k t
x y

     

   

+ +
−  − 

.     (B.3) 

This finishes the proof. 
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