Research article

On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions

  • Received: 11 August 2021 Accepted: 24 November 2021 Published: 10 December 2021
  • MSC : 26A33, 34K45, 47G10

  • In this work, we are concerned with a boundary value problem of fractional orders differential inclusion with nonlocal, integral and infinite points boundary conditions. We prove some existence results for that nonlocal boundary value problem. Next, the existence of maximal and minimal solutions is proved. Finally, the sufficient condition for the uniqueness and continuous dependence of solution are studied.

    Citation: A. M. A. El-Sayed, W. G. El-Sayed, Somyya S. Amrajaa. On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions[J]. AIMS Mathematics, 2022, 7(3): 3896-3911. doi: 10.3934/math.2022215

    Related Papers:

  • In this work, we are concerned with a boundary value problem of fractional orders differential inclusion with nonlocal, integral and infinite points boundary conditions. We prove some existence results for that nonlocal boundary value problem. Next, the existence of maximal and minimal solutions is proved. Finally, the sufficient condition for the uniqueness and continuous dependence of solution are studied.



    加载中


    [1] B. Ahmad, S. K. Ntouyas, Nonlocal fractional boundary value problems with slit-strips boundary conditions, Fract. Calc. Appl. Anal., 18 (2015), 261–280. doi: 10.1515/fca-2015-0017. doi: 10.1515/fca-2015-0017
    [2] E. Ahmed, A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A. A. El-Saka, Numerical solution for the fractional replicator equation, Int. J. Mod. Phys. C, 16 (2005), 1017–1025. doi: 10.1142/S0129183105007698. doi: 10.1142/S0129183105007698
    [3] J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin: Springer, 2012.
    [4] Z. B. Bai, Solvability for a class of fractional $m$-point boundary value problem at resonance, Comput. Math. Appl., 62 (2011), 1292–1302. doi: 10.1016/j.camwa.2011.03.003. doi: 10.1016/j.camwa.2011.03.003
    [5] R. F. Curtain, A. J. Pritchard, Functional analysis in modern appliedmathematics, London: Academic Press, 1977.
    [6] A. M. A. El-Sayed, A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput., 68 (1995), 15–25. doi: 10.1016/0096-3003(94)00080-N. doi: 10.1016/0096-3003(94)00080-N
    [7] A. M. A. El-Sayed, A. G. Ibrahim, Set-valued integral equation of fractional-orders, Appl. Math. Comput., 118 (2001), 113–121. doi: 10.1016/S0096-3003(99)00087-9. doi: 10.1016/S0096-3003(99)00087-9
    [8] A. M. A. El-Sayed, E. O. Bin-Taher, Positive nondecreasing solutions for a multi-term fractional-order functional differential equation with integral conditions, Electron. J. Differ. Eq., 2011 (2011), 1–8.
    [9] A. M. A. El-Sayed, A. Elsonbaty, A. A. Elsadany, A. E. Matouk, Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization, Int. J. Bifurcat. Chaos, 26 (2016), 1–35. doi: 10.1142/S0218127416502229. doi: 10.1142/S0218127416502229
    [10] A. El-Sayed, R. Gamal, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Anal. Model. Control, 24 (2019), 733–754. doi: 10.15388/NA.2019.5.4. doi: 10.15388/NA.2019.5.4
    [11] A. M. A. El-Sayed, R. G. Ahmed, Solvability of a coupled system of functional integro-differential equations with infinite point and Riemann-Stieltjes integral conditions, Appl. Math. Comput., 370 (2020), 124918. doi: 10.1016/j.amc.2019.124918. doi: 10.1016/j.amc.2019.124918
    [12] A. R. Elsonbaty, A. M. A. El-Sayed, Further nonlinear dynamical analysis of simple jerk system with multiple attractors, Nonlinear Dyn., 87 (2017), 1169–1186. doi: 10.1007/s11071-016-3108-3. doi: 10.1007/s11071-016-3108-3
    [13] R. Fierro, C. Martínez, C. H. Morales, Carathéodory selections for multi-valued mappings, Nonlinear Anal.-Theor., 64 (2006), 1229–1235. doi: 10.1016/j.na.2005.05.063. doi: 10.1016/j.na.2005.05.063
    [14] H. H. G. Hashem, H. M. H. Alsehail, Qualitative aspects of the fractional Air-Borne diseases model with Mittage-Leffler kernel, Adv. Math. Sci. J., 10 (2021), 2335–2349. doi: 10.37418/amsj.10.5.4. doi: 10.37418/amsj.10.5.4
    [15] A. Khalid, A. Rehan, K. S. Nisar, M. S. Osman, Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit, Phys. Scr., 96 (2021), 104001. doi: 10.1088/1402-4896/ac0bd0
    [16] A. Khalid, M. N. Naeem, Z. Ullah, A. Ghaffar, D. Baleanu, K. S. Nisar, et al. Numerical solution of the boundary value problems arising in magnetic fields and cylindrical shells, Mathematics, 7 (2019), 1–20. doi: 10.3390/math7060508. doi: 10.3390/math7060508
    [17] N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Eq., 2010 (2010), 1–10.
    [18] D. O'Regan, Multivalued differential equations in Banach spaces, Comp. Math. Appl., 38 (1999), 109–116. doi: 10.1016/S0898-1221(99)00218-7
    [19] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [20] S. Z. Rida, A. M. A. El-Sayed, A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Stat. Phys., 140 (2010), 797–811. doi: 10.1007/s10955-010-0007-8. doi: 10.1007/s10955-010-0007-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1792) PDF downloads(81) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog