Research article

Explicit iteration and unique solution for $ \phi $-Hilfer type fractional Langevin equations

  • Received: 14 September 2021 Accepted: 24 November 2021 Published: 01 December 2021
  • MSC : 34A08, 34B15, 34A12, 47H10

  • This paper proves that the monotone iterative method is an effective method to find the approximate solution of fractional nonlinear Langevin equation involving $ \phi $-Hilfer fractional derivative with multi-point boundary conditions. First, we apply a approach based on the properties of the Mittag-Leffler function to derive the formula of explicit solutions for the proposed problem. Next, by using the fixed point technique and some properties of Mittag-Leffler functions, we establish the sufficient conditions of existence of a unique solution for the considered problem. Moreover, we discuss the lower and upper explicit monotone iterative sequences that converge to the extremal solution by using the monotone iterative method. Finally, we construct a pertinent example that includes some graphics to show the applicability of our results.

    Citation: Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo. Explicit iteration and unique solution for $ \phi $-Hilfer type fractional Langevin equations[J]. AIMS Mathematics, 2022, 7(3): 3456-3476. doi: 10.3934/math.2022192

    Related Papers:

  • This paper proves that the monotone iterative method is an effective method to find the approximate solution of fractional nonlinear Langevin equation involving $ \phi $-Hilfer fractional derivative with multi-point boundary conditions. First, we apply a approach based on the properties of the Mittag-Leffler function to derive the formula of explicit solutions for the proposed problem. Next, by using the fixed point technique and some properties of Mittag-Leffler functions, we establish the sufficient conditions of existence of a unique solution for the considered problem. Moreover, we discuss the lower and upper explicit monotone iterative sequences that converge to the extremal solution by using the monotone iterative method. Finally, we construct a pertinent example that includes some graphics to show the applicability of our results.



    加载中


    [1] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Yverdon: Gordon & Breach, 1993.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [4] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 35 (2000).
    [5] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379. doi: 10.1016/S0022-247X(02)00180-4. doi: 10.1016/S0022-247X(02)00180-4
    [6] J. Schluttig, D. Alamanova, V. Helms, U. S. Schwarz, Dynamics of protein-protein encounter: A Langevin equation approach with reaction patches, J. Chem. Phys., 129 (2008), 155106. doi: 10.1063/1.2996082. doi: 10.1063/1.2996082
    [7] A. Takahashi, Low-energy nuclear reactions and new energy technologies sourcebook, Oxford: Oxford University Press, 2009.
    [8] W. T. Coffey, Y. P. Kalmykov, J. T. Waldron, The Langevin equation: With applications to stochastic problems in physics, chemistry and electrical engineering, Singapore: World Scientific, 2004.
    [9] F. Mainradi, P. Pironi, The fractional Langevin equation: Brownian motion revisted, Extr. Math., 10 (1996), 140–154.
    [10] W. Yukunthorn, S. K. Ntouyas, J. Tariboon, Nonlinear fractional Caputo Langevin equation with nonlocal Riemann Liouville fractional integral conditions, Adv. Differ. Equ., 315 (2014). doi: 10.1186/1687-1847-2014-315.
    [11] H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fix. Point Theory A., 20 (2018), 63. doi: 10.1007/s11784-018-0540-7. doi: 10.1007/s11784-018-0540-7
    [12] H. Fazli, J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Soliton. Fract., 114 (2018), 332–337. doi: 10.1016/j.chaos.2018.07.009. doi: 10.1016/j.chaos.2018.07.009
    [13] Z. Zhou, Y. Qiao, Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions, Bound. Value Probl., 152 (2018). doi: 10.1186/s13661-018-1070-3.
    [14] O. Baghani, On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci., 42 (2017), 675–681. doi: 10.1016/j.cnsns.2016.05.023. doi: 10.1016/j.cnsns.2016.05.023
    [15] T. Muensawat, S. K. Ntouyas, J. Tariboon, Systems of generalized Sturm-Liouville and Langevin fractional differential equations, Adv. Differ. Equ., 63 (2017). doi: 10.1186/s13662-017-1114-5.
    [16] H. Fazli, H. Sun, S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math., 98 (2021), 1–10. doi: 10.1080/00207160.2020.1720662. doi: 10.1080/00207160.2020.1720662
    [17] Z. Baitiche, C. Derbazi, M. M. Matar, Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the $ \psi $-Caputo sense, Appl. Anal., 2021, 1–16. doi: 10.1080/00036811.2021.1873300.
    [18] A. Seemab, M. ur Rehman, J. Alzabut, Y. Adjabi, M. S. Abdo, Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders, AIMS Math., 6 (2021), 6749–6780. doi: 10.3934/math.2021397. doi: 10.3934/math.2021397
    [19] A. Boutiara, M. S. Abdo, M. A. Alqudah, T. Abdeljawad, On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions, AIMS Math., 6 (2021), 5518–5534. doi: 10.3934/math.2021327. doi: 10.3934/math.2021327
    [20] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of $ \psi $-Hilfer nonlocal Cauchy problem, Rend. Circ. Mat. Palermo, 70 (2021), 57–77. doi: 10.1007/s12215-020-00484-8. doi: 10.1007/s12215-020-00484-8
    [21] M. A. Almalahi, S. K. Panchal, F. Jarad, Stability results of positive solutions for a system of $ \psi $-Hilfer fractional differential equations, Chaos Soliton. Fract., 147 (2021), 110931. doi: 10.1016/j.chaos.2021.110931. doi: 10.1016/j.chaos.2021.110931
    [22] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $ \psi $-Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. doi: 10.1016/j.rinam.2021.100142. doi: 10.1016/j.rinam.2021.100142
    [23] M. S. Abdo, S. T. Thabet, B. Ahmad, The existence and Ulam-Hyers stability results for $ \psi $-Hilfer fractional integrodifferential equations, J. Pseudo.-Differ. Oper., 11 (2020), 1757–1780. doi: 10.1007/s11868-020-00355-x. doi: 10.1007/s11868-020-00355-x
    [24] M. A. Almalahi, S. K. Panchal, F. Jarad, T. Abdeljawad, Ulam-Hyers-Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay, Adv. Differ. Equ., 1 (2021), 1–18. doi: 10.1186/s13662-021-03455-0. doi: 10.1186/s13662-021-03455-0
    [25] V. Lakshmikantham, A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828–834. doi: 10.1016/j.aml.2007.09.006. doi: 10.1016/j.aml.2007.09.006
    [26] H. Fazli, H. Sun, S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math., 98 (2021), 1–10. doi: 10.1080/00207160.2020.1720662. doi: 10.1080/00207160.2020.1720662
    [27] G. Wang, J. Qin, L. Zhang, D. Baleanu, Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions, Chaos Soliton. Fract., 131 (2020), 109476. doi: 10.1016/j.chaos.2019.109476. doi: 10.1016/j.chaos.2019.109476
    [28] G. Wang, D. Baleanu, L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations, Fract. Calc. Appl. Anal., 15 (2012), 244–252. doi: 10.2478/s13540-012-0018-z. doi: 10.2478/s13540-012-0018-z
    [29] Z. Baitiche, C. Derbazi, J. Alzabut, M. E. Samei, M. K. Kaabar, Z. Siri, Monotone iterative method for $ \psi $-Caputo fractional differential equation with nonlinear boundary conditions, Fractal Fract., 5 (2021), 81. doi: 10.3390/fractalfract5030081. doi: 10.3390/fractalfract5030081
    [30] S. Hristova, A. Golev, Monotone iterative method for the initial value problem with initial time difference for differential equations with “maxima”, Abstr. Appl. Anal., 2012 (2012). doi: 10.1155/2012/493271.
    [31] G. S Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman Publishing, 1985.
    [32] J. J. Nieto, An abstract monotone iterative technique, Nonlinear Anal.-Theor., 28 (1997), 1923–1933.
    [33] J. V. C. Sousa, C. E. de Oliveira, On the $ \psi $-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [34] M. A. Almalahi, S. K. Panchal, On the theory of $ \psi $-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ.-Math., 14 (2021), 159–175. doi: 10.17516/1997-1397-2021-14-2-161-177. doi: 10.17516/1997-1397-2021-14-2-161-177
    [35] K. Deimling, Nonlinear functional analysis, New York: Springer, 1985.
    [36] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer, Model. Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [37] A. Fernandez, D. Baleanu, Differintegration with respect to functions in fractional models involving Mittag-Leffler functions, ICFDA, 2018. doi: 10.2139/ssrn.3275746.
    [38] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 1 (2020), 1–19. doi: 10.1186/s13662-020-02825-4. doi: 10.1186/s13662-020-02825-4
    [39] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1638) PDF downloads(79) Cited by(5)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog