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Abstract: This paper proves that the monotone iterative method is an effective method to find the
approximate solution of fractional nonlinear Langevin equation involving ¢-Hilfer fractional derivative
with multi-point boundary conditions. First, we apply a approach based on the properties of the Mittag-
Leffler function to derive the formula of explicit solutions for the proposed problem. Next, by using
the fixed point technique and some properties of Mittag-Lefller functions, we establish the sufficient
conditions of existence of a unique solution for the considered problem. Moreover, we discuss the
lower and upper explicit monotone iterative sequences that converge to the extremal solution by using
the monotone iterative method. Finally, we construct a pertinent example that includes some graphics
to show the applicability of our results.
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1. Introduction

Fractional differential equations (FDEs) have a profound physical background and rich theoretical
connotations and have been particularly eye-catching in recent years. Fractional order differential
equations refer to equations that contain fractional derivatives or integrals. Currently, fractional
derivatives and integrals have a wide range of applications in many disciplines such as physics, biology,
and chemistry, etc. For more information see [1-5].
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Langevin equation is an important tool of many areas such as mathematical physics, protein
dynamics [6], deuteron-cluster dynamics, and described anomalous diffusion [7]. In 1908, Langevin
established first the Langevin equation with a view to describe the advancement of physical phenomena
in fluctuating conditions [8]. Some evolution processes are characterized by the fact that they change
of state abruptly at certain moments of time. These perturbations are short-term in comparison with
the duration of the processes. So, the Langevin equations are a suitable tool to describe such problems.
Besides the intensive improvement of fractional derivatives, the Langevin (FDEs) have been presented
in 1990 by Mainardi and Pironi [9], which was trailed by numerous works interested in some properties
of solutions like existence and uniqueness for Langevin FDEs [10-19]. We also refer here to some
recent works that deal with a qualitative analysis of such problems, including the generalized Hilfer
operator, see [20—24]. Recent works related to our work were done by [25-30]. The monotone iterative
technique is one of the important techniques used to obtain explicit solutions for some differential
equations. For more details about the monotone iterative technique, we refer the reader to the classical
monographs [31,32].

Lakshmikantham and Vatsala [25] studied the general existence and uniqueness results for the
following FDE

v(0) = vy,

by the monotone iterative technique and comparison principle. Fazli et al. [26] investigated the
existence of extremal solutions of a nonlinear Langevin FDE described as follows

{ Dy, (u(x) = v(0)) = f (¢, u(x)), % € [0,D],

{ D (D + A)ve) = f (e, v(30)), % € [0, 8],
g@(0),u(b)) = 0, DFu(0) = v,

via a constructive technique that produces monotone sequences that converge to the extremal solutions.
Wang et al. [27], used the monotone iterative method to prove the existence of extremal solutions for
the following nonlinear Langevin FDE

DY, (VD‘(; + /1) v(x) = f(;,:, u(x), (VD‘O‘+ + /l)) x €(0,0],
#Iu(0) = 11 [ v(s)ds+ Tty p(o),
2 (1-P) (7D§+ + /1) v(0) =1, fon YDy u(s)ds+ Y, pl Dy u(omy),

Motivated by the novel advancements of the Langevin equation and its applications, also by the
above argumentations, in this work, we apply the monotone iterative method to investigate the lower
and upper explicit monotone iterative sequences that converge to the extremal solution of a fractional
Langevin equation (FLE) with multi-point sub-strip boundary conditions described by

{ ("D + ) ("D 4 da) () = f (e, v()) € (0, @D

1DEP v, = 0,0(0) = 0,u(b) = B, 6l v(L),

where 7 Dg‘i’ﬁ " and # D’éi”g % are the ¢-Hilfer fractional derivatives of order x; € (0, 1] and p, € (1,2]
respectively, and type B1,8, € [0,1],0; > 0,4;,4, e R*, 8, >0, m > 1,0< {; < & < ... <1,
f :(0,b] xR — R is a given continuous function and ¢ is an increasing function, having a continuous
derivative ¢’ on (0, b) such that ¢’(x) # 0, for all » € (0, b]. Our main contributions to this work are
as follows:
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¢ By adopting the same techniques used in [26,27], we derive the formula of explicit solutions for
¢-Hilfer-FLEs (1.1) involving two parameters Mittag-Leffler functions.

e We use the monotone iterative method to study the extremal of solutions of ¢-Hilfer-FLE (1.1).

e We investigate the lower and upper explicit monotone iterative sequences that converge to the
extremal solution.

e The proposed problem (1.1) covers some problems involving many classical fractional derivative
operators, for different values of function ¢ and parameter y;, i = 1, 2. For instance:

o If ¢(%) = % and y; = 1, then the FLE (1.1) reduces to Caputo-type FLE.

o If ¢(%) = »x and y; = 0, then the FLE (1.1) reduces to Riemann-Liouville-type FLE.

o If y; = 0, then the FLE (1.1) reduces to FLE with the ¢-Riemann-Liouville fractional derivative.

o If ¢(%) = x, then the FLE (1.1) reduces to classical Hilfer-type FLE.

o If ¢(») = log x, then the FLE (1.1) reduces to Hilfer-Hadamard-type FLE.

o If ¢(x) = », then the FLE (1.1) reduces to Katugampola-type FLE.

e The results obtained in this work includes the results of Fazli et al. [26], Wang et al. [27] and
cover many problems which do not study yet.

The structure of our paper is as follows: In the second section, we present some notations, auxiliary
lemmas and some basic definitions which are used throughout the paper. Moreover, we derive the
formula of the explicit solution for FLE (1.1) in the term of Mittag-Leffler with two parameters. In the
third section, we discuss the existence of extremal solutions to our FLE (1.1) and prove lower and upper
explicit monotone iterative sequences which converge to the extremal solution. In the fourth section,
we provide a numerical example to illustrate the validity of our results. The concluding remarks will
be given in the last section.

2. Auxiliary notions

To achieve our main purpose, we present here some definitions and basic auxiliary results that
are required throughout our paper. Let J := [0,b], and C(J) be the Banach space of continuous
functions v : J — R equipped with the norm ||v|| = sup{lv(x)| : x € T}.

Definition 2.1. [2] Let f be an integrable function and u > 0. Also, let ¢ be an increasing and positive
monotone function on (0,b), having a continuous derivative ¢’ on (0, b) such that ¢'(x) # 0, for all
% € . Then the ¢-Riemann-Liouville fractional integral of f of order u is defined by

YA -1
P fx) = fo ) (‘l’(’;zﬂ_) P rs)ds, 0 <x <b.

Definition 2.2. [33]Letn—1 < u <n,(n € N), and f,¢ € C" () such that ¢'(x) is continuous and
satisfying ¢’ (%) # 0 for all x € J. Then the left-sided ¢-Hilfer fractional derivative of a function f of
order u and type B € [0, 1] is defined by

HDP ) = IO DYL fe), v = 4 B = B,

where
n

L
@' (%) dx

Z)g:ﬁf(%) — f(lgn]léi—ﬁ)(”—#)@f(%)’ and fqgn] — [
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Lemma 2.3.
we have

and

[2,33] Letn—1 <u<n,0<B<1,andn < 6 € R. For a given function f : J — R,

I I o) = I £ o),

I'to
1 (9) - p0)) ! =

_ +0—1
= Taxg) 90000

"D (@) - 9(0)' =0, 5 <n.

Lemma24. [33]Letf: T > R,n—-1<u<n and0<pB<1. Then
(1) If f €C"' (), then

. o — ()"
10 = 0 -y, SO
k=1

fqgn—k] I(l—ﬁ)(n—,u);¢> £(0),

0+

(2) If f € C(J), then

DRI f o) = f0).

Lemma 2.5. For u8,y > 0and A € R, we have

157 [900) = $O)F ™" Ey s [(600) = $(0))] = [9(0) = pO)F ™" Ey i [A(900) = $(0))],

where E, g is Mittag-Leffler function with two-parameter defined by

> i

v
E, ;W) = ZW,UGC

i=1

Proof. See [34]. O

Lemma 2.6.

[27] Let pp € (1,2] and 8 > O be arbitrary. Then the functions E,(-), E,,,(-) and E, (-)

are nonnegative. Furthermore,

for y < O.

1 1
E < —
,u,ﬂ(/\/) — F ’

E(x)=E.(x)<1, E,,(x) < T )

L)’

Lemma 2.7. Let u.k,>0,A€Rand f € C(J). Then

157 | 2 By (A (8G0) = (O] = 15T Eppyuarc (A (00) = (0 .

Proof. See [34]. O

For some analysis techniques, we will suffice with indication to the classical Banach contraction
principle (see [35]).
To transform the ¢-Hilfer type FLE (1.1) into a fixed point problem, we will present the following

Lemma.
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Lemma 2.8. Lety; = u;+ jBj—uiBj, (j = 1,2) such that u; € (0,1],u, € (1,2],8; € [0,1], 41,4, 20
and h is a function in the space C (J). Then, v is a solution of the ¢-Hilfer linear FLE of the form

{ (HDgi,ﬁl;qﬁ n /11) (HDgi,ﬁm " /12) v(x) = hi(x), % € (0,b], o0

1D 00|, = 0,0(0) = 0,u(b) = 1, 6,15 v(&),
if and only if v satisfies the following equation

[6G0) — pO)]* " Epiyyy (=0 [9(2) — $(O)]2)
®

[T () 157 By g (=22 [9D) = $(0)]2)
(0 ) B By, (=24 [9(5) — $(O)") 2(D)

vix) =

= > 6T ) I By s, (=2 [$(2) = $(O)F)
i=1

(T @) BBy (— 10 [6(2) = 9O ()]
T (1) 152 E g (=22 [$0) = $(O)*)
T ) 15 | By (=0 [9G0) = O)F") hG0)] . (2.2)

where

@ .= ( Z;Zl 6i [¢({l) - ¢(O)]72+O—i_l E/lz,)’2+0'i (_/12 [¢(§l) - ¢(0)]#2) ) + O (23)

—[¢(6) = ¢(O))* " E,, 5, (—22 [¢(D) — $(0)])

Proof. Let (” D‘Si’ﬂ 20 4 /12> v(x%) = P(x). Then, the problem (2.1) is equivalent to the following problem

{ (D4 + 1) PGe) = h(), % € (0,b], 2.4)

P0) = 0.
Applying the operator Igl’¢ to both sides of the first equation of (2.4) and using Lemma 2.4, we obtain

Co
L(y1)

where ¢y is an arbitrary constant. For explicit solutions of Eq (2.4), we use the method of successive
approximations, that is

P(x) = [p(0) — O] ™" — LB PCe) + B0 1(o0), (2.5)

Co -1
P = - (O], 2.6
o) = o (600 = 9(0)] (2.6)
and
Py(x) = Po(x) = I Py () + I "), 2.7)

By Definition 2.1 and Lemma 2.3 along with Eq (2.6), we obtain

Pi(x) = Po() = LI Po(oe) + I ")
Co
I'(y1)

Co
Ly

[6G0) — 9O = A, 25° [6Ge) — pO)]" ™| + I 1)
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= 5 1909 = SOP"™" = A= 900 = GO+ 15 *h)
~ (—/ll)i_l [¢(%) _ ¢(O)]iﬂl+ﬁl(l_#l)_1 b
= ¢ Z FGa =20 + I (). (2.8)
Similarly, by using Egs (2.6)—(2.8), we get
Py(x) = PO(%) LI P () + I T
— 71-1 (R
- r( 1) [6G0) — O] " — 4,1
( 1 )1 1 ¢(%) (b(()) i +B1(1-p)-1 y N
€0 Z 1 FEZ,UI +6:(1 —],Ul)) iy o) |+ fy )
i=1
3 i-1 ip1+B1(1—p1)-1 2
B (=) [¢G0) — $(0)]* =1 g
D s v ey VU

Repeating this process, we get Py(x) as

k+1 i1 i +B1 (1—p)—1 k
(0" [962) - 9O e
P =0 ) s gty T 2

i=1

Taking the limit £k — oo, we obtain the expression for Py(x), that is

o0

Z( ~A )z 1 1#1 ¢fl(%)

i=1

P(x) =

Z( —1)™ [pGe) — p(O) !
Ly +Br(1 = pr))

Changing the summation index in the last expression, i — i + 1, we have

i +y1— ©
P(%) — ()Z ( /ll) ¢(%) ¢(O)] Z( -2 )l 1/11+;11 z[)h(%)

Ly + 1) —
From the definition of Mittag-Leftler function, we get
PG) = co[¢00) = pO]" " Eyppy (=1 [600) — $(O)]") (2.9)

+T () I3 By gy (=20 [9G0) — $(O)]) 7iCi0).

By the condition P(0) = 0, we get ¢y = 0 and hence
Equation (2.9) reduces to

P(x) =T (u) I Epy iy (=20 [9G0) — $(O)]) 7iCi0). (2.10a)

Similarly, the following equation

(D5 + Ay) v(x) = P(x), x € (0,b],
v(0) = 0,u(b) = T, 6ilyu(&y)
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is equivalent to

v() = 1 [p00) = dO)]” 7 Eppy, (=22 [$(2) — $(0)])
+62[$00) = YO Ep g1 (=22 [9() = (0)])
+T (12) I3 By, (— 22 [90) — $(0)2) P(30). (2.11)

By the condition v(0) = 0, we obtain ¢, = 0 and hence Eq (2.11) reduces to

u(x) = ¢ [¢px) = ¢ E,yyy (—22 [900) — $(0)])

+T (1) I Ey 1y (=22 [9() — $(O)]2) P(0). (2.12)
By the condition v(b) = Y12, 6; I(‘)Tj"/’v(g“i), we get
o =+ ( T () 155 By (=2 [0(6) — 9O)F) P(D) ) o.13)
T O\ =X ST () BTy o (<0 [8(2) — SO P | '

Put ¢y in Eq (2.12), we obtain

[6G0) = ¢ Epyyy (=2 [6) — (0)])
Q)

[T 42) 12 By, (=20 [6(5) = $(O)]°) P(B)

v(x) =

= > 0T ) I3 O By s, (=12 [$(2) = GO)F) P
i=1

T (p02) 12 [ By (-0 [00) = $(O)2) P20)] (2.14)

Substituting Eq (2.10a) into Eq (2.14), we can get Eq (2.2).
On the other hand, we assume that the solution v satisfies Eq (2.2). Then, one can get v(0) = 0.
Applying # Dﬁi’ﬁ *0n both sides of Eq (2.2), we get

oo [900) = SO By, (<5 [600) ~ O))
0* ®

D) 12 Epy (=22 [9(B) = $(O)])
(T ) 1§ B (=21 [9(5) = 9O} D))

HDgiﬁz;ﬁ)v(%) —

= > O W) I By gy, (A2 [95) = $O)])
i=1

(T @) B By (=1 [0(2) = O (L)) |
DT () 152 By, (=20 [90) = $(O)])
T () 15 [ By (20 [000) = 9(O)]") 120)| (2.15)

Since y, = s + B2 — o2, then, by Lemma 2.3, we have # Dgi’ﬁ 2 [¢(x) — $(0)]”"" = 0 and hence
Eq (2.15) reduces to the following equation

Hpiityy = HDEFT (1) 120, ., (~ A [6(0) — $(O)])

AIMS Mathematics Volume 7, Issue 3, 3456-3476.



3463

T () I [ By (=24 [0G0) = OF) o))
By using some properties of Mittag-Lefller function and taking » = 0, we obtain
HDgi,,Bz;fﬁv(O) =0
Thus, the derivative condition is satisfied. The proof of Lemma 2.8 is completed. O

Lemma 2.9. (Comparison Theorem). For j = 1,2, lety; = puj + jB; — uifj, 1 € (0,11, € (1,2],
B;i€0,11,4; 2 0 and v € C () be a continuous function satisfies

(HDgi’ﬁl;(p + /11) (HDgiﬁz;lﬁ + /12) u(x) > 0,
HDE ()|, 2 0,0(0) 2 0,u(b) 2 0,

then v(x) > 0, » € (0, b].

Proof. If z > 0, then from Lemma 2.6, we have E,3(z) > 0. If z < 0, then E, g(z) is completely
monotonic function [35], that means E, g(z) possesses derivatives for all arbitrary integer order and
(- 1)” Eﬂ (@) > 0. Hence, E, 3(z) > 0 for all z € R. In view of Eq (2.2), Eq (2.9), and from fact
that EM1 »() > 0and E,,(-) > 0 with help the definition of ¢, we obtain v(x) > 0, for x € (0, b].
(Alternative proof). Let (H Dgi’ﬁ 20 4 /12) v(x%) = P(x). Then, we have

(D5 + A1) P) 2 0,
P(0) > 0.

Assume that P(») > 0 (for all # € (0, b]) is not true. Then, there exist %, x,, (0 < %; < %, < b) such
that P(x,) < 0, P(%;) = 0 and
P() > 0,% € (0,%),
{ P(x) <0, € (s1,27).

Since A; > 0, we have (HDgl"Bl ? /ll) P(») > 0 for all % € (5,,%,) . In view of

1 d

H qy1:.B1.¢ Bi1(1—p1):é
Do P00 = Iy (¢( ) dr

) 1 —Y13 ¢P(%)

the operator I e ¢P(%) is nondecreasing on (3, %,). Hence
I PGe) = 107" POy ) 2 0,% € (1, %2)

On the other hand, for all % € (x%;,x%,), we have

15" PGe) = 17" POey) r<1+ f (9 (660 — 9(s) 7 Pls)ds

m f §(5) (1) — B(s)' " P(s)ds

F(l— f ¢'(5) [(BG0) — ()" = (d(¢1) — ¢(5))"' | P(s)ds
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+r<+—m> ¢ (5) ($(x) — (5)) " Pls)ds

< 0, forall x € (%;,%,),

which is a contradiction. Therefore, P(x) > 0 (x € (0, b]) . By the same technique, one can prove that
v(x) > 0, for all x € (0, b]. O

As a result of Lemma 2.8, we have the following Lemma.

Lemma 2.10. For j = 1,2, lety; = pu; + jB; — uifj, 1 € (0,11, € (1,2], B; € [0,1] and f :
J X R — R is continuous function. If v € C(J) satisfies the problem (1.1), then, v satisfies the
following integral equation

[6G0) — pO)]* " E,iyyy (=22 [9(20) — $(0)]2)
®

[T () B2 By g (=0 [95) = $(0)]2)
(0 ) Iy By (=21 [9(5) = 9O £ (B, u(b)))

v(x) =

= > O (W) I T By, (=10 [$) — $(0)12)
i=1

(T @) BBy (<0 [6(2) = O £(& v(&)))]
+T (12) 17 By (=22 [90) = $(O)})
(T ) By (=21 [0G0) = O £, v(20))).

3. Existence of extremal solutions

In this part, we focus on the existence of lower and upper explicit monotone iterative sequences
that converge to the extremal solution for the nonlinear ¢-Hilfer FLE (1.1). The existence of unique
solution for the problem (1.1) is based on Banach fixed point theorem. Now, let us give the following
definitions:

Definition 3.1. For J = [0,b] C R,. Let v € C(J). Then, the upper and lower-control functions are
defined by _
J G, v(x) = sup {f (¢, Y(x))},

0<Y<v
and

fGevGo) = inf (f (Y0,
respectively. Clearly, ]_C (%, u(%)) and ]_” (%, v(x)) are monotonous non-decreasing on [a, b] and
[ G vG0) < f (e, 0(0)) < f (e, 0(0)
Definition 3.2. Let v, v € C(J) be upper and lower solutions of the problem (1.1) respectively. Then

("D + 1) ("D + A2) UGo) 2 F (. TG0), x € (0,01,
HDRP0500)|, ) > 0,3(0) 2 0,7(b) > X1, 6,150,
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and
(D5 + 40) (D0 + ) wiee) < f (#.0(0)), % € (0,b],
TP y(0)|,_, < 0,0(0) < 0,u(b) < 3, 815 ().

According to Lemma 2.8, we have

[6G0) = §O)]*" Epyy, (=2 [6) — (0)])
Q)

[T ) 120 By, (<22 [9(6) = $(O)]2)
(0 ) B By, (=21 [9(5) = $O)) £ (b, 5(D))

u(x) =

= 3 6T () BT By, (A2 [(25) — $(O)])
i=1

(T @) BBy (<0 [6(2) = $O) £& 5&))]
T (12) 15 Epy iy (=20 [900) = (O)])
(T ) By By gy (=21 [0G0) = @(O)") £, T(20)))

and

[6G0) — pO)]*" E,iyyy (=22 [9() — $(0)])
O

[T (1) 157 By (=2 [9D) = $(0)])
(0 ) I By gy (=21 [6(5) = $O)F) £ (B, v(D))

= 26T () 15 By s, (=2 [$(2) — $(O)F)
i=1

(T ) B g (=20 [08) = O £ (G 08|
+T (1) B2 0B, (— 20 [000) = (0)12)
(T ) B Epy gy (=21 [9G0) = O £, 0(20)))
Theorem 3.3. Let v(x) and v(x) be upper and lower solutions of the problem (1.1), respectively such

that v(x) < v(x) on [J. Moreover, the function f (x,v) is continuous on J and there exists a constant
number k > 0 such that |f (x,v) — f (x,v)| < klv—-V|,forv,veR*", x € J. If

0 = (OO [ [#(b) — O™
1 F(7)0 T+ DTG+ 1)
N [$(Z) — g0+
+;5"r(“2) T+ 0+ DTG+ oG + 1)

L2 — g™
M+ DT (g + 1)

then the problem (1.1) has a unique solutionv € C(J).
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Proof. Let=Z = P—P, where P(x) = (” D’éi’ﬁ w0y /lz) v(%) and P(x) = (” Dgi’ﬂ g /12) v(x). Then, we get

("Dg + 1) E2 0, x € (0,01,
E(0) = 0.

In view of Lemma 2.9, we have Z(%) > 0 on J and hence P(x) < P(x). Since P(x) =
(HD‘éf’ﬁ L /12) v(x) and P(x) = (HDgi’ﬁ 20 4 /12) v(x), by the same technique, we get v(x) < v (x).
Similarly, we can show that v (%) < v (x). Consider the continuous operator G : C(J) — C(J)
defined by

[6G0) — §O)]*™ Epyyy (=2 [6) — $(0)]2)
®
[T () 152 By g (=22 [9D) = $(0)])

(T @) B By (=20 [9(5) = $(O)F) f (b, u(b)))

Gu(x) =

= 26T ) I By s, (=2 [ 902 — $O)})
i=1

(T @) B By g (=20 [(2) = $O]) £ (& 0(&))|
T (1) 12 By (=22 [900) = $(O)])
(T ) Iy By, (=21 [0G0) = (O f G, u(0)))

Clearly, the fixed point of G is a solution to problem (1.1). Define a closed ball By as

By = (v € C): llows) < R

with
R> O

T 1-00

where

0, = plo®) = O [ [6(b) — O™

I'(y2)© Lo+ DI (g + 1)
m ) — 0 Mot O
N Z 5T (1) [6(&) — ¢(0)]
i=1

Fw+oi+ DE (e +0) Ty + 1)

[¢(b) — p(0)]>™"
M+ DIy + 1)

and = sup, .+ |f(s,0)|. Let v € Bg and x € J. Then by Lemma 2.6, we have

+P

|f (e, v(0) |f Ge,v(x) — f (3, 0) + f(x,0)
|f (2, u(%)) = f (e, 0) + | f (3, 0)
K lv()| + P

kvl +P).

IANIA A
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Now, we will present the proof in two steps:
First step: We will show that G(Bg) C Bg. First, by Lemma 2.6 and Definition 2.1, we have

[¢(2¢) — p(0)]"*
I+ DT (o)

BPE,, ., (1 [¢(0) — ¢(0)]2) <

Next, for v € By, we obtain

|G ()]
CORIO) [ [4(b) - pOF*™
= Tme |G Dy
N [6(Z) — SO
+ ;5ir(ﬂz) T(us+ 0+ DI (ua + o) T (g + 1) (k[|v]l + P)
[6(b) — ¢(0) /2"
+ (k||| + P) RS TESY
< QlR + Q2
<R

Thus G(Bg) C Bg.
Second step: We shall prove that G is contraction. Let v,v € Bg and x € J. Then by Lemma 2.6
and Definition 2.1, we obtain

(p(bx) — $(0)> " | [p(b) — $(0)*™"
lov=6l = =508 [Farnrw
= [$(&;) — p(Oy2 07
+;5ir(“2) T+ o+ DTG+ ol Ga + 1)

[¢(b) — p(0)]*™*"
+el =7 TG+ DTGy + 1)

< 0 fu-7.
Thus, G is a contraction. Hence, the Banach contraction principle theorem [35] shows that the
problem (1.1) has a unique solution. O

Theorem 3.4. Assume that v,u € C(J) be upper and lower solutions of the problem (1.1),
respectively, and v(x) < v(x) on J. In addition, If the continuous function f : J X R — R satisfies
fC,u@) < fO,y()) for all v(x) < v(x) < y(x) < v(x),x € J then there exist monotone
Oi and {Ej}oo
problem (1.1)in® ={v € C(J) 1 v () Sv(x) < T(x),x € T}

Uil __ which uniformly converges on J to the extremal solutions of

iterative sequences {U }

(o9 (o8]

Proof. Step (1): Setting v, = v and vy = v, then given {gj}j:() and {Uj}J o inductively define Vi and
Uj41 to be the unique solutions of the following problem

{ (HDgrﬁM) +/ll)(HDgiﬁz;¢ +/12)1—Jj+1(%) — f(%’l_jj(%))’ xed,

_ A 3.1)
Dy 0] = 00,00 = 0,0, () = B G Y, (@),
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and
("DGP + 1) (DG + Aa) Uae0) = £ (,70)) %€ T, 32)
HDEP05,0(0)|,_y = 0.01:1(0) = 0,751 (B) = X1, 5ilg V1 (&),
By Theorem 3.3, we know that the above problems have a unique solutions in C ().
Step (2): Now, for x € J, we claim that
) = y,() v (%) <. < yj(%) < yjﬂ(%) (3.3)
< e SU() Vi) < . SU() S o) = v(x).
To confirm this claim, from (3.1) for j = 0, we have
(D67 + 1) (DG + A2, 6o) = f (3 2400)) 520, )
1Dy, 6o)|, = 0,2,(0) = 0,0,(b) = X7, 6,15, (£)).

With reference to the definitions of the lower solution v(x) = v, (%) and putting Z(x) = P1(%)—Po(x),
where P (%) = (HDgi’ﬁm + /lz) v1(x) and Py(x) = (HDSE’BZ“Z’ + /12) v, (%). Then, we get

(D4 + 1) E2 0, % € (0,01,
2(0) > 0.

Consequently, Lemma 2.9 implies Z(») > 0, that means Py(x) < Pi(x),x € J and by the same
technique, where P(x) = (HDgi’ﬁ 20 4 /12) v(x) we get u(x) > 0. Hence, v,(x) < v,(»),% € J. Now,
from Eq (3.4) and our assumptions, we infer that

(1D + 40) (DR + 1) v, 0) = f (0 (0) < f (00, (0).

Therefore, v, is a lower solution of problem (1.1). In the same way of the above argument, we conclude
that v, (%) < v,(%), x € J. By mathematical induction, we get gj(%) < gj+1(%), xeJ,j=2.

Similarly, we put Z(x) = Py(x) — P,(x), where Pi(x) = ("Dy**+ 1,)01(x) and P () =
(HD"OE’ﬁz;"’ + /12) v, (%). Then, we get

(D5 + 41)E() 2 0, % € (0,b],
2(0) > 0.

Consequently, Lemma 2.9 implies Z(») > 0, that means Pi(x) < P, (x),x € J and by the same
technique, we get vy(x) > v,(x),x € J. By mathematical induction, we get v;(x) > v J.(%), x €Y,
j=0.

Step (3): In view of Eq (3.3), one can show that the sequences {yj}:io and {U f}:io are equicontinuous
and uniformly bounded. In view of Arzela-Ascoli Theorem, we have lim; . v; = v, and lim; ., v; =
v* uniformly on J and the limit of the solutions v, and v* satisfy the problem (1.1). Moreover, v,
vt e .

Step (4): We will prove that v, and v* are the extremal solutions of the problem (1.1) in ®. For
this end, let v € @ be a solution of the problem (1.1) such that v;(») > v(x) > gj(%),% € 9, for some
J € N. Therefore, by our assumption, we find that

£(#9,00) 2 f v () = f (%, ().
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Hence

(D55 + 00) (1D + o) U ()

> (DR + ) (DR + ) i)

> (HDgi’M + /11) (HDgi’ﬂ”"’ + /12) V()
and

DRI, = DR ), = DR 60| =,

Consequently, v, (%) > v(x) > vy, (), % € J. It follows that

vi() 2 v() 2v,(%), % €J, jEN. (3.5)

Taking the limit of Eq (3.5) as j — oo, we get v* (%) > v(x) > v.(x), x € . Thatis, v* and v, are

the extremal solutions of the problem (1.1) in ®. O
Corollary 3.5. Assume that f : J X R* — R* is continuous, and there exist 81,8, > 0 such that

N1 < fe,v) <Ny, Ye,v) € T XR. (3.6)
Then the problem (1.1) has at least one solution v(x) € C(J). Moreover

[6G0) = §O)]*" Epyyy (=2 [$) — (0)])
Q)

[T 42) 12 By, (=22 [9(6) = $(O)]2)
(T ) 1 By (<1 [9) = 9(O)) )

v(x) <

= 3 6T W) BT By, (A2 [(25) = $O)])
i=1

(T ) I By (=21 [6(2) = O)F) )]

+T (u2) 17 Eppy iy (— 22 [90) — (O)])

(T ) I By g (=21 [6G0) = $O)F") Ry 3.7)
and

U(%) > [¢(%) - ¢(O)]n—1 E/zz,yé(_/b [¢(%) - ¢(O)]H2)
[0 (12) B2 By, (~22 [006) - O)F)
(T @) BBy (=20 [6(B) — $(O)]) X))

= 20T (W) I T By, (A2 [6(85) = $(O)])
i=1

(T ) B0 By o (=20 [62) = 9O)F) 8]
+T (1) 1§22 Epy g (=22 [$) = $(O)])
(T @) BBy (=21 [60) = O Ry). (3.8)
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Proof. From Eq (3.6) and definition of control functions, we get
Ni < [ v(0) < £t u(x) <Ry, Y(x,v) € T xR, (3.9)

Now, we consider the following problem

{ (HD/E)lJlr’ﬂMP +/11)(HD613,[32;¢ +/12)5(%) =N,, 2 €(0,b], (3.10)

"D 0,y = 0, T(O0) = 0, T(b) = XL, 6l UL
In view of Lemma 2.8, the problem (3.10) has a solution
[660) = ¢ Epy, (=22 [900) = $(O)])

®
T () 1522 By, (=22 [$(5) — $(O)}*)

(T ) I By, (=21 [9(5) = $(O)]) Ry)

u(x) =

= > 0T (W) I T By, (A2 [6(8) = 9(O)])
i=1

(T () B0 By (=20 [62) = 9O)F) K]
+T (42) 17 Eppy iy (=22 [906) — $(0)])
(T ) 1 By (=21 [600) = SO R,).

Taking into account Eq (3.9), we obtain

[6G0) — pO)]* " Epiyy, (=2 [9(20) — $(0)])
®

[T () B2 By g (=22 [9) = $(0)]2)
(T ) By (=1 [05) = (O)1") T (5. T(5)

u(x) >

= 0T () BT By o, (A2 [9(25) = $(O)])
i=1

(T @) BBy (=0 [9(2) — $O)]) F (& 0(E))]
T () 15 Ep iy (=20 [900) = (0)])
(0 ) 152 By (=21 [90) = $O)F") F G2, U(0)))

It is obvious that v(x) is the upper solution of problem (1.1). Also, we consider the following problem

(3.11)

(D5 + ) (DR + o) u) = Ry, % € (0,b],
"D ()|, = 0, v(0) = 0, u(b) = B, 5:dg " v(L).

In view of Lemma 2.8, the problem (3.11) has a solution

[6G0) = §O)]*™" Epyyy (=2 [$C) — p(0)])

u(x) = )
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T (1) B2 E,, 1, (— 22 [9(D) - $(O)F)
(T @) BBy (=20 [9(B) = $(O)]) )

= > O W) BT By, (2 [(25) = $O)]")
i=1

(T ) I By (=21 [62) = 9O)F) N
+T (u2) 1 Epy iy (=22 [$00) = $(0)])
(T @) BBy (=21 [6G0) = 9O Ry).

Taking into account Eq (3.9), we obtain

[6G0) — pO)]* " Epiyyy (=2 [9(32) — $(0)]2)
®

[T () 1522 By (=22 [9(5) = $(O)*)
(T 0) B2 By (=1 [60) = 9O)1) £ (b, 0(0))

u(x)

= 3 6T ) I By s, (A2 [(8) = $O)2)
i=1

(T @) BBy (=0 [9(2) = 9O £ (2 2(20))|

AT () 12 By gy (=22 [$0) = 9(O)2)

(0 () I By, (=21 [90) = O f (2, 1(20))).
Thus, v(x) is the lower solution of problem (1.1).

The application of Theorem 3.4 results that problem (1.1) has at least one solution v(x) € C(9)
that satisfies the inequalities (3.7) and (3.8). O

4. An example

Example 4.1. Let us consider the following problem

{ ("D + 1) (DR + da) uGee) = f (e v(0)) % € 10, 1], @D

DR ()|, = 0,u(0) = 0,u(b) = X, 6,15 (&),

Herepy = 3,0 =381 =B =tyvi=3vn=34=b=100m=1,6 = },o0 =341 =3,b=1,

¢ = e*, A1=A, = 10 and we set f (%, v(x)) = 2 + %> + 5(%2(%»11(%). Forv,w e R*, x € J, we have

|f Ge,v) = f (2, W)

(2 +2% + %—311(%)) - (2 +2 + Lw(%))
5(1 + v(x)) 501+ w(x))

1
< 3 [u(s) — w(x)| .

By the given data, we get Q1 =~ 0.9 < 1 and hence all conditions in Theorem 3.3 are satisfied with

K = % > 0. Thus, the problem (4.1) has a unique solution v € C(J). On the other hand, from
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(o]

Theorem 3.4 and Theorem 3.3, the sequences {v } and {v,},, can be obtained as

n=

Uns1(%) = F(;)IzeEm(lo[e"—l]%)

1) 4 x_ 113 2 1 3=
(F(E)Im £y (100 - 1) )(2+% ST vn(%))). 42)
and
v, (%) = r(z)zﬂE;g(m[e - 11
1 %e _ 112 2 —1 3
F(E)IO 5;(10[e 1] )[2+% ; 5(1+gn(%))% yn(%)]]. 4.3)

Moreover, for any v € R and x € [0, 1], we have

3
Ul—i>r-i¥loo f (%’ U(%)) vl—i>r-|l:loo (2 * %2 * mv(%))
3
Vi
2 4%+ =,
+ %"+ 5

It follows that

2 < f(n,uxn) < 15—6

Thus, by Corollary 3.5, we get 8 =2 and N, = 15—6. Then by Definitions 3.1 and 3.2, the problem (4.1)
has a solution which verifies v(x) < v (%) < U (%) where

(¢ = 1)) Ey 4 (-10(e* - 1)?)

U(x) = 5
2 [r(%)r(%) (e— 1Y Ey5(-10(e = 1)?) Ey , (-10(e - 1)%)
e sttt
+ 156r(%)r(%)(e” — 1) Ey5 (<10 = D} Ey, (-10(e* - 1)), (4.4)
and
(¢ =1 Ey s (-10(e" - 1)?)
v(x) = 23@
15—6 [F(%)F(%)(e— D?E;y5(-10(e = 1?) Ey , (-10(e - 1)?)
—%F(%)F(%)(ei - 1);’5%%( 10(ef — 1) g)151 1( 10 (e - 1)5)]
AIMS Mathematics
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T P VR PSP

are respectively the upper and lower solutions of the problem (4.1) and
| Y 1 3 3 4_ 3
@ := (Z lei 1] E;, (—1o(e3 - 1)) —le— 11" Ey 4 (-10(e - 1)2)) # 0.

Let us see graphically, we plot in Figure I the behavior of the upper solution v and lower solution
v of the problem (4.1) with given data above.

as|-

1sf \

05— -

Solutions

L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 1. Graphical presentation of (v, v).

5. Conclusions

In this work, we have proved successfully the monotone iterative method is an effective method to
study FLEs in the frame of ¢-Hilfer fractional derivative with multi-point boundary conditions. Firstly,
the formula of explicit solution of ¢-Hilfer type FLE (1.1) in the term of Mittag-Leffler function has
been derived. Next, we have investigated the lower and upper explicit monotone iterative sequences and
proved that converge to the extremal solution of boundary value problems with multi-point boundary
conditions. Finally, a numerical example has been given in order to illustrate the validity of our results.

Furthermore, it will be very important to study the present problem in this article regarding the
Mittag-Leffler power low [36], the generalized Mittag-Lefller power low with another function [37,38],
and the fractal-fractional operators [39].
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