Research article

Analysis of the Bogdanov-Takens bifurcation in a retarded oscillator with negative damping and double delay

  • Received: 16 May 2022 Revised: 29 August 2022 Accepted: 31 August 2022 Published: 07 September 2022
  • MSC : 34C15, 34K11, 34K18

  • Here we will investigate a retarded damped oscillator with double delays. We looked at the combined effect of retarded delay and feedback delay and found that the retarded delay plays a significant role in controlling the oscillation of the proposed system. Only the negative damping situation is considered in this research. At first, we will find conditions for which the origin of the proposed system becomes a Bogdanov-Takens (B-T) singularity. Also, we extract the second and the third-order normal forms of the Bogdanov-Takens bifurcation by using center manifold theory. At the end, an extensive numerical simulations have been presented to satisfy the theoretical results.

    Citation: Sahabuddin Sarwardi, Sajjad Hossain, Mohammad Sajid, Ahmed S. Almohaimeed. Analysis of the Bogdanov-Takens bifurcation in a retarded oscillator with negative damping and double delay[J]. AIMS Mathematics, 2022, 7(11): 19770-19793. doi: 10.3934/math.20221084

    Related Papers:

  • Here we will investigate a retarded damped oscillator with double delays. We looked at the combined effect of retarded delay and feedback delay and found that the retarded delay plays a significant role in controlling the oscillation of the proposed system. Only the negative damping situation is considered in this research. At first, we will find conditions for which the origin of the proposed system becomes a Bogdanov-Takens (B-T) singularity. Also, we extract the second and the third-order normal forms of the Bogdanov-Takens bifurcation by using center manifold theory. At the end, an extensive numerical simulations have been presented to satisfy the theoretical results.



    加载中


    [1] E. I. Rivin, Dynamic overloads and negative dampingin mechanical linkage: Case study of catastrophic failure of extrusion press, Eng. Fail. Anal., 14 (2007), 1301–1312. https://doi.org/10.1016/j.engfailanal.2006.11.024 doi: 10.1016/j.engfailanal.2006.11.024
    [2] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992), 421–428. https://doi.org/10.1016/0375-9601(92)90745-8 doi: 10.1016/0375-9601(92)90745-8
    [3] F. M. Atay, Van der Pol's oscillator under delayed feedback, J. Sound Vib., 218 (1998), 333–339. https://doi.org/10.1006/jsvi.1998.1843 doi: 10.1006/jsvi.1998.1843
    [4] J. Jiang, Y. L. Song, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback, Appl. Math. Model., 37 (2013), 8091–8105. https://doi.org/10.1016/j.apm.2013.03.034 doi: 10.1016/j.apm.2013.03.034
    [5] S. A. Campbell, J. Bélair, T. Ohira, J. Milton, Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, J. Dyn. Differ. Equ., 7 (1995), 213–236. https://doi.org/10.1007/BF02218819 doi: 10.1007/BF02218819
    [6] Y. L. Song, T. H. Zhang, M. O. Tadé, Stability and multiple bifurcations of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity, Chaos: Interdiscip. J. Nonlinear Sci., 18 (2008), 043113. https://doi.org/10.1063/1.3013195 doi: 10.1063/1.3013195
    [7] Z. G. Song, J. Xu, Codimension-two bursting analysis in the delayed neural system with external stimulations, Nonlinear Dyn., 67 (2012), 309–328. https://doi.org/10.1007/s11071-011-9979-4 doi: 10.1007/s11071-011-9979-4
    [8] J. Z. Cao, R. Yuan, H. J. Jiang, J. Song, Hopf bifurcation and multiple periodic solutions in a damped harmonic oscillator with delayed feedback, J. Comput. Appl. Math., 263 (2014), 14–24. https://doi.org/10.1016/j.cam.2013.11.015 doi: 10.1016/j.cam.2013.11.015
    [9] S. A. Campbell, Y. Yuan, Zero singularities of codimension two and three in delay differential equations, Nonlinearity, 21 (2008), 2671.
    [10] J. Z. Cao, R. Yuan, Multiple bifurcations in a harmonic oscillator with delayed feedback, Neurocomputing, 122 (2013), 172–180. https://doi.org/10.1016/j.neucom.2013.06.033 doi: 10.1016/j.neucom.2013.06.033
    [11] S. Sarwardi, M. M. Haque, S. Hossain, Analysis of Bogdanov-Takens bifurcations in a spatiotemporal harvested-predator and prey system with Beddington-DeAngelis type response function, Nonlinear Dyn., 100 (2020), 1755–1778. https://doi.org/10.1007/s11071-020-05549-y doi: 10.1007/s11071-020-05549-y
    [12] Z. Q. Qiao, X. B. Liu, D. M. Zhu, Bifurcation in delay differential systems with triple-zero singularity, Chinese Ann. Math., Ser. A., 31 (2010), 59–70.
    [13] Z. G. Song, J. Xu, Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays, Sci. China Technol. Sci., 57 (2014), 893–904. https://doi.org/10.1007/s11431-014-5536-y doi: 10.1007/s11431-014-5536-y
    [14] P. McGahan, T. Vyhl$\acute{i}$dal, W. Michiels, Optimization based synthesis of state derivative feedback controllers for retarded systems, IFAC Proc. Vol., 42, (2009), 162–167. https://doi.org/10.3182/20090901-3-RO-4009.00025 doi: 10.3182/20090901-3-RO-4009.00025
    [15] Q. B. Wang, Y. J. Yang, X. Zhang, The analysis of stochastic evolutionary process of retarded Mathieu-Duffing oscillator, Eur. Phys. J. Plus, 135 (2020), 539. https://doi.org/10.1140/epjp/s13360-020-00462-0 doi: 10.1140/epjp/s13360-020-00462-0
    [16] J. N. Wang, W. H. Jiang, Bogdanov-Takens Singularity in the comprehensive national power model with delays, J. Appl. Anal. Comput., 3 (2013), 81–94. https://doi.org/10.11948/2013007 doi: 10.11948/2013007
    [17] J. L. Wang, X. Liu, J. L. Liang, Bogdanov-Takens bifurcation in an oscillator with positive damping and multiple delays, Nonlinear Dyn., 87 (2017), 255–269. https://doi.org/10.1007/s11071-016-3040-6 doi: 10.1007/s11071-016-3040-6
    [18] Y. L. Song, J. Jiang, Steady-state, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback, Int. J. Bifurcat. Chaos, 22 (2012), 1250286. https://doi.org/10.1142/S0218127412502860 doi: 10.1142/S0218127412502860
    [19] Z. G. Song, J. Xu, Bifurcation and chaos analysis for a delayed two-neural network with a variation slope ratio in the activation function, Int. J. Bifurcat. Chaos, 22 (2012), 1250105. https://doi.org/10.1142/S0218127412501052 doi: 10.1142/S0218127412501052
    [20] Z. G. Song, J. Xu, B. Zhen, Multitype activity coexistence in an inertial two-neuron system with multiple delays, Int. J. Bifurcat. Chaos, 25 (2015), 1530040. https://doi.org/10.1142/S0218127415300402 doi: 10.1142/S0218127415300402
    [21] S. G. Ruan, J. J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impulsive Syst. Ser. A: Math. Anal., 10 (2003), 863–874.
    [22] S. A. Campbell, V. G. LeBlanc, Resonant Hopf-Hopf interactions in delay differential equations, J. Dyn. Differ. Equ., 10 (1998), 327–346. https://doi.org/10.1023/A:1022622101608 doi: 10.1023/A:1022622101608
    [23] J. K. Hale, Theory of functional differential equations, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [24] J. K. Hale, S. M. V. Lunel, Introduction to functional differential equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-4342-7
    [25] Y. X. Xu, M. Y. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Differ. Equ., 244 (2008), 582–598. https://doi.org/10.1016/j.jde.2007.09.003 doi: 10.1016/j.jde.2007.09.003
    [26] T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differ. Equ., 122 (1995), 201–224. https://doi.org/10.1006/jdeq.1995.1145 doi: 10.1006/jdeq.1995.1145
    [27] W. H. Jiang, Y. Yuan, Bogdanov-Takens singularity in van der Pol' oscillator with delayed feedback, Physica D, 227 (2007), 149–161. https://doi.org/10.1016/j.physd.2007.01.003 doi: 10.1016/j.physd.2007.01.003
    [28] T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equ., 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144
    [29] X. He, C. D. Li, Y. L. Shu, Bogdanov-Takens bifurcation in a single inertial neuron model with delay, Neurocomputing, 89 (2012), 193–201. https://doi.org/10.1016/j.neucom.2012.02.019 doi: 10.1016/j.neucom.2012.02.019
    [30] T. Dong, X. F. Liao, Bogdanov-Takens bifurcation in a tri-neuron BAM neural network model with multiple delays, Nonlinear Dyn., 71 (2013), 583–595. https://doi.org/10.1007/s11071-012-0683-9 doi: 10.1007/s11071-012-0683-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1516) PDF downloads(91) Cited by(2)

Article outline

Figures and Tables

Figures(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog