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Abstract: Here we will investigate a retarded damped oscillator with double delays. We looked
at the combined effect of retarded delay and feedback delay and found that the retarded delay plays
a significant role in controlling the oscillation of the proposed system. Only the negative damping
situation is considered in this research. At first, we will find conditions for which the origin of the
proposed system becomes a Bogdanov-Takens (B-T) singularity. Also, we extract the second and the
third-order normal forms of the Bogdanov-Takens bifurcation by using center manifold theory. At the
end, an extensive numerical simulations have been presented to satisfy the theoretical results.
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1. Introduction

A harmonic oscillator is a system that consists of a mass and a spring with a restoring force
(proportional to the displacement from the equilibrium position). Harmonic oscillator has been
discussed for a long time due to its vast applications, such as in physics and many other fields. If there
is a frictional force (damping) proportionate to the velocity, the harmonic oscillator is called a damped
oscillator. The amplitude of vibration in damped oscillators reduces over time. Damping is vital in
actual oscillatory systems because practically all physical systems include factors like air resistance,
friction, and intermolecular interactions, all of which cause energy to be wasted as heat or sound.
Positive, zero, or negative damping can be used. Negative damping can be found in a variety of
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real-world situations. An aeroplane’s nose wheel shimmy, for example. A damped harmonic
oscillator is any genuine oscillatory system, such as a yo-yo, clock pendulum, or guitar string: after
starting to vibrate, the yo-yo, clock, or guitar string eventually slows down and stops, corresponding
to the decay of sound or amplitude in general. We also know that positive damping takes the energy
out of the system and causes stability, but for negative damping adds energy to the system and causes
instability rather oscillation with higher amplitude. When the coefficient of friction curve produce a
large negative slope, then the friction induced system possesses negative damping, which can result in
self-excited vibration instability. Negative damping also found in the mechanical linkage and power
system with great potential of being applied in practical field of applications [1]. It is quite obvious in
the oscillation caused by the string of violin. Therefore, negative damping is a reality, so we cannot
ignore their presence in some nonlinear oscillators.

If we introduce the time delay into the ordinary differential equations (ODEs), we get the delay
differential equations (DDEs). Clearly it is more realistic. Following Pyragas [2] pioneering work,
time-delayed feedback control has been used to a variety of disciplines of inquiry, including chaos
communication, optics, electronic systems, biology, and engineering. We know that location feedback
cannot affect the amplitude of oscillations without delay [3]. As a result, the delay acts as a derivative
feedback in modifying the amplitude. The following functional differential equation can be used to
explain the damped harmonic oscillator with delayed feedback:

d2x
dt2 + b

dx
dt

+ ax = f (x(t − τ)), (1.1)

where x(t) ∈ R signifies the distance between the equilibrium position and the current position, a > 0 is
the spring stiffness constant, f (x(t− τ)) is a Cr (r ≥ 3) function that describes delayed feedback, where
τ is the time delay and b(< 0) is the negative damping coefficient. System (1.1) has been analyzed
by many authors [4–10]. In [6] the authors have shown that the system (1.1) with negative damping,
steady-state bifurcation, Bogdanov-Takens (B-T) bifurcation, triple-zero, and Hopf-zero bifurcations
exist. The stability and steady-state bifurcation problems for the system at the simple zero eigenvalue
singularity were solved using center manifold reduction and normal form theory [6, 7]. Moreover, the
second- and third-order normal forms at the origin, as well as the system’s stability at the double-zero
eigenvalue singularity, have been extracted [4, 6, 11].

So far, there are many studies in the literature on the Hopf/Hopf-zero/triple-zero bifurcations of
van der-Pols’ oscillators and some unusual neural network models with a single delay or that can be
converted to the case with a single delay [12,13]. However, there are just a few studies that discuss the
B-T bifurcation of harmonic oscillators with multiple delays and negative damping. A very few articles
on nonlinear retarded oscillators have been studied by researchers McGahan [14], Wang et al [15].

Inspired from the discussions in [16–22], when a time delay is inserted into the system (1.1), the
result is a retarded damped oscillator with double delays as follows:

d2x(t)
dt2 + b

dx(t − τ1)
dt

+ ax(t) = f (x(t − τ2)). (1.2)

We can easily check that under the criteria specified below, the systems’ origin (1.2) is a double-zero
singularity. The primary goal of this study is to discuss the B-T singularity and extract the systems’
corresponding normal form (1.2). The B-T singularity is a zero eigenvalue equilibrium with algebraic
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multiplicity two and geometric multiplicity one, as we know. We also know that if an ODE has a B-T
point, its order is at least two, although this is not the case for DDEs. B-T singularity analysis is a
constructive way can provide a plenty of information on the system’s dynamics. The normal form
computation is a powerful tool for analyzing local bifurcation and stability, and the results for ODEs
have been researched for decades. At the B-T singularity, DDEs can be reduced to two-dimensional
ODEs using center manifold reduction and normal form theory. Many models, such as predator-prey
or neural network models, can describe the B-T bifurcation under certain crucial conditions. The B-T
bifurcation of a retarded oscillator with negative damping will be studied in this work.

The following is a summary of the rest of the paper: The criteria under which the origin is a
B-T singularity are stated in Section 2. The second and third-order normal forms, as well as the
accompanying bifurcation curves at the B-T singularity are precisely described in Section 3. Section 4
presents various numerical simulations to demonstrate the obtained results. Conclusions in Section 5
bring the paper to an end.

2. Analysis of B-T singularity

Retarded damped harmonic oscillator with two delays can be taken as follows:

ẍ(t) + bẋ(t − τ1) + ax(t) = f (x(t − τ2)). (2.1)

Let x1(t) = x(t) and x2(t) = ẋ1(t). Then the equation (2.1) is broken up to the following system:{ dx1(t)
dt = x2(t),

dx2(t)
dt = −ax1(t) − bx2(t − τ1) + f (x1(t − τ2)).

(2.2)

Throughout this paper, it is assumed that a > 0, b < 0; f (0) = 0, and f ′(0) = d. Henceforth, the
characteristic equation of the linearized part of (2.2) at the origin is given by

F(λ) = λ2 + bλe−λτ1 + a − de−λτ2 = 0. (2.3)

Lemma 1. Let d = a, b = −aτ2 and 2 + b(τ2 − 2τ1) > 0. Then λ = 0 is a double-zero root of Eq (2.3).

Proof. Clearly, F(0) = a − d. Since d = a, we have F(0) = 0. Also, we have F′(0) = 2λ +

be−λτ1 − bτ1λe−λτ1 + dτ2e−λτ2 . Then F′(0) = 0 as b = −aτ2. Again, F′′(0) = 2 + b(τ2 − 2τ1). Since,
2 + b(τ2 − 2τ1) > 0, we have F′′(0) , 0. Henceforth, we can conclude that 0 is a double-zero root of
the characteristic Eq (2.3).

Lemma 2. If d = a, b = −aτ2, 2 + b(τ2 − 2τ1) > 0, and a ∈ (0, a+
0 ), then all roots of (2.3) except λ = 0,

have non-zero real parts, i.e. origin of the system (2.2) is B-T singularity, where a+
0 = {min a j : a j =

w2
j

1−τ2w j sin τ1w j−cos τ2w j
> 0, 1 ≤ j ≤ m, and w j are the roots o f the equation w2− (b2 +2a)+

2ab sin(τ1−τ2)w
w =

0}.

Proof. Let us consider iw be a root of the the Eq (2.3) if −w2 + ibwe−iτ1w + a− ae−iτ2w = 0, i.e. if −w2 +

a + bw(sin τ1w + i cos τ1w) − a(cos τ2w − i sin τ2w) = 0, i.e., if{
bw cos τ1w + a sin τ2w = 0,
bw sin τ1w − a cos τ2w = w2 − a.

(2.4)
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Given that d = a, b = −aτ2. Hence, under these conditions −iw is also a root of the Eq (2.3).{
sin τ2w = τ2w cos τ1w,
bw sin τ1w − a cos τ2w = w2 − a.

(2.5)

Thus, we can assume w > 0.
Now (2.4) gives w4 − (b2 + 2a)w2 + 2abw sin(τ1 − τ2)w = 0, i.e.,

w2 − (b2 + 2a) + 2ab
sin(τ1 − τ2)w

w
= 0. (2.6)

We set G(w) = w2 − (b2 + 2a) + 2ab sin(τ1−τ2)w
w . We know that limx→0 g(x) = t, g(x) = sin tx

x . We can
compute G(0) = −a[2 + b(τ2 − 2τ1)] < 0. Since, G(w) → ∞ as w → ∞, there exists w∗ > 0 such that
G(w∗) = 0. Here we observe that for large value of w, G(w) ≈ w2. Hence (2.6) have finite number of
positive roots. Let the roots are w1,w2, · · · ,wm (m ≥ 1).

Also we see that w ≤ A, where A =
√

a[2 − b(τ2 + 2|τ1 − τ2|)].
Now, we will differentiate the Eq (2.3) with respect to a. Then, we have

dλ
da

=
λ2 + bλe−λτ1

a[2λ + be−λτ1 − bτ1λe−λτ1 − be−λτ2]
. (2.7)

Thus, dλ
da |λ=iw =

−w2+ibw(cos τ1w−i sin τ1w)
a(Θ+iχ) , where Θ = b(cos τ1w − τ1w sin τ1w − cos τ2w) and χ = 2w −

b(sin τ1w + τ1w cos τ1w − sin τ2w).
Consequently,<

(
dλ
da

)
|λ=iw =

b[−bτ1ω
2+ω2(cos τ1ω+cos τ2ω)−bω sin(τ1−τ2)w+τ1w3 sin τ1w]

a(Θ2+χ2) , 0.

3. Bogdanov-Takens bifurcation analysis

By Lemma 2, it is clear that, if d = a ∈ (0, a+
0 ) and b = −aτ2, then the system (2.2) at the origin

experiences a B-T bifurcation. Thus, we can take d and b as bifurcation parameters. Hence, we can
introduce two small parameters µ1 and µ2, which changing in a small neighborhood V of (0, 0)T , then
discuss the effect of perturbation on the system (2.2){ dx1(t)

dt = x2(t),
dx2(t)

dt = −ax1(t) − (b + µ2)x2(t − τ1) + (a + µ1)x1(t − τ2) + h.o.t.
(3.1)

where h.o.t. stands for higher order terms of x1(t − τ2). By simplifying, we can write the system (3.1)
as the following retarded functional differential equation on the phase space C:

dX
dt

= L(µ)Xt + G(Xt, µ), (3.2)

where C is the Banach space of all continuous functions from φ : [−τ1, 0] → R2 with supremum
norm |φ| = sup

[−τ1,0]
|φ(θ)|, Xt ∈ C, defined by Xt(θ) = X(t + θ), ∀ θ ∈ [−τ1, 0], µ = (µ1, µ2)T ∈ V, and

L(µ) : C → R2 is a set of parameterized bounded linear operators defined as follows:
L(µ)(φ) = L0(φ) + L1(µ)(φ)

=

(
φ2(0)

−aφ1(0) − bφ2(−τ1) + aφ1(−τ2)

)
+

(
0

µ1φ1(−τ2) − µ2φ2(−τ1)

)
(3.3)
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and G : C × V → R2 is a Cm (m ≥ 2) function satisfying G(0, 0), DG(0, 0) = 0 with

G(φ, µ) =
1
2!

G2(φ, µ) +
1
3!

G3(φ, µ) + · · · =
f
′′

(0)
2!

(
0

φ2
1(−τ2)

)
+

f
′′′

(0)
3!

(
0

φ3
1(−τ2)

)
+ · · · . (3.4)

Now, we have the linearization of the system (3.2) at the point (Xt, µ) = (0, 0) as follows:

dX
dt

= L(0)Xt. (3.5)

The operator L0 = L(0) can be written as :

L0(φ) = Aφ(0) + Bφ(−τ1) + Eφ(−τ2),

where

A =

(
0 1
−a 0

)
, B

(
0 0
0 −b

)
, E =

(
0 0
a 0

)
.

In the same way, we can represent the linear operator L1 also.
Here L0 be a bounded linear operator. Then by the Riesz representation theorem, we have a matrix

η(·) of order two, defined on [−τ1, 0] with components of bounded variation such that

L0φ =

∫ 0

−τ1

[dη(θ)]φ(θ). (3.6)

From [23] and [24], we know very well that the fundamental solutions of system the (3.5) form a
C0-semigroup {T0(t) : t ≥ 0} on C with infinitesimal generator A0 : C → C, defined as A0(φ) = φ̇ on
the domain

D(A0) = {φ ∈ C1([−τ1, 0],R2) : φ̇(0) =

∫ 0

−τ1

[dη(θ)]φ(θ) = L0(φ)}.

Let us consider the adjoint space of C as C∗ = C([0, τ1],R2∗), where R2∗ be the 2-dimensional row
vector space. The adjoint inner product on C∗ ×C is given by

〈ψ, φ〉 = ψ(0)φ(0) −
∫ 0

−τ1

∫ θ

0
ψ(ξ − θ)[dη(θ)]φ(ξ)dξ, φ ∈ C, ψ ∈ C∗. (3.7)

Let Λ0 be the set of eigenvalues of A0 with zero real parts and counting multiplicity. Clearly, for
the B-T bifurcation Λ0 = {0, 0}. Let P be the invariant space of A0 associated with the zero real part
eigenvalues and P∗ be the corresponding dual space. So, the dimension of P is two. Also, the dimension
of P∗ is two. Now, we will use the formal adjoint theory for a functional differential equation and
express the phase space C as C = P ⊕ Q, where Q = {φ ∈ C : 〈ψ, φ〉 = 0 ∀ψ ∈ P∗}. Also, it is know
that Q is invariant under both of T0(t) and A0.

Let Φ and Ψ be the respective bases of P and P∗. We can chose Φ and Ψ as follows:
Φ = (φ1(θ), φ2(θ)) for −τ1 ≤ θ ≤ 0, and Ψ = (ψ1(s), ψ2(s))T for 0 ≤ s ≤ τ1. Then 〈Ψ(s),Φ(θ)〉 = I2, and

Φ̇ = ΦB̄, −Ψ̇ = B̄Ψ, where B̄ =

(
0 1
0 0

)
. After applying the same method as in Lemma 3.1 in [25],

we get Φ(θ) =

(
1 θ

0 1

)
, − τ1 ≤ θ ≤ 0 and
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Ψ(0) =

 2b2(τ2
2−3τ2

1)
3[2+b(τ2−2τ1)]2 +

2(1−bτ1)
2+b(τ2−2τ1)

2b(τ2
2−3τ2

1)
3[2+b(τ2−2τ1)]2

2b
2+b(τ2−2τ1)

2
2+b(τ2−2τ1)

 =

(
ψ11 ψ12

ψ21 ψ22

)
.

For discussion of B-T bifurcation of system (3.2), we enlarge the phase space C by Banach space
BC = {φ : [−τ1, 0] → R2 : φ is continuous on [−τ1, 0), with aprobable jump discontinuity near zero}.
Any element φ of BC can be taken as φ = ϕ + X0c. In BC, the norm is given by
||φ|| = ||ϕ + X0c|| = ||ϕ||C + |c|, where X0 is a square matrix valued function of order 2, satisfying

X0(θ) =

{
I2 if θ = 0,
O if − τ1 ≤ θ < 0.

(3.8)

Thus, in BC, the system (3.2) can be rewrite as the following abstract ordinary differential equations:

du
dt

= Āu + X0F(u, µ), (3.9)

where F(u, µ) = (L(µ)−L0)u+G(u, µ) = L1(µ)u+G(u, µ), µ ∈ V and Ā is the extension of infinitesimal
generator of A0, defined by Ā : C1 → BC, satisfying the following equation:

Āϕ = ϕ̇ + X0[L0ϕ − ϕ̇(0)] =

{
ϕ̇, −τ1 ≤ θ < 0,
L0ϕ θ = 0.

(3.10)

The continuous projection operator π : BC → P is defined as follows:

π(ϕ + X0c) = Φ[〈Ψ, ϕ〉 + 〈Ψ, X0〉 c]. (3.11)

Hence, by A0, the phase space BC can be decomposed as BC = P ⊕ ker π. As π commutes with Ā
in C1. We can take u = φ(θ)z(t) + y and then from the result of [26], we may decomposed the abstract
ODE (3.9) into the following system{ dz

dt = B̄z + Ψ(0)F(Φz + y, µ),
dy
dt = AQ1y + (I − π)X0F(Φz + y, µ),

(3.12)

where Ψ(0) = 〈Ψ, X0〉 , z = (z1, z2)T ∈ R2 = P, y = (y1, y2)T ∈ Q1 = Q ∩ C1 ⊂ ker π, AQ1 is the
restriction of Ā as an operator from Q1 to the Banach space ker π. Assume f 1(z, y, µ) = Ψ(0)F(Φz+y, µ)
and f 2(z, y, µ) = (I − π)X0F(Φz + y, µ). Expanding F(Φz + y, µ) at (z, y, µ) = (0, 0, 0), (3.12) according
to Taylor series expression, we have dz

dt = B̄z +
∑

j≥2
1
j! f 1

j (z, y, µ),
dy
dt = AQ1y +

∑
j≥2

1
j! f 2

j (z, y, µ),
(3.13)

where f k
j (z, y, µ) , k = 1, 2 denote the homogeneous polynomials of z, y, µ of degree j. With the help

of the Eq (3.1) and (3.13), we have the following relations:
1
2 f 1

2 (z, y, µ) = Ψ(0)[ 1
2! F2(Φz + y, µ)] = Ψ(0)

(
F̄1

2(z, y, µ)
F̄2

2(z, y, µ)

)
,

1
2 f 2

2 (z, y, µ) = (I − π)X0[ 1
2! F2(Φz + y, µ)] = (I − π)X0

(
F̄1

2(z, y, µ)
F̄2

2(z, y, µ)

)
,
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1
3! f 1

3 (z, y, µ) = Ψ(0)[ 1
3! F3(Φz + y, µ)] = Ψ(0)

(
0

F̄2
3(z, y, µ)

)
,

1
3! f 2

3 (z, y, µ) = (I − π)X0[ 1
3! F3(Φz + y, µ)] = (I − π)X0

(
0

F̄2
3(z, y, µ)

)
, where


F̄1

2(z, y, µ) = 0,
F̄2

2(z, y, µ1, µ2) = µ1[z1 − τ2z2 + y1(−τ2)] − µ2[z2 + y2(−τ1)] +
f ′′(0)

2 [z1 − τ2z2 + y1(−τ2)]2,

F̄2
3(z, y, µ) =

f ′′′(0)
3! [z1 − τ2z2 + y1(−τ2)]3.

Let V4
j (R

2) be the vector space of homogeneous polynomials of (z, µ) = (z1, z2; µ1, µ2) of degree j
having coefficients in R2. Then

V4
j (R

2) = {
∑
|(q,l)|= j

c(q,l)zqµl : |(q, l)| ∈ N4, c(q,l) ∈ R2},

where (q, l) = (q1, q2; l1, l2) ∈ N4, zqµl = zq1
1 zq2

2 µ
l1
1 µ

l2
2 , q1 + q2 + l1 + l2 = j. We can take the canonical

basis for V4
2 (R2) as:{ (

z2
i

0

)
,

(
µ2

i
0

)
,

(
z1z2

0

)
,

(
µiz1

0

)
,

(
µiz2

0

)
,

(
µ1µ2

0

)
,

(
0
z2

i

)
,

(
0
µ2

i

)
,(

0
z1z2

)
,

(
0
µiz1

)
,

(
0
µiz2

)
,

(
0

µ1µ2

)
; i = 1, 2

}
.

Canonical basis for V4
3 (R2) can be taken as:{ (

z3
i

0

)
,

(
µ3

i
0

)
,

(
z2

1z2

0

)
,

(
µiz2

1
0

)
,

(
µ2

i z1

0

)
,

(
z1z2

2
0

)
,

(
µ1µ2zi

0

)
,

(
µiz1z2

0

)
,(

µiz2
2

0

)
,

(
µ2

i z2

0

)
,

(
µ2

1µ2

0

)
,

(
µ1µ

2
2

0

)
,

(
0
z3

i

)
,

(
0
µ3

i

)
,

(
0

z2
1z2

)
,

(
0
µiz2

1

)
,(

0
µ2

i z1

)
,

(
0

z1z2
2

)
,

(
0

µ1µ2zi

)
,

(
0

µiz1z2

)
,

(
0

z2
2µi

)
,

(
0

z2µ
2
i

)
,

(
0

µ2
1µ2

)
,(

0
µ1µ

2
2

)
; i = 1, 2

}
.

Define the operator M1
j on V4

j (R
2) by

M1
j

(
p1

p2

)
=

 ∂p1
∂z1

z2 − p2
∂p2
∂z1

z2

 . (3.14)

From [25] and [27], V4
2 (R2) can be decomposed as follows:

V4
2 (R2) = Im(M1

2) ⊕ Im(M1
2)c. (3.15)

Since M1
2

(
z2

1
0

)
=

(
2z1z2

0

)
,M1

2

(
0
z2

1

)
=

(
−z2

1
2z1z2

)
,M1

2

(
z1z2

0

)
=

(
z2

2
0

)
,

M1
2

(
0

z1z2

)
=

(
−z1z2

z2
2

)
,M1

2

(
z2

2
0

)
=

(
0
0

)
,M1

2

(
0
z2

2

)
=

(
−z2

2
0

)
,
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M1
2

(
µiz1

0

)
=

(
µiz2

0

)
,M1

2

(
0
µiz1

)
=

(
−µiz1

µiz2

)
,M1

2

(
µiz2

0

)
=

(
0
0

)
,

M1
2

(
0
µiz2

)
=

(
−µiz2

0

)
,M1

2

(
µ2

i
0

)
=

(
0
0

)
,M1

2

(
0
µ2

i

)
=

(
−µ2

i
0

)
,

M1
2

(
µ1µ2

0

)
=

(
0
0

)
,M1

2

(
0

µ1µ2

)
=

(
−µ1µ2

0

)
for i = 1, 2; we have

Im(M1
2) =

〈{ (
−z2

1
2z1z2

)
,

(
z1z2

0

)
,

(
z2

2
0

)
,

(
0
z2

2

)
,

(
µiz1

−µiz2

)
,

(
µiz2

0

)
,

(
µ2

i
0

)
,(

µ1µ2

0

)
: i = 1, 2

}〉
.

As
(
µiz1

−µiz2

)
+

(
0
µiz2

)
=

(
µiz1

0

)
for i = 1, 2; we have

Im(M1
2)c =

〈{(
0
z2

1

)
,

(
0

z1z2

)
,

(
0
µiz2

)
,

(
0
µiz1

)
,

(
0
µ2

i

)
,

(
0

µ1µ2

)
: i = 1, 2

}〉
.

Let P1
I, j be the mapping from V4

j (R
2) to Im(M1

j ) for j = 2, 3 which satisfies

p − a ∈ Im(M1
j )

c if P1
I, j(p) = a.

For j = 2, we can see that

PrIm(M1
2 )c p =

{
p, if p ∈ Im(M1

2)c

0 if p ∈ Im(M1
2).

(3.16)

Also PrIm(M1
2 )c

(
z2

1
0

)
=

(
0

2z1z2

)
, and PrIm(M1

2 )c

(
µiz1

0

)
=

(
0
µiz2

)
for i = 1, 2.

By [26,28], on the centre manifold connected to the space P, the normal form of (2.2) can be written
as

dz
dt

= B̄z +
∑
j≥2

1
j!

g1
j(z, 0, µ). (3.17)

If f 1
2 (z, 0, µ) =

(
a1z2

1 + a2z1z2 + a3z2
2 + a4µ1z1 + a5µ2z1 + a6µ1z2 + a7µ2z2

b1z2
1 + b2z1z2 + b3z2

2 + b4µ1z1 + b5µ2z1 + b6µ1z2 + b7µ2z2

)
, then

PrIm(M1
2 )c

(
a1z2

1
0

)
=

(
0

2a1z1z2

)
, PrIm(M1

2 )c

(
a2z1z2

0

)
=

(
0
0

)
,

PrIm(M1
2 )c

(
a3z2

2
0

)
=

(
0
0

)
, PrIm(M1

2 )c

(
a4µ1z1

0

)
=

(
0

a4µ1z2

)
,

PrIm(M1
2 )c

(
a5µ2z1

0

)
=

(
0

a5µ2z2

)
, PrIm(M1

2 )c

(
a6µ1z2

0

)
=

(
0
0

)
,

PrIm(M1
2 )c

(
a7µ2z2

0

)
=

(
0
0

)
, PrIm(M1

2 )c

(
0

b1z2
1

)
=

(
0

b1z2
1

)
,

PrIm(M1
2 )c

(
0

b2z1z2

)
=

(
0

b2z1z2

)
, PrIm(M1

2 )c

(
0

b3z2
2

)
=

(
0
0

)
,

PrIm(M1
2 )c

(
0

b4µ1z1

)
=

(
0

b4µ1z1

)
, PrIm(M1

2 )c

(
0

b5µ2z1

)
=

(
0

b5µ2z1

)
,
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PrIm(M1
2 )c

(
0

b6µ1z2

)
=

(
0

b6µ1z2

)
, PrIm(M1

2 )c

(
0

b7µ2z2

)
=

(
0

b7µ2z2

)
.

Hence, g1
2(z, 0, µ) in the normal (3.17) is given by g1

2(z, 0, µ) = PrIm(M1
2 )c f 1

2 (z, 0, µ)

=

(
0

2ψ22µ1z1 + 2[(ψ12 − τ2ψ22)µ1 − ψ22µ2]z2 + f ′′(0)ψ22z2
1 + 2(ψ12 − τ2ψ22) f ′′(0)z1z2

)
.

Now, on the center manifold, the system (2.2) can be transformed into the following normal form:{ dz1
dt = z2,

dz2
dt = δ1z1 + δ2z2 + a2z2

1 + b2z1z2 + h.o.t.,
(3.18)

where δ1 = ψ22µ1, δ2 = (ψ12 − τ2ψ22)µ1 − ψ22µ2, a2 =
f ′′(0)

2 ψ22, b2 = (ψ12 − τ2ψ22) f ′′(0).
Since a ∈ (0, a+

0 ), we may get a small a such that ψ12 − τ2ψ22 < 0. In addition, it is obvious that
ψ22 > 0 as we have assumed that 2 + b(τ2 − 2τ1) > 0. As a result, discovering the sign of f ′′(0) can
yield the signs of the coefficients a2 and b2.

Now we will discuss different cases depending on the sign of a2 and b2.

Case I: If f ′′(0) > 0, then a2 > 0 and b2 < 0. Re-scaling the time parameter and transform the
coordinates in the following way:

t = −
b2

a2
t̄, z1 =

a2

b2
2

z̄1; z2 = −
a2

2

b3
2

z̄2.

Then on the center manifold, the system (3.18) becomes (after dropping bars){ dz1
dt = z2,

dz2
dt = ν1z1 + ν2z2 + z2

1 − z1z2 + h.o.t.,
(3.19)

where ν1 =
4(ψ12−τ2ψ22)2

ψ22
µ1 and ν2 = −

2(ψ12−τ2ψ22)2

ψ22
µ1 + 2(ψ12 − τ2ψ22)µ2.

The bifurcation curves associated to the perturbation parameters µ1, µ2 are sum up as follows [4, 7,
9, 27]:

1) Transcritical bifurcation (TB) occurs when µ1 = 0.
2) The system (3.19) experiencing Hopf bifurcation around the zero equilibrium point when µ2 =

−
6τ2+b(3τ2

1+2τ2
2−6τ1τ2)

3[2+b(τ2−2τ1)] µ1 and µ1 < 0.
3) The system (3.19) experiencing Hopf bifurcation around the axial equilibrium point when µ2 =

6τ2+b(3τ2
1+2τ2

2−6τ1τ2)
3[2+b(τ2−2τ1)] µ1 and µ1 > 0.

4) The system (3.19) experiencing Homoclinic bifurcation at the trivial equilibrium when
µ2 =

5[6τ2+b(3τ2
1+2τ2

2−6τ1τ2)]
21[2+b(τ2−2τ1)] µ1 and µ1 > 0.

5) The system (3.19) experiencing Hopf bifurcation around the axial equilibrium point when µ2 =

−
5[6τ2+b(3τ2

1+2τ2
2−6τ1τ2)]

21[2+b(τ2−2τ1)] µ1 and µ1 > 0.

Case II: If f ′′(0) < 0, then a2 < 0 and b2 > 0. Now we re-scale the time and transform the
coordinates in the following way:
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t = −
b2

a2
t̄, z1 = −

a2

b2
2

z̄1; z2 =
a2

2

b3
2

z̄2. (3.20)

Then on the center manifold, the system (3.18) becomes (after dropping bars){ dz1
dt = z2,

dz2
dt = ν1z1 + ν2z2 − z2

1 + z1z2 + h.o.t.,
(3.21)

where ν1, ν2, and the associated bifurcation curves are the same as those of Case I.

Case III: Here we will discuss the case for f ′′(0) = 0. Then, clearly a2 = b2 = 0, and hence system
becomes degenerate. To discuss the dynamics near the B-T singularity we have to compute the higher
order normal forms. From [26] and [27], we may get

g1
3(z, 0, µ) = PrIm(M1

3 )c f̄ 1
3 (z, 0, µ), (3.22)

where f̄ 1
3 (z, 0, µ) = f 1

3 (z, 0, µ) + 3
2 [(Dz f 1

2 )(z, 0, µ)U1
2(z, µ) − (DzU1

2)(z, µ)g1
2(z, 0, µ) +

(Dy f 1
2 )(z, 0, µ)U2

2(z, µ)]. Now, we can easily obtain

f 1
3 (z, 0, µ) =

(
f ′′′(0)ψ12(z1 − τ2z2)3

f ′′′(0)ψ22(z1 − τ2z2)3

)
. (3.23)

To get g1
3(z, 0, µ), we have to calculate U2(z, µ) = (U1

2(z, µ),U2
2(z, µ))T . From [4] and [27], one can get

U1
2(z, µ) = (M1

2)−1P1
I,2 f 1

2 (z, 0, µ) = (M1
2)−1

(
2ψ12[µ1(z1 − τ2z2) − µ2z2]

−2ψ12µ1z2

)
,

where U1
2 ∈ ker(M1

2)c and ker(M1
2)c is spanned by{(

z2
1

0

)
,

(
0
z2

i

)
,

(
0

z1z2

)
,

(
0
µiz1

)
,

(
0
µiz2

)
,

(
0
µ2

i

)
,

(
0

µ1µ2

)
: i = 1, 2

}
Thus, U1

2(z, µ) = 2τ2ψ12

(
0
µ1z2

)
+ ψ12

(
0
µ2z2

)
− 2ψ12

(
0
µ1z1

)
.

Hence, (Dz f 1
2 )(z, 0, µ)U1

2(z, µ) =

(
ψ12υ

ψ22υ

)
,

where υ = 4ψ12[τ2µ
2
1(z1 − τ2z2) + µ1µ2(z1 − 2τ2z2) − µ2

2z2].

Now, (DzU1
2)g1

2(z, 0, µ) =

(
0

4ψ12(τ2µ1 + µ2)[ψ22µ1z1 + (ψ12 − τ2ψ22)µ1z2 − ψ22µ2z2]

)
.

On the other side, U2
2(z, µ) = h2(θ)(z, µ) ∈ V4

2 (Q1), where h2(θ) = (h1
2(θ), h2

2(θ))T which satisfies
(M2

2U2
2)(z, µ) = f 2

2 (z, 0, µ). Using the formula of Ā, one can get
(M2

2h2(θ))(z, µ) = Dzh2(θ)B̄z − AQ1h2(θ)(z, µ)
= Dzh2(θ)(z, µ)B̄z − ḣ2(θ)(z, µ) + X0[ḣ2(0)(z, µ) − L0h2(θ)(z, µ)]

= f 2
2 (z, 0, µ) = 2(I − π)X0

(
0

F̄2
2(z, 0, µ)

)
.

Consequently,
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ḣ2(θ)(z, µ) − Dzh2(θ)(z, µ)B̄z = 2πX0

(
0

F̄2
2(z, 0, µ)

)
=

(
2(ψ12 + θψ22)[µ1(z1 − τ2z2) − µ2z2]

2ψ22[µ1(z1 − τ2z2) − µ2z2]

)
, (3.24)

ḣ2(0)(z, µ) − L0h2(θ)(z, µ) = 2
(

0
F̄2

2(z, 0, µ)

)
=

(
0

2µ1(z1 − τ2z2) − 2µ2z2

)
. (3.25)

The expression of h2(θ)(z, µ) =

(
h1

2(z, µ)
h2

2(z, µ)

)
with degree 2 can be evaluated as

hi
2(θ)(z, µ) =

∑
|(q,l)|=2

hi
2(q,l)(θ)z

qµl = hi
22000(θ)z2

1 + hi
20200(θ)z2

2 + hi
20020(θ)µ2

1 + hi
20002(θ)µ2

2 +

hi
21100(θ)z1z2 + hi

21010(θ)µ1z1 + hi
21002(θ)µ2z1 + hi

20110(θ)µ1z2 + hi
20101(θ)µ2z2 + hi

20011(θ)µ1µ2 for i = 1, 2.
Comparing the coefficients of µ1z1, µ1z2, µ2z2 in (3.24) and (3.25), we have the following

conditions: 
ḣ1

21010(θ) = 2(ψ12 + θψ22),
ḣ2

21010(θ) = 2ψ22,

ḣ1
21010(0) = h2

21010(0),
ḣ2

21010(0) + ah1
21010(0) + bh2

21010(−τ1) − ah1
21010(τ2) = 2;

(3.26)


ḣ1

20110(θ) − h1
21010(θ) = −2τ2(ψ12 + θψ22),

ḣ2
20110(θ) − h21010(0) = −2τ2ψ22,

ḣ1
20110(0) = h2

20110(0),
ḣ2

20110(0) + ah1
20110(0) + bh2

20110(−τ1) − ah1
20110(−τ2) = −2τ2;

(3.27)


ḣ1

20101(θ) − h1
21001(θ) = −2(ψ12 + θψ22),

ḣ2
20101(θ) − h2

21001(θ) = −ψ22,

ḣ20101(0) = h2
20101(0),

ḣ2
20101(0) + ah1

20101(0) + bh2
20101(−τ1) − ah1

20101(−τ2) = −2.

(3.28)

From the above relations, we have

h21010 =

(
ψ22θ

2 + 2ψ12θ + d1

2ψ22θ + 2ψ12

)
,

h20110(θ) =

( 1
3ψ22θ

3 + (ψ12 − τ2ψ22)θ2 + (d1 − 2τ2ψ12)θ + d2

ψ22θ
2 + 2(ψ12 − τ2ψ22)θ + d1 − 2τ2ψ12

)
,

h20101(θ) =

(
−ψ22θ

2 − 2ψ12θ + d3

−2ψ22θ − 2ψ12

)
;

and the other elements of h2(q,l) are all zero. Furthermore, h2(q,l)(θ) ∈ Q1 = Q ∩C1 and satisfies〈
Ψ, h2(q,l)(θ)

〉
= 0. (3.29)
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Then d j can be determined from (3.29), as follows:

d1 = 1
2+bτ2

[ψ22(4τ3
1−τ

3
2)b

6 +
4ψ2

12
ψ2

22
],

d2 = 2b
2+bτ2

[ψ22(6τ4
2−5τ4

1)
60 +

(ψ12−τ2ψ22)τ3
1−2ψ12τ

3
2−(d1−3τ2ψ12)τ2

1
3 ],

d3 = −d1.

Thus, we get

(Dy f 1
2 )(z, 0, µ)U2

2(z, µ) =

(
2ψ12µ1h1

2(−τ2) − 2ψ12µ2h2
2(−τ1)

2ψ22µ1h1
2(−τ2) − 2ψ22µ2h2

2(−τ1)

)
. (3.30)

To get the third order normal form, we need the relationship

V4
3 (R2) = Im(M1

3) ⊕ Im(M1
3)c.

By [27], we have the basis for Im(M1
3) and Im(M1

3)c. We know that

PrIm(M1
3 )c p =

{
p, if p ∈ Im(M1

3)c

0, if p ∈ Im(M1
3)

and for the other bases in V4
3 (R2), we have

PrIm(M1
3 )c

(
z3

1
0

)
=

(
0

3z2
1z2

)
, PrIm(M1

3 )c

(
µ2

i z1

0

)
=

(
0
µ2

i z2

)
,

PrIm(M1
3 )c

(
µ1µ2z1

0

)
=

(
0

µ1µ2z2

)
, PrIm(M1

3 )c

(
µiz2

1
0

)
=

(
0

2µiz1z2

)
, i = 1, 2.

Now, from the above, we can see that

PrIm(M1
3 )c f 1

3 (z, 0, µ) = ψ22 f
′′′

(0)
(

0
z3

1

)
+ 3(ψ12 − τ2ψ22) f

′′′

(0)
(

0
Z2

1z2

)
(3.31)

PrIm(M1
3 )c DzU1

2(z, 0, µ)U1
2(z, µ) = 4ψ12ψ22

(
0

µ1µ2z1

)
+ 4τ2ψ12ψ22

(
0
µ2

1z1

)
+

4ψ12(ψ12 − 2τ2ψ22)
(

0
µ1µ2z2

)
+ 4τ2ψ12(ψ12 − τ2ψ22)

(
0
µ2

1z2

)
− 4ψ12ψ22

(
0
µ2

2z2

)
, (3.32)

PrIm(M1
3 )c DzU1

2(z, µ)g1
2(z, 0, µ) = 4ψ12ψ22

(
0

µ1µ2z2

)
+ 4τ2ψ12ψ22

(
0
µ2

1z1

)
+

4ψ12(ψ12 − 2τ2ψ22)
(

0
µ1µ2z2

)
− 4ψ12ψ22

(
0
µ2

2z2

)
+ 4τ2ψ12(ψ12 − τ2ψ22)

(
0
µ2

1z2

)
, (3.33)

PrIm(M1
3 )c(Dy f 1

2 (z, 0, µ))U2
2(z, µ) = 2ψ22h1

21010(−τ2)
(

0
µ2

1z1

)
− 2ψ22h2

21010(−τ1)
(

0
µ1µ2z2

)
+2[ψ22h1

20101(−τ2) − ψ22h2
20110(−τ1) − ψ12h2

21010(−τ1)]
(

0
µ1µ2z2

)
+

2[ψ12h1
21010(−τ2) + ψ22h1

20110(−τ2)]
(

0
µ2

1z2

)
− 2ψ22h2

20101(−τ1)
(

0
µ2

2z2

)
. (3.34)
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From Eqs (3.31)–(3.34), we have the normal form of the system (2.2) as{
ż1 = z2,

ż2 = λ1z1 + λ2z2 + a3z3
1 + b3z2

1z2 + h.o.t.,
(3.35)

where λ1 = ψ22µ1 + 1
2ψ22h1

21010(−τ2)µ2
1 − 1

2ψ22h2
21010(−τ1)µ1µ2, λ2 =

(ψ12 − τ2ψ22)µ1 − ψ22µ2 + 1
2 [ψ22h1

20110(−τ2) + ψ12h1
21010(−τ2)]µ2

1 + 1
2 [ψ22h1

20101(−τ2) − ψ22h2
20110(−τ1) −

ψ12h2
21010(−τ1)]µ1µ2 − 3ψ22h2

20101(−τ1)µ2
2, a3 = 1

6 f
′′′

(0)ψ22, b3 = 1
2 f

′′′

(0)(ψ12 − τ2ψ22).

Now, we will use the following time re-scaling and co-ordinate transformation :

t̄ = −
|a3|

b3
t, γ1 =

b3
√
|a3|

z1, γ2 = −
b2

3

a3
√
|a3|

z3. (3.36)

Then (3.35) becomes {
γ̇1 = γ2,

γ̇2 = σ1γ1 + σ2γ2 + sγ3
1 − γ

2
1γ2 + h.o.t.,

(3.37)

where σ1 = ( b3
a3

)2λ1, σ2 = − b3
|a3 |
λ2, s = sgn(a3).

From [29, 30], we know that the bifurcations of the system (3.37) are linked with the sign of s. If
s = 1, the bifurcation curves associated to the perturbation parameters µ1, µ2 are sum up as follows
[4, 9, 27]:

(a) The system (3.37) attains a pitchfork bifurcation on the parametric curve

S = {(µ1, µ2) : µ1 = 0, µ2 ∈ R}.

(b) The system (3.37) attains a Hopf bifurcation at the trivial equilibrium on the parametric curve

H = {(µ1, µ2) : µ2 = %µ1 + O(µ2
1) µ1 < 0}, where % = −

6τ2 + b(3τ2
1 + 2τ2

2 − 6τ1τ2)
3[2 + b(τ2 − 2τ1)]

.

(c) The system (3.37) attains a Heteroclinic bifurcation at the trivial equilibrium on the parametric
curve

L = {(µ1, µ2) : µ2 =
2
5
%µ1 + O(µ2

1) µ1 < 0}.

If s = −1, the bifurcation curves associated to the perturbation parameters µ1, µ2 are sum up as
follows [5, 6, 9]:

(i) The system (3.37) attains a pitchfork bifurcation on the parametric curve

S = {(µ1, µ2) : µ1 = 0, µ2 ∈ R}.

(ii) The system (3.37) attains a Hopf bifurcation at the trivial equilibrium on the parametric curve

H1 = {(µ1, µ2) : µ2 = %µ1 + O(µ2
1) µ1 < 0}.
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(iii) The system (3.37) attains a Hopf bifurcation at the non-trivial equilibrium on the parametric curve

H2 = {(µ1, µ2) : µ2 = 4%µ1 + O(µ2
1) µ1 > 0}.

(iv) The system (3.37) attains a Homoclinic bifurcation on the parametric curve

T = {(µ1, µ2) : µ2 =
17
5
%µ1 + O(µ2

1) µ1 > 0}.

(v) The system (3.37) attains a fold bifurcation of the limit cycle on the parametric curve

Hd = {(µ1, µ2) : µ2 = 3.256%µ1 + O(µ2
1) µ1 > 0}.

4. Numerical simulations

Here, numerical simulations of the delayed system (2.2) are performed to illustrate the results
obtained above. To confirm our analytical and theoretical finding, we cite some numerical simulations
with the help of computing softwares MATLAB-R2015a, Maple-18 and Mathematica7.0. Firstly, let
f (x) = sin x, we have f (0) = 0, f ′(0) = 1. To simulate the dynamics of the delayed system (2.2) near
the B-T bifurcation, we assume a = f

′

(0) = 0.0222, τ1 = 20, τ2 = 1. By Lemma 2, the critical B-T
bifurcation point is (d, b) = (a,−a) = (0.0222,−0.0222). Now, we consider a small perturbation of the
bifurcation parameters by letting (d, b) = (0.0222 + µ1, 0.0222 + µ2). The following cases are
discussed to test the bifurcation.

If the perturbation parameter (d, b) = (−0.0122, 0.0322) corresponding to the perturbation
(µ1, µ2) = (0.01, 0.01), the trivial equilibrium of the system (2.2) is a saddle point and other two
non-trivial equilibria are stable focus (cf. Figure 1 (a)). For the same but opposite perturbation results
the merging of all three equilibria into one stable trivial equilibrium (cf. Figure 1 (b)). For the slight
smaller perturbation (µ1, µ2) = (0.001, 0.001) and slightly higher feedback delay τ2 = 2 makes the
domain into four sub-domains by two sepatrices: separatrix curve shown by incoming thick arrows
and the separatrix curve, shown by outgoing thick arrows (boundaries of saddle point (0, 0). The
separatrix x2 ≈ −x1 divide the domain into two sub-domains: the left one is the basin of attraction of
E−(−0.5118910020, 0) and right one is the basin of attraction of E+(+0.5118910020, 0) (cf. Figure 2).
Next we find the dynamics near the B-T point (−aτ2, a) = (−0.0444, 0.0222) for the set
a = 0.0222, b = −0.0222, d = 0.0222, τ1 = 20, with the perturbation (µ1, µ2) = (−0.001, 0.001), a
saddle point origin and two stable focus placed symmetrically left and right of (0.0) (cf. Figure 3 (a))
for the feedback delay parameter τ2 = 2, two small stable limit cycles around the axial equilibria,
surrounded by a bigger stable limit cycle for(µ1, µ2) = (0.02, 0.02) (cf. Figure 3 (b)). This higher
amplitude limit cycles surrounding the stable equilibrium points is an important phenomenon from a
practical point of view. From the Figure 4, it is observed that without delay (τ1 = τ2 = 0), the
system (2.2) will become unbounded, while it was confined within a bounded domain under both the
effects of retarded delay (τ1 = 20) and feedback delay (τ2 = 2).
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Figure 1. (a) Phase portrait shows that the equilibria E±(±1.437603779, 0) both are stable
focus and E0(0, 0) is a saddle point for the parameter set : a = d = 0.0222, b = −0.0222, τ1 =

20, τ2 = 1 with the perturbation (µ1, µ2) = (0.01, 0.01) of the critical pair (b, d). (b) All
the three equilibria E0, E± merge to one stable stable focus E0(0, 0) when the perturbation
(µ1, µ2) = (−0.01,−0.01) and the same set of parameters used in (a).
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Figure 2. For (µ1, µ2) = (0.001, 0.001), and τ2 = 2, there are two stable focus
E±(±0.5118910020, 0) and a saddle-node point E0, other parameters are same for Figure 1.
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Figure 3. (a) E± are stable focus and E0 is a saddle when (µ1, µ2) = (0.001, 0.001) and
a = 0.0222 = d, b = −aτ2 = −0.0444. (b) Two small stable limit cycles around E± and a big
limit cycle enclosing both the smaller limit cycles when (µ1, µ2) = (0.02, 0.02).
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Figure 4. For (µ1, µ2) = (0.02, 0.02), and τ1 = 20, τ2 = 2, all the solutions near the equilibria
E±(±1.834960628, 0) and a saddle-node point E0 become bounded and without delay (No
retarded delay (τ1 = 0) and feedback delay (τ2 = 0) the system becomes unbounded.

If f (x) = sin x, and the fixed set a = 0.0222, b = −0.0222, d = 0.0222, τ2 = 1, with the
perturbation (µ1, µ2) = (−0.1,−0.1), the system becomes asymptotically stable around origin (cf.
Figure 5) for the retarded delay parameter τ1 = 10, an unstable/semi-stable has been emerged from
the origin for τ1 = 15 (cf. Figure 6), a chaotic attractor is emerged for τ1 = 20 (cf. Figure 7) and
system becomes unbounded for all τ1 ≥ 25 (cf. Figure 8). For same set of parameters and without any
perturbation around B-T critical value the system generates a double-homoclinic loop around origin
for no feedback delay τ2 = 0 (cf. Figure 9), but it becomes an attractor around origin for τ2 = 2 and
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(µ1, µ2) = (−0.02, 0.1) (cf. Figure 10). There exists an attractor covering two unstable axially
symmetric equilibria and the saddle origin for for f (x) = sin 4x and d = 0.0222 × f ′(0) = 0.0888 (cf.
Figure 11).
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Figure 5. (a) Phase portrait demonstrate the stable dynamics for the parameter set: a = d =

0.0222, b = −0.0222, τ1 = 10, τ2 = 1 with the perturbation (µ1, µ2) = (−0.1,−0.1) of the
critical pair (b, d). (b) Time evolution of the solution for the same set of parameters used in
Figure 5(a).
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Figure 6. (a) Phase portrait demonstrate the unstable periodic dynamics for the parameter set:
a = d = 0.0222, b = −0.0222, τ1 = 15, τ2 = 1 with the perturbation (µ1, µ2) = (−0.1,−0.1)
of the critical pair (b, d). (b) Time evolution of the solution for the same set of parameters
used in Figure 6(a).
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Figure 7. (a) Phase portrait demonstrate the chaotic dynamics for the parameter set: a = d =

0.0222, b = −0.0222, τ1 = 20, τ2 = 1 with the perturbation (µ1, µ2) = (−0.1,−0.1) of the
critical pair (b, d). (b) Time evolution of the solution for the same set of parameters used in
Figure 7(a).
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Figure 8. (a) Phase portrait demonstrate the unbounded solution for the parameter set: a =

d = 0.0222, b = −0.0222, τ1 = 25, τ2 = 1 with the perturbation (µ1, µ2) = (−0.1,−0.1) of
the critical pair (b, d). (b) Time evolution of the solution for the same set of parameters used
in Figure 8(a).
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Figure 9. For (µ1, µ2) = (0.00, 0.00), and a = 0.0222, b = −0.0222, d = 0.222, τ1 = 20,
τ2 = 0.0 there are double-homoclinic loop around E±(±2.852341894, 0) and a saddle-node
point E0.
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Figure 10. For (µ1, µ2) = (−0.02, 0.1), and a = 0.0222, b = −0.0222, d = 0.0222, τ1 = 20,
τ2 = 2 there is an attractor around E0(0, 0).
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Figure 11. For (µ1, µ2) = (0.0, 0.0), and a = 0.0222, b = −0.0222, d = 0.0888, τ1 = 20,
τ2 = 2 there is an attractor covering the equilibria E0(0, 0) and E±.

Next, we consider f (x) = tanh(x + 1) − tanh (1), then f (0) = 0, f
′

(0) = 1 −
(

e2−1
e2+1

)2
> 0 and

f ′′(0) = −2
(

e2−1
e2+1

) (
1 −

(
e2−1
e2+1

)2
)
< 0. In this case, we find complicated dynamics near the B-T point. For
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the set a = 0.0222, b = −0.0222, d = 0.0222, τ1 = 20, with the perturbation (µ1, µ2) = (−0.13, 0.02), a
double-well chaotic attractor emerges from the origin (cf. Figure 12) for the feedback delay parameter
τ2 = 1, a triple-well attractor is emerged from the origin for τ2 = 2 (cf. Figure 13) and a chaotic
attractor is emerged for τ2 = 3 (cf. Figure 14). It is also observed that the system (2.2) becomes
regular after a small transient period around origin for τ2 = 7, lastly it becomes unbounded for all
τ2 > 7 (Figures are not reported here). Bifurcation diagram in Figure 15 shows that the aperiodic
oscillation can be suppressed by increasing the coefficient stiffness of the spring. Is is seen from the
Figure 15 that the the aperiodic solution converges to equilibrium state when the value of the parameter
a becomes larger than a = 0.0222 ∈ (0, a+) = (0, 1.541191394). Hence, the feedback delay plays a
crucial role in regulating the amplitude on the oscillations of the system (2.2) as we observed for the
retarded delays τ1 = 10, 15, 20, 25 in Figures 5–8.
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Figure 12. (a) For (µ1, µ2) = (−0.13, 0.02), and a = 0.0222, b = −0.0222, d = 0.0222, τ1 =

20, τ2 = 1 there is a double-well attractor around the equilibria E±. (b) Time evolution of
the solution for the same set of parameters used in Figure 12(a).
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Figure 13. (a) Phase portraits for τ2 = 2 and others parameters are same as in Figure 12. (b)
Time evolution of the solutions.
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Figure 14. (a) Phase portraits for τ2 = 3 and others parameters are same as in Figure 12. (b)
Time evolution of the solutions.
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Figure 15. Bifurcation diagram of the system (2.2), taking stiffness of the spring “a” as
the bifurcation parameter and other parameters are taken Figure 12(a). For this diagram, we
have plotted the maximum and minimum values of aperiodic solution with respect to the
parameter a.

5. Conclusions

We have studied a retarded oscillator with negative damping and two delays. It is found that the
origin of the delayed system (2.2) is a B-T bifurcation point if d = a ∈ (0, a+

0 ) and b = −aτ2. Utilizing
the center manifold and normal form theories, we derived the canonical forms of B-T singularity.
Moreover, the phase portraits and bifurcation diagrams along with associated criteria for several cases
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of the normal form have shown. Finally, numerical simulations are given which confirmed the obtained
criteria and observed that both the retarded delay τ1 and feedback delay τ2 have crucial functioning
on the qualitative change of the dynamics of the delayed system (2.2). From the numerical study, it is
evident that the retarded delay plays a significant role in regulating the dynamics of the system under
consideration. It is clear from the Figures 12–14 that the feedback delay is also an important factor
in controlling the dynamics of the proposed system. It can be concluded that the the coefficient of
stiffness has a crucial role in regulating the irregular dynamics of the system (2.2) (cf. Figure 15).

We know very well that a system with multiple delays makes it very hard to investigate the
distribution of the eigenvalues of the characteristic equation and induce the system to show richer
dynamical behaviors. There are hardly any universal unfolding results about the triple zero
bifurcation for a system with retarded delay as well as feedback delay. As a result, research on the
quadruple bifurcation for delayed systems is scarce. These results have guiding importance for the
engineers to choose the values of the delay to acquire the desired dynamical effects. These facts will
be discussed in the future studies.
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