Research article

Majorization results for non vanishing analytic functions in different domains

  • Received: 24 May 2022 Revised: 27 July 2022 Accepted: 16 August 2022 Published: 06 September 2022
  • MSC : Primary 05A30, 30C45, Secondary 11B65, 47B38

  • In recent years, many authors have studied and investigated majorization results for different subclasses of analytic functions. In this paper, we give some majorization results for certain non vanishing analytic functions, whose ratios are subordinated to different domains in the open unit disk.

    Citation: Huo Tang, Muhammad Arif, Khalil Ullah, Nazar Khan, Bilal Khan. Majorization results for non vanishing analytic functions in different domains[J]. AIMS Mathematics, 2022, 7(11): 19727-19738. doi: 10.3934/math.20221081

    Related Papers:

  • In recent years, many authors have studied and investigated majorization results for different subclasses of analytic functions. In this paper, we give some majorization results for certain non vanishing analytic functions, whose ratios are subordinated to different domains in the open unit disk.



    加载中


    [1] L. Bieberbach, Über dié Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preussische Akad. Wiss., 138 (1916), 940–955.
    [2] L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152.
    [3] M. S. Roberston, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1–9.
    [4] T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95–102. https://doi.org/10.1215/S0012-7094-67-03411-4 doi: 10.1215/S0012-7094-67-03411-4
    [5] O. Altintas, H. M. Srivastava, Some majorization problems associated with $p$-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175–183.
    [6] S. P. Goyal, P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett., 22 (2009), 1855–1858. https://doi.org/10.1016/j.aml.2009.07.009 doi: 10.1016/j.aml.2009.07.009
    [7] S. P. Goyal, P. Goswami, Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 66 (2012), 57–62. https://doi.org/10.2478/v10062-012-0013-1 doi: 10.2478/v10062-012-0013-1
    [8] N. E. Cho, Z. Oroujy, E. A. Adegani, A. Ebadian, Majorization and coefficient problems for a general class of starlike functions, Symmetry, 12 (2020), 1–10. https://doi.org/10.3390/sym12030476 doi: 10.3390/sym12030476
    [9] S. H. Li, H. Tang, E. Ao, Majorization properties for certain new classes of analytic functions using the Sălăgean operator, J. Inequal. Appl., 2013 (2013), 1–8. https://doi.org/10.1186/1029-242X-2013-86 doi: 10.1186/1029-242X-2013-86
    [10] J. K. Prajapat, M. K. Aouf, Majorization problem for certain class of $p$-valently analytic functions defined by generalized fractional differintegral operator, Comput. Math. Appl., 63 (2012), 42–47. https://doi.org/10.1016/j.camwa.2011.10.065 doi: 10.1016/j.camwa.2011.10.065
    [11] P. Goswami, M. K. Aouf, Majorization properties for certain classes of analytic functions using the Sălăgean operator, Appl. Math. Lett., 23 (2010), 1351–1354. https://doi.org/10.1016/j.aml.2010.06.030 doi: 10.1016/j.aml.2010.06.030
    [12] T. Panigraht, R. El-Ashwah, Majorization for subclasses of multivalent meromorphic functions defined through iterations and combinations of the Liu-Srivastava operator and a meromorphic analogue of the Cho-Kwon-Srivastava operator, Filomat, 31 (2017), 6357–6365. https://doi.org/10.2298/FIL1720357P doi: 10.2298/FIL1720357P
    [13] H. Tang, M. K. Aouf, G. T. Deng, Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava operator, Filomat, 29 (2015), 763–772. https://doi.org/10.2298/FIL1504763T doi: 10.2298/FIL1504763T
    [14] H. Tang, H. M. Srivastava, S. H. Li, G. T. Deng, Majorization results for subclasses of starlike functions based on the sine and cosine functions, Bull. Iran. Math. Soc., 46 (2020), 381–388. https://doi.org/10.1007/s41980-019-00262-y doi: 10.1007/s41980-019-00262-y
    [15] H. Tang, S. H. Li, G. T. Deng, Majorization properties for a new subclass of $\theta$-spiral functions of order $\gamma$, Math. Slovaca, 64 (2014), 39–50. https://doi.org/10.2478/s12175-013-0185-3 doi: 10.2478/s12175-013-0185-3
    [16] H. Tang, G. T. Deng, Majorization problems for certain classes of multivalent analytic functions related with the Srivastava-Khairnar-More operator and exponential function, Filomat, 32 (2018), 5319–5328. https://doi.org/10.2298/FIL1815319T doi: 10.2298/FIL1815319T
    [17] H. Tang, G. T. Deng, S. H. Li, Majorization properties for certain classes of analytic functions involving a generalized differential operator, J. Math. Res. Appl., 33 (2013), 578–586.
    [18] H. Tang, G. T. Deng, Majorization problems for two subclasses of analytic functions connected with the Liu-Owa integral operator and exponential function, J. Inequal. Appl., 2018 (2018), 1–11. https://doi.org/10.1186/s13660-018-1865-x doi: 10.1186/s13660-018-1865-x
    [19] H. Tang, G. T. Deng, Majorization problems for some subclasses of starlike functions, J. Math. Res. Appl., 39 (2019), 153–159.
    [20] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, 1992,157–169.
    [21] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 2 (1970), 159–177.
    [22] M. Arif, K. Ahmad, J. L. Liu, J. Sokół, A new class of analytic functions associated with Sălăgean operator, J. Funct. Space., 2019 (2019), 1–8. https://doi.org/10.1155/2019/6157394 doi: 10.1155/2019/6157394
    [23] K. I. Noor, M. Arif, Mapping properties of an integral operator, Appl. Math. Lett., 25 (2012), 1826–1829. https://doi.org/10.1016/j.aml.2012.02.030 doi: 10.1016/j.aml.2012.02.030
    [24] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
    [25] N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5
    [26] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8
    [27] L. Shi, H. M. Srivastava, M. Arif, S. Hussain, H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 1–14. https://doi.org/10.3390/sym11050598 doi: 10.3390/sym11050598
    [28] S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40 (2016), 199–212.
    [29] A. Alotaibi, M. Arif, M. A. Alghamdi, S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics, 8 (2020), 1–16. https://doi.org/10.3390/math8071118 doi: 10.3390/math8071118
    [30] K. Bano, M. Raza, Starlike functions associated with cosine function, Bull. Iran. Math. Soc., 47 (2021), 1513–1532. https://doi.org/10.1007/s41980-020-00456-9 doi: 10.1007/s41980-020-00456-9
    [31] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of $q$-derivative operator to the subclass of bi-univalent functions involving $q$-Chebyshev polynomials, J. Math., 2022 (2022), 1–7. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182
    [32] Q. X. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type $q$-starlike functions and its consequences, Symmetry, 13 (2021), 1–14. https://doi.org/10.3390/sym13071275 doi: 10.3390/sym13071275
    [33] M. G. Khan, B. Ahmad, N. Khan, W. K. Mashwani, S. Arjika, B. Khan, et al., Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Space., 2021 (2021), 1–9. https://doi.org/10.1155/2021/4343163 doi: 10.1155/2021/4343163
    [34] H. Tang, M. Arif, M. Haq, N. Khan, M. Khan, K. Ahmad, et al., Fourth Hankel determinant problem based on certain analytic functions, Symmetry, 14 (2022), 1–17. https://doi.org/10.3390/sym14040663 doi: 10.3390/sym14040663
    [35] M. Arif, M. Ul-Haq, O. Barukab, S. A. Khan, S. Abullah, Majorization results for certain subfamilies of analytic functions, J. Funct. Space., 2021 (2021), 1–6. https://doi.org/10.1155/2021/5548785 doi: 10.1155/2021/5548785
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(69) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog