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1. Introduction

For better understanding of the main results, here in this part of the paper we give some basic and
important concepts. We start from the very basic definition, which we denote by symbol A. The class
A consists of all analytic functions in the open disk

D = {z : z ∈ C and |z| < 1} ,

and if f (z) is contained in A, the relations

f (0) = 0 and f ′ (0) = 1

are satisfied. In addition, the family S ⊂ A includes all univalent functions. The coefficient conjecture
stated by Biberbach [1] in 1916 contributed to the field’s emergence as a viable area of future research,
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despite the fact that function theory was formed in 1851. De-Branges [2] proved this conjecture
in 1985. Between 1916 and 1985, many of the world’s leading scholars attempted to confirm or
reject the Bieberbach conjecture. As a result, they found a number of subclasses of the S family
of normalised univalent functions that are linked to different image domains. The S∗ andK , classes of
starlike and convex functions, respectively, are the most fundamental and important subclasses of the
functions class S, which are described as

S
∗ =:

{
f ∈ S : Re

z f ′(z)
f (z)

> 0 (z ∈ D)
}

and

K =:
{

f ∈ S : Re
(z f ′ (z))′

f ′ (z)
> 0 (z ∈ D)

}
.

Robertson [3] established the concept of quasi-subordination between holomorphic functions in 1970.
Two functions F1 (z) ,F1 (z) ∈ A are related to the relationship of quasi-subordination, indicated
mathematically by F1 (z) ≺q F2 (z) , if there exist functions ϕ (z) , u (z) ∈ A so that z f ′(z)

ϕ(z) is regular
in D with

|ϕ (z)| ≦ 1, u (0) = 0 and |u (z)| ≦ |z| ,

obeying the relationship
F1 (z) = ϕ (z)F2 (u (z)) (z ∈ D) . (1.1)

Furthermore, by selecting
u (z) = z and ϕ (z) = 1,

we gain one of the most useful geometric function theory ideas known as subordination between regular
functions. In fact, if F2 (z) ∈ S, then, for F1 (z) ,F2 (z) ∈ A, the subordination relationship has

F1 (z) ≺ F2 (z) ⇐⇒ [F1 (D) ⊂ F2 (D) with F1 (0) = F2 (0)] .

By taking u (z) = z, the above definition of quasi-subordination becomes the majorization between
holomorphic functions and is written mathematically by

F1 (z) ≪ F2 (z) (F1 (z) ,F2 (z) ∈ A) .

That is
F1 (z) ≪ F2 (z) ,

if the function ϕ (z) ∈ A having the condition |ϕ (z)| ≦ 1 such that

ϕ (z)F2 (z) = F1 (z) (z ∈ D) . (1.2)

MacGregor [4] developed this concept in 1967. Several papers have been written in which this concept
has been utilized. The work of Srivastava and Altintas [5], Goyal and Goswami [6, 7], Cho et al. [8],
Li et al. [9], Aouf and Prajapat [10], Goswami and Aouf [11], El-Ashwah and Panigraht [12] and Tang
et al. [13,14] are worth noting on this subject. For some recent study on this topic, we refer the readers
to see [15–19].
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Ma and Minda [20] examined the general form of the family S∗ in 1992, and it was given by

S
∗ (Λ) =:

{
f ∈ S :

z f ′ (z)
f (z)

≺ Λ (z) , (z ∈ D)
}
, (1.3)

where Λ (z) is analytic function having the condition Λ′ (0) > 0 and in D its real part is greater than 0.
In addition, with regard to Λ (0) = 1, the function Λ (z) maps D onto a star-like shaped area. Ma
and Minda [20] investigated on growth, distortion, and covering theorems, along with other aspects.
Various sub-families of the normalized holomorphic class A have been explored as a particular example
of class S∗ (Λ) in recent years. Some of them are listed below:

(i) Choosing Λ(z) as

Λ(z) =
1 + Mz
1 + Nz

(−1 ≤ N < M ≤ 1) ,

then we obtain the class given by

S
∗[M,N] ≡ S∗

(
1 + Mz
1 + Nz

)
,

where S∗[M,N] is the functions class define in [21], see also [22, 23]. Furthermore, the class
S∗ (ζ) given by

S
∗ (ζ) := S∗

[
1 − 2ζ,−1

]
(0 ≤ ζ ≤ 1),

where S∗ (ζ) is the class of starlike function of order ζ.
(ii) The following class:

S
∗
L ≡ S

∗(Λ(z))
(
Λ(z) =

√
1 + z

)
,

was studied in [24] by Stankiewicz and Sokól.
(iii) By taking Λ(z) = 1 + sin z, the family S∗(Λ(z)) leads to the class S∗sin, which was investigated by

Cho et al. [25]. On the other hand, the function class given by

S
∗
e ≡ S

∗ (ez)

was studied in [26] (see also [27]).
(iv) The classS∗R ≡ S

∗ (Λ(z)) with Λ(z) = 1+ z
J

J+z
J−z , J = 1+

√
2 is studied in [28]. While the following

families:
S
∗
cos =: S∗ (cos(z))

and
S
∗
cosh := S∗ (cosh(z))

were considered, respectively, by Abdullah et.al [29] and Bano and Raza [30].

For some more recent and interesting investigations on some subclasses of analytic and bi-univalent
functions, we may refer the readers to see [31–34].

Now, we choose the nonvanishing holomorphic functions h1 (z) and h2 (z) in D with

h1 (0) = h2 (0) = 1.
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Then, for the classes which we described in this article, contain such function f (z) ∈ A whose ratios
f (z)

zq(z) and q (z) are subordinated to h1 (z) and h2 (z) , respectively, for certain holomorphic function q (z)
with q (0) = 1 as

f (z)
zq (z)

≺ h1 (z) and q (z) ≺ h2 (z) .

Instead of h1 (z) and h2 (z) , we will now select certain specific functions. These choices are

h1 (z) = cos z,

or

h1 (z) =
√

1 + z,

or

h1 (z) = ez,

or

h1 (z) = 1 +
4
3

z +
2
3

z2,

and

h2 (z) = 1 + tanh z.

We now investigate the following new subfamilies by using the above-mentioned concepts:

Fcos =

{
f ∈ A :

f (z)
zq (z)

≺ cos z & q (z) ≺ h2 (z) , z ∈ D
}
, (1.4)

FSL =

{
f ∈ A :

f (z)
zq (z)

≺
√

1 + z & q (z) ≺ h2 (z) , z ∈ D
}
, (1.5)

Fexp =

{
f ∈ A :

f (z)
zq (z)

≺ ez & q (z) ≺ h2 (z) , z ∈ D
}
, (1.6)

Fcar =

{
f ∈ A :

f (z)
zq (z)

≺ 1 +
4
3

z +
2
3

z2 & q (z) ≺ h2 (z) , z ∈ D
}
. (1.7)

We will examine majorization problems for each of the above-mentined families in this article:
Fcos,FSL,Fexp and Fcar.

2. Main results

To proved majorization results for the families Fcos,FSL,Fexp and Fcar, we need the following
lemmas.

Lemma 2.1. Let q(z) ≺ 1 + tanh z and |z| ≤ r. Then, q (z) satisfies the following conditions:

1 − tanh r sec2 r ≤ |q(z)| ≤ 1 + tanh r sec2 r (2.1)

and ∣∣∣∣∣zq′(z)
q(z)

∣∣∣∣∣ ≤ r sec2 r
(1 − r2)(1 − tan r)

. (2.2)
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Proof. If q(z) ≺ 1 + tanh z, then
q(z) = 1 + tanh u(z),

for certain Schwartz function u(z). After a very simple computations, we now get

zq′(z)
q(z)

=
zu′(z) sec h2u(z)

1 + tanh u(z)
. (2.3)

Let u(z) = R(eit), with |z| = r ≤ R, −π ≤ θ ≤ π. Upon certain simple computation, we get

R(sec h2
(
Reiθ)

)
) = 1 −

tanh2 (Rx) sec4 (Ry) − tan2 (Ry) sec h4 (Rx)
tanh4 (Rx) tan4 (Ry) + 2 tanh2 (Rx) tan2 (Ry) + 1

,

(
R := |u (z) |; r := |z|

)
,

where
y = sin θ, x = cos θ, y, x ∈ [−1, 1].

Now, we can write
1 ≤ sec2 (Ry) ≤ sec2 R ≤ sec2 r.

So, we have
ℜ

(
sec h2u(z)

)
≥ sec h2R ≥ sec h2r. (2.4)

Let us suppose

∣∣∣tanh(Reiθ)
∣∣∣2 = tanh2(R cos t) sec4(R sin t) + tan2(R sin t) sec h4(R cos t)

1 + tan2(R sin t) tanh2(R cos t)
= Ψ(θ). (2.5)

A simple computation give us that 0, ±π2 and ±π are the zeros of Ψ′(θ) in [−π, π]. We observe that

Ψ(
π

2
) = tan2(R) and Ψ(0) = Ψ(π) = tanh2(R).

Furthermore, we see that
max{Ψ(0),Ψ(

π

2
),Ψ(π)} = tan2(R). (2.6)

Hence, ∣∣∣∣tanh R
(
eiθ

)∣∣∣∣ ≤ tan(R) ≤ tan r. (2.7)

Similarly, we demonstrate that
sec h2r ≤

∣∣∣sec h2u(z)
∣∣∣ ≤ sec2 r. (2.8)

Now, from well-known inequality for schwarz function u(z), we attain

|u′(z)| ≤
1 − |u(z)|2

1 − |z|2
=

1 − R2

1 − |z|2
≤

1
1 − r2 . (2.9)

Now using (2.7)–(2.9) in (2.3), we get (2.2). □
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Lemma 2.2. Suppose that q(z) ≺ 1 + sin z (|z| ≤ r). Then q satisfies the following conditions:

1 − cosh r sin r ≤ |q(z)| ≤ 1 + cosh r sin r (2.10)

and ∣∣∣∣∣zq′(z)
q(z)

∣∣∣∣∣ ≤ r cosh r
(1 − r2)(1 − sinh r)

. (2.11)

Proof. For proof see [35]. □

Theorem 2.1. Let f (z) ∈ A, g ∈ Fcos and also assume that f (z) ≪ g (z) in D. Then, for |z| ≤ r1,

| f ′ (z)| ≤ |g′ (z)| ,

where r1 is the smallest positive root of the equation((
1 − r2 − 2r

)
cos r − r sinh r

)
(1 − tan r) − r cos r sec2 r = 0. (2.12)

Proof. If g ∈ Fcos, then by the subordination relationship, we get

g (z)
zq (z)

= cos u(z).

Now, by some simple computations, we obtain

zg′ (z)
g (z)

= 1 +
zq′ (z)
q (z)

−
zu′(z) sin u (z)

cos u(z)
. (2.13)

Now by using (2.7)–(2.9) and (2.11) along with Lemma 2.1, we have∣∣∣∣∣ g (z)
g′ (z)

∣∣∣∣∣ = |z|∣∣∣∣1 + zq′(z)
q(z) −

zu′(z) sin u(z)
cos u(z)

∣∣∣∣
≤

|z|

1 −
∣∣∣∣ zq′(z)

q(z)

∣∣∣∣ − ∣∣∣∣ zu′(z) sin u(z)
cos u(z)

∣∣∣∣
≤

r
(
1 − r2

)
cos r (1 − tan r)(

1 − r2) (1 − tan r) cos r − r cos r sec2 r − r sinh r (1 − tan r)
. (2.14)

From (1.2), we can write
f (z) = ϕ (z) g (z) . (2.15)

Differentiating (2.15) on both sides, we obtain

f ′ (z) = ϕ′ (z) g (z) + ϕ (z) g′ (z)

=

(
ϕ (z) + ϕ′ (z)

g (z)
g′ (z)

)
g′ (z) . (2.16)

Also, the Schwarz function ϕ (z) satisfies the following inequality:

|ϕ′ (z)| ≤
1 − |ϕ′ (z)|2

1 − |z|2
=

1 − |ϕ′ (z)|2

1 − r2 (z ∈ D). (2.17)
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Now applying (2.14) and (2.17) in (2.16), we attain

| f ′ (z)| ≤ |g′ (z)|

ϕ (z) +
r
(
1 − |ϕ′ (z)|2

)
cos r (1 − tan r)(

1 − r2) cos r (1 − tan r) − r cos r sec2 r − r sinh r (1 − tan r)

 ,
which by putting

|ϕ′ (z)| = η (0 ≤ η ≤ 1) (2.18)

becomes the inequality
| f ′ (z)| ≤ Ξ1 (r, η) |g′ (z)| ,

where

Ξ1 (r, ρ) = ϕ (z) +
r
(
1 − |ϕ′ (z)|2

)
cos r (1 − tan r)((

1 − r2) cos r − r sinh r
)

(1 − tan r) − r sec2 r cos r
.

To determine r1, it is sufficient to choose

r1 = max (r ∈ [0, 1) : Ξ1 (r, η) ≤ 1,∀η ∈ [0, 1]) ,

or, equivalently,
r1 = max (r ∈ [0, 1) : Φ1 (r, η) ≥ 0,∀η ∈ [0, 1]) ,

where
Φ1 (r, η) =

((
1 − r2 − r (1 + η)

)
cos r − r sinh r

)
(1 − tan r) − r cos r sec2 r.

Obviously, if we choose η = 1, then we can see that the function Φ1 (r, η) gets its minimum value,
namely,

min (Φ1 (r, η) , η ∈ [0, 1]) = Φ1 (r, 1) = Φ1 (r) ,

where
Φ1 (r) =

((
1 − r2 − 2r

)
cos r − r sinh r

)
(1 − tan r) − r cos r sec2 r.

Next, we have the following inequalities:

Φ1 (0) = 1 > 0 and Φ1 (1) = −0.5934 < 0,

There is indeed a r1 so that Φ1 (r) ≥ 0 for every r ∈ [0, r1] , where r1 is the smallest positive root of
Eq (2.12). Thus, we have completed the proof of our result. □

Theorem 2.2. Let f (z) ∈ A, g ∈ FSL and also assume that f (z) is majorized by g (z) in D. Then, for
|z| ≤ r2,

| f ′ (z)| ≤ |g′ (z)| ,

where r2 is the smallest positive root of the equation(
1 − 2r2 − 5r

)
(1 − tan r) − 2r sec2 r = 0. (2.19)
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Proof. If g ∈ FSL. Then, a holomorphic function u (z) in D occurs with u (0) = 0 and |u (z)| ≤ |z| so
that

g (z)
z (q (z))

=
√

1 + u (z).

After some simple computations, we now have

zg′ (z)
g (z)

= 1 +
zq′ (z)
q (z)

+
zu′ (z)

2 (1 + u (z))
. (2.20)

Utilizing (2.9) , we get

|z| |u′ (z)|
2 (1 − |u (z)|)

≤
|z| (1 + |u (z)|)

2
(
1 − |z|2

) ≤ |z| (1 + |z|)
2
(
1 − |z|2

) = |z|
2 (1 − |z|)

≤
r

2 (1 − r)
.

By virtue of (2.9) and Lemma 2.1, we get∣∣∣∣∣ g (z)
g′ (z)

∣∣∣∣∣ = |z|

1 −
∣∣∣∣ zq′(z)

q(z)

∣∣∣∣ − ∣∣∣∣ zu′(z)
2(1+u(z))

∣∣∣∣
≤

2r
(
1 − r2

)
(1 − tan r)

2
(
1 − r2) (1 − tan r) − 2r sec2 r − r (1 − tan r) (1 + r)

. (2.21)

Now, by using (2.21) and (2.17) in (2.16) , we get

| f ′ (z)| ≤ |g′ (z)|

ϕ (z) +
2r

(
1 − |ϕ′ (z)|2

)
(1 − tan r)

2
(
1 − r2) (1 − tan r) − 2r sec2 r − r (1 + r) (1 − tan r)

 .
The required results are obtained by the same computations as in Theorem 2.1, along with the use
of (2.18) . □

Theorem 2.3. Let f (z) ∈ A, g (z) ∈ Fexp and also assume that f (z) ≪ g (z) in D. Then, for |z| ≤ r3,

| f ′ (z)| ≤ |g′ (z)| ,

where r3 is the smallest positive root of the equation((
1 − r2 − 3r

)
er
)

(1 − tan r) − rer sec2 r = 0. (2.22)

Proof. If g ∈ Fexp. Then, by subordination relationship, we have

g (z)
zq (z)

= eu(z).

Now, after some easy computations, we obtain

zg′ (z)
g (z)

= 1 +
zq′ (z)
q (z)

+
zu′ (z) eu(z)

eu(z) . (2.23)
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Now by using (2.7)–(2.9) in conjunction with Lemma 2.1, we have∣∣∣∣∣ g (z)
g′ (z)

∣∣∣∣∣ = |z|∣∣∣∣1 + zq′(z)
q(z) +

zu′(z)eu(z)

eu(z)

∣∣∣∣
=

|z|

1 −
∣∣∣∣ zq′(z)

q(z)

∣∣∣∣ − ∣∣∣∣ zu′(z)eu(z)

eu(z)

∣∣∣∣
≤

rer
(
1 − r2

)
(1 − tan r)

er (1 − r2) (1 − tan r) − rer sec2 r − rer (1 − tan r)
. (2.24)

Now, by using (2.24) and (2.17) in (2.16) , we get

| f ′ (z)| ≤ |g′ (z)|

φ (z) +
rer

(
1 − |φ′ (z)|2

)
(1 − tan r)

er (1 − r2) (1 − tan r) − rer sec2 r − rer (1 − tan r)

 .
The required results is obtained by the same computations as in Theorem 2.1, along with the use
of (2.18) . □

Theorem 2.4. Let f (z) ∈ A, g (z) ∈ Fcar and also assume that f (z) ≪ g (z) in D. Then, for |z| ≤ r4,

| f ′ (z)| ≤ |g′ (z)| ,

where r4 is the smallest positive root of the equation((
3
(
1 − r2

)
− 6r

)
Ψ − 4r (1 + r)

)
(1 − tan r) − Ψ3r sec2 r = 0 (2.25)

with

Ψ =

(
1 +

4
3

r +
2
3

r2
)
.

Proof. If g ∈ Fcar. Then by subordination relationship, we have

g (z)
zq (z)

= 1 +
4
3

u (z) +
2
3

(u (z))2 .

After some simple computations, we now have

zg′ (z)
g (z)

= 1 +
zq′ (z)
q (z)

+

4
3zu′ (z) (1 + u (z))

1 + 4
3u (z) + 2

3 (u (z))2 . (2.26)

Now, by using (2.7)–(2.9) , we have∣∣∣∣∣ g (z)
g′ (z)

∣∣∣∣∣ = |z|∣∣∣∣1 + zq′(z)
q(z) +

4
3 zu′(z)(1+u(z))

1+ 4
3 u(z)+ 2

3 (u(z))2

∣∣∣∣
≤

3r
(
1 − r2

)
(1 − tan r)Ψ

3
(
1 − r2) (1 − tan r)Ψ − Ψ3r sec2 r − 4r (1 + r) (1 − tan r)

, (2.27)
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where

Ψ =

(
1 +

4
3

r +
2
3

r2
)
.

Now, by using (2.27) and (2.17) in (2.16) , we get

| f ′ (z)| ≤ |g′ (z)|

φ (z) +
3r

(
1 − |φ′ (z)|2

)
(1 − tan r)Ψ

3
(
1 − r2) (1 − tan r)Ψ − Ψ3r sec2 r − 4r (1 − tan r) (1 + r)

 .
We obtain the results directly utilizing the same calculation which are presented in the proof of our
Theorem 2.1 in conjunctions with (2.18) . □

3. Conclusions

We investigated on majorization problems for a certain subfamilies of regular functions that are
connected to distinct shapes domains. Other subfamilies of these problems can be investigated, such
as the families of meromorphic functions and the families of harmonic functions. One may attempt the
suggested results for different subclasses of q-starlike functions.
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